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ABSTRACT

Submesoscale flows, current systems 1-100 km in horizontal extent, are increasingly
coming into focus as an important component of upper-ocean dynamics. A range of pro-
cesses have been proposed to energize submesoscale flows, but which process dominates
in reality must be determined observationally. We diagnose from observed flow statis-
tics that in the thermocline the dynamics in the submesoscale range transition from geo-
strophic turbulence at large scales to inertia—gravity waves at small scales, with the transi-
tion scale depending dramatically on geographic location. A similar transition is shown to
occur in the atmosphere, suggesting intriguing similarities between atmospheric and oce-
anic dynamics. We furthermore diagnose from upper-ocean observations a seasonal cycle
in submesoscale turbulence: fronts and currents are more energetic in the deep winter-
time mixed layer than in the summertime seasonal thermocline. This seasonal cycle hints
at the importance of baroclinic mixed layer instabilities in energizing submesoscale tur-
bulence in winter. To better understand this energization, three aspects of the dynam-
ics of baroclinic mixed layer instabilities are investigated. First, we formulate a quasi-
geostrophic model that describes the linear and nonlinear evolution of these instabilities.
The simple model reproduces the observed wintertime distribution of energy across scales
and depth, suggesting it captures the essence of how the submesoscale range is energized
in winter. Second, we investigate how baroclinic instabilities are affected by convection,
which is generated by atmospheric forcing and dominates the mixed layer dynamics at
small scales. It is found that baroclinic instabilities are remarkably resilient to the pres-
ence of convection and develop even when rapid overturns keep the mixed layer unstrati-
fied. Third, we discuss the restratification induced by baroclinic mixed layer instabilities.
We show that the rate of restratification depends on characteristics of the baroclinic ed-
dies themselves, a dependence not captured by a previously proposed parameterization.
These insights sharpen our understanding of submesoscale dynamics and can help fo-
cus future inquiry into whether and how submesoscale flows influence the ocean’s role in
climate.
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CHAPTER 1

INTRODUCTION



Oceanic flows span an enormous ten orders of magnitude in scale, enabled by the
ocean’s global extent and seawater’s minute viscosity. Gyre and overturning circulations
fill entire ocean basins, while three-dimensional turbulence reaches down to millimeter
scales. Physical oceanography in the 20th century has illuminated major components of
this oceanic spectrum, uncovering important interactions across the tremendous range of
scales.

Inertia—gravity waves occupy a large part of the oceanic spectrum. The study of their
dynamics goes back to the 19th century, but it was the major expeditions of the early 20th
century that discovered that the global ocean is host to a pervasive inertia—gravity wave
field (e.g. Defant, 1961). Inertia—gravity waves have frequencies between the inertial fre-
quency f and the buoyancy frequency N. A large part of the inertia—gravity wave energy
is associated with near-inertial or tidal frequencies, but a continuum of frequencies be-
tween f and N bears energy (e.g. Ferrari and Wunsch, 2009). Garrett and Munk (1972)
used linear wave theory to synthesize observations in the horizontal, vertical, and time
coordinates to characterize the distribution of wave energy across scales. They focused on
the frequency continuum and established these waves to dominate motions on horizontal
scales smaller than 1 km throughout the thermocline and deep ocean. At small scales,
inertia—gravity waves give way to three-dimensional turbulence when they break. The
small-scale mixing induced by this occasional wave breaking is thought to play an impor-
tant role in the global meridional overturning circulation. Wave breaking is thought to
mix heat down into cold abyssal waters formed in polar regions, allowing these waters to
return to the surface.

The “mesoscale revolution” (W. Munk in von Storch and Hasselmann, 2010) estab-
lished another crucial component of the oceanic spectrum: geostrophic eddies of order
100 km in horizontal scale. These eddies are strongly constrained by the earth’s rotation
and the ocean’s stratification; they evolve on subinertial time scales, typically weeks to
months. They were first hinted at by acoustically tracked deep floats in the late 1950s
(Swallow, 1971) and were fully exposed by the seminal MODE experiment (The MODE
Group, 1978). Mesoscale eddies dominate the kinetic energy in much of the ocean and
nowadays are routinely observed by satellite altimetry (e.g. Wunsch and Stammer, 1998).
Fluxes of heat and salt achieved by mesoscale eddies have a profound impact on the gyre
circulation (e.g. Rhines and Young, 1982) as well as Southern Ocean and meridional over-
turning dynamics (e.g. Johnson and Bryden, 1989; Marshall and Radko, 2003), the details
of which are still being worked out.

This 20th century progress has mapped out much of the oceanic spectrum, but a wide
gap remains between mesoscale eddies at order 100 km and inertia—gravity waves and
three-dimensional turbulence at scales smaller than 1 km. This relatively unexplored
range, roughly 1-100 km, will be referred to as the “submesoscale range”! and has re-

1Some authors prefer a dynamical definition of “submesoscale,” for example requiring Rossby numbers
of order 1 (e.g. Thomas et al., 2008). We instead use the term to designate the range of scales between the
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cently come into the focus of physical oceanographic research. The dynamics governing
flows in the submesoscale range are the topic of this dissertation.

In the main thermocline, balanced submesoscale flows are expected to be weak and en-
ergy to be largely trapped at mesoscales (Charney, 1971). The horizontal stirring of tracers
in the interior is then dominated by mesoscale eddies, as evidenced by the filamentation
of artificial tracers injected into the thermocline (e.g. Ledwell et al., 1998). Modeling stud-
ies and satellite observations suggest, however, that the dynamics can be quite different at
the sea surface: under certain conditions a convoluted network of energetic submesoscale
surface fronts forms (e.g. Capet et al., 2008a,d). These fronts, elongated regions of large
surface buoyancy gradients, are associated with strong along-front currents that are to
leading order geostrophically balanced.

Submesoscale surface fronts have been suggested to have an impact on larger-scale
flows and tracer distributions, similar to what had been discovered for inertia—-gravity
waves and mesoscale eddies. This impact is thought to be mediated by vigorous ex-
changes between the surface and interior ocean that occur along these fronts (e.g. Capet
et al., 2008a). Energetic submesoscale flows produce much larger vertical velocities than
mesoscale eddies (Mahadevan and Tandon, 2006). Modeling studies suggest that these
enhanced vertical exchanges can modify the physical properties of waters subducted into
the thermocline (Lévy et al., 2010) as well as affect the biogeochemistry of the upper
ocean (e.g. Ferrari, 2011; Mahadevan, 2014). These flows bring nutrients up into the sur-
face layer, where they can be used for photosynthesis, and sequester carbon in the inte-
rior ocean. The small-scale nature of vertical velocities in the surface ocean parallels that
in the midlatitude atmosphere, where precipitation caused by upward motion occurs at
scales much smaller than the dominant synoptic eddies.

Besides their effect on exchanges between the surface and interior ocean, energetic
near-surface submesoscale flows have also been suggested to strongly affect the stratifica-
tion of the upper ocean. Submesoscale processes tend to flatten isopycnals, restratifying
the surface layers (Lapeyre et al., 2006; Boccaletti et al., 2007). This modifies surface prop-
erties and feeds back on the exchange of heat and freshwater with the atmosphere, with
the potential to affect both the oceanic general circulation and atmospheric climate. How
deep the influence of surface-enhanced submesoscale flows reaches, however, remains
unclear. The vertical structure of submesoscale flows is largely unconstrained observa-
tionally and not sufficiently understood dynamically.

Another motivation for studying submesoscale dynamics is the attempt to close the
energy budget of mesoscale eddies. Mesoscale eddies are energized by thermocline baro-
clinic and barotropic instabilities, but how energy is drained from them remains unclear
(e.g. Ferrari and Wunsch, 2010). Owing to the constraints imposed by rotation and strati-
fication, mesoscale eddies tend to transfer energy to large scales. This prevents mesoscale

most energetic mesoscale eddies and about 1 km. This usage is closer to the literal meaning of the term and
is more adept to our approach of attempting to infer the dynamics from observations of flows in this range.
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energy from being effectively scattered to small scales, where it can be dissipated. A re-
cently proposed solution to this quandary is that surface frontogenesis and ageostrophic
submesoscale instabilities overcome the rotational constraint and thereby enable a trans-
fer of mesoscale energy to small dissipation scales (Capet et al., 2008c; Molemaker et al.,
2005, 2010). The relevance of this forward route to dissipation remains largely unquanti-
fied and can only be assessed once more is known about submesoscale dynamics.

The dynamics of how submesoscale surface fronts sharpen is fairly well understood
from theory originally developed for atmospheric frontogenesis (e.g. Stone, 1966a; Hos-
kins and Bretherton, 1972; Hoskins, 1982). The sea surface plays an important role in
the formation of these fronts, because horizontal strain and shear flows can effectively
sharpen buoyancy gradients there. In the ocean interior, if horizontal buoyancy gradients
are sharpened, an ageostrophic circulation develops in response, which downwells light
water on the dense side and upwells dense water on the light side, thereby opposing the
increase in horizontal buoyancy gradient. At the surface, on the other hand, the vertical
velocity is constrained to be nearly zero, so the ageostrophic circulation cannot effectively
oppose the increase in the horizontal buoyancy gradient induced by the horizontal strain
or shear flow. On the contrary, horizontal advection by the ageostrophic circulation can
accelerate the sharpening of surface buoyancy gradients and may lead to frontal collapse,
the formation of buoyancy discontinuities in finite time.

It is not clear, however, what process is most effective in driving frontogenesis in the
surface ocean. Two possibilities have been suggested: the straining by mesoscale eddies
(e.g. Lapeyre and Klein, 2006) and the horizontal shear induced by baroclinic mixed layer
instabilities (e.g. Boccaletti et al., 2007).

Mesoscale eddies have strain fields between their centers, which can act on surface
buoyancy gradients and induce frontogenesis. A useful approximation of the submeso-
scale dynamics produced by mesoscale straining is the surface quasi-geostrophic system.
Being quasi-geostrophic, it does not include the ageostrophic advection and thereby does
not form any buoyancy discontinuities. But it does capture the fundamental difference
in behavior between the surface and the interior, generating sharp surface buoyancy gra-
dients. The surface quasi-geostrophic model can be used to study the dynamics in the
strongly nonlinear regime, where filamentary instabilities energize a continuum of scales
(Held et al., 1995). Surface quasi-geostrophic turbulence predicts the submesoscale range
to be much more energetic near the surface than in the interior (Charney, 1971; Blumen,
1978). These predictions carry over to more complete dynamics, which lead to corrections
at small submesoscales (order 1 km) but generally agree with surface quasi-geostrophic
dynamics at larger scales (e.g. Hakim et al., 2002; Klein et al., 2008; Capet et al., 2008e).

Studies of mesoscale-driven surface frontogenesis commonly envision an upper ocean
with nearly uniform interior potential vorticity. The real upper ocean, however, typically
has a well mixed surface boundary layer. The transition from this weakly stratified mixed
layer to the strongly stratified thermocline corresponds to a jump in potential vorticity,
which can induce additional dynamics. In the presence of horizontal buoyancy gradients,
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the jump in potential vorticity allows an amplification of baroclinic waves in the mixed
layer, which slide dense under light waters (e.g. Haine and Marshall, 1998; Boccaletti et
al., 2007). This mixed layer instability generates flows with horizontal shears at subme-
soscales, inducing frontogenesis not only at the surface but also at the base of the mixed
layer.

Both of these processes, mesoscale-driven surface frontogenesis and baroclinic mixed
layer instabilities, are from a theoretical point of view equally plausible generators of
energetic submesoscale fronts and flows. A first theme of this dissertation is thus to turn
to the limited observations of submesoscale flows to identify which of the two processes
is more ubiquitous in the real ocean.

A major challenge to this program is that other types of motion can dominate over
the balanced dynamics of frontogenesis. It is currently impracticable to collect obser-
vations simultaneously in space and time over the relevant scales, so it is typically un-
clear whether the observed flows are to leading order geostrophically balanced and slowly
evolving or dominated by much faster dynamics. Inertia—gravity waves, in particular the
near-inertial and tidal components, can have relatively large horizontal scales, so their
dominance can reach considerably beyond 1 km and into the submesoscale range. Iner-
tia—gravity waves have very different dynamics than balanced flows, with major impli-
cations for the transport of heat and carbon, for example, so care must be taken to not
confuse these types of motion in observations.

In Chapter 2, we thus seek to identify the leading-order dynamics of submesoscale
flows from in situ observations in two regions.? In the thermocline, away from the surface
and mixed layer, two distinct submesoscale regimes are identified. In the western North
Atlantic, a region with strong mesoscale eddies, submesoscale flows are in geostrophic
balance and relatively weak compared to the mesoscale eddies. Energy drops off rapidly in
the submesoscale range, consistent with interior quasi-geostrophic turbulence (Charney,
1971). In the eastern Pacific, where mesoscale eddies are less energetic, the submesoscales
in the thermocline are instead dominated by inertia—gravity waves, all the way to scales
as large as 100 km.

Chapter 2 illustrates how important it is to distinguish between geostrophic flows
and inertia~gravity waves. In Chapter 3, a method formalizing the analysis of Chapter 2
is developed, which can decompose one-dimensional current and density measurements
into components from these two types of motion.> The method’s application to ocean
observations confirms that in the thermocline large scales are dominated by geostrophic
eddies and small scales by inertia-gravity waves—and that the transition between these
two types of motion occurs at scales depending strongly on geographic location.

The method developed in Chapter 3 is applied to atmospheric data in Chapter 4, re-

2This chapter was published as ]. Callies and R. Ferrari (2013) Interpreting Energy and Tracer Spectra of
Upper-Ocean Turbulence in the Submesoscale Range (1-200 km). J. Phys. Oceanogr. 43 (11), 2456-2474.

3This chapter was published as O. Biihler, J. Callies, and R. Ferrari (2014) Wave-vortex decomposition of
one-dimensional ship-track data. J. Fluid Mech. 756, 1007-1026.
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vealing an intriguing similarity between midlatitude atmospheric and oceanic dynamics.*
Similar to some of the ocean observations presented in Chapter 2, the atmospheric data
exhibit a conspicuous difference in how energy is distributed across scales at large versus
small scales (Nastrom and Gage, 1985). Various explanations based on turbulence the-
ory have been put forward for this transition in the energy spectrum. It is argued in this
chapter that the transition instead stems from inertia-gravity waves becoming dominant
at small scales.

In Chapter 5, returning to the ocean, we present observational evidence for a seasonal
cycle in submesoscale turbulence in the surface layers of the western North Atlantic.’
In the summertime seasonal thermocline, submesoscale flows are relatively weak and
consistent with interior quasi-geostrophic turbulence, as found for the main thermocline
in Chapter 2. In the wintertime mixed layer, on the other hand, submesoscale flows are
more energetic than in the summertime seasonal thermocline or in the main thermocline
below. We attribute this wintertime energization to baroclinic mixed layer instabilities,
which grow in deep winter mixed layers and form submesoscale fronts.

The seasonality described in Chapter 5 indicates how important a role baroclinic
mixed layer instabilities play in energizing the submesoscales. This is taken as an occa-
sion to further investigate the dynamics of these instabilities, which is the second theme
of this dissertation.

Chapter 6 introduces a simple dynamical framework to characterize the process of
how baroclinic mixed layer instabilities energize the submesoscale range. We formulate a
quasi-geostrophic model that captures the essence of the linear and nonlinear evolution
of these instabilities. The model provides a useful starting point for understanding the
turbulent submesoscale dynamics in the presence of baroclinic mixed layer instabilities.
We show that it successfully reproduces the distribution of energy across scales and depth
observed in the wintertime western North Atlantic.

The quasi-geostrophic dynamics employed in Chapter 6 necessarily omit atmospher-
ically forced convection, which keeps the mixed layer unstratified. The interaction be-
tween convection and baroclinic mixed layer instabilities is analyzed in Chapter 7. In an
idealized setup that allows the concurrent simulation of baroclinic instabilities and con-
vection, we find that baroclinic instabilities are remarkably resilient to the presence of
convection. The instabilities develop even when convective overturns are vigorous. This
finding helps isolate the mechanism behind the seasonality of submesoscale turbulence
described in Chapter 5.

One of the important impacts of baroclinic instabilities is that they restratify the
mixed layer. Current global models do not typically resolve this submesoscale instability,

4This chapter was published as J. Callies, R. Ferrari, and O. Buthler (2014) Transition from geostrophic tur-
bulence to inertia-gravity waves in the atmospheric energy spectrum. Proc. Natl. Acad. Sci. U. S. A. 111 (48),
17033-17038.

5This chapter was published as ]. Callies, R. Ferrari, ]. M. Klymak, and J. Gula (2015) Seasonality in
submesoscale turbulence. Nat. Commun. 6 (6862).
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so a scaling must be used to parameterize the restratification. In Chapter 8, we argue that
the pace of restratification depends on characteristics of the baroclinic eddies themselves,
a dependence not captured by a previously proposed parameterization (Fox-Kemper et
al., 2008).

We summarize the conclusions in Chapter 9, detailing the implications for our under-
standing of upper-ocean dynamics. We offer an outlook on questions that will need to be
addressed in future work.
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CHAPTER 2

INTERPRETING ENERGY AND TRACER SPECTRA OF
UprPER-OCEAN TURBULENCE IN THE SUBMESOSCALE RANGE

This chapter was published as J. Callies and R. Ferrari (2013) Interpreting Energy and Tracer Spectra
of Upper-Ocean Turbulence in the Submesoscale Range (1-200 km). J. Phys. Oceanogr. 43 (11), 2456-2474.
© 2013 American Meteorological Society. Reproduced with permission. JC performed the research and wrote
the manuscript, under the supervision of RE.
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2.1 Introduction

Oceanographers have long debated how energy is transferred from large to dissipa-
tive scales. Much progress has been made in describing the energy pathways from basin
to mesoscales and then from scales' of order 1 km down to millimeter scales. But our
understanding of the transfer in between, in the submesoscale range?, is still rudimen-
tary. A major question is whether the energy fluxes in the submesoscale are dominated by
internal waves and other unbalanced motions or whether there is an important contribu-
tion by geostrophic motions. The geostrophic part of submesoscale motions has received
much attention in theoretical studies over the past decade (e.g. Lapeyre and Klein, 2006),
but supporting analysis of observations is lacking. Our goal here is to use available ob-
servations from the upper midlatitude ocean to test different theories of submesoscale
dynamics.

Oceanic motions can easily be separated in the frequency domain. Figure 2.1 shows an
example frequency spectrum from a mooring in the subtropical North Pacific (Schmitz,
Jr., 1988)3. Geostrophically balanced flows span the range of frequencies below the iner-
tial frequency f, inertial oscillations are visible as a broad peak around f, the M; lunar

Al scales are given as wavelengths.

2We use the term submesoscale to designate the range 1-200 km, roughly the scales below the first de-
formation radius. There are other uses of the term in the literature, which are based on order-one Rossby
and Richardson numbers. We here attempt to understand what the dynamics of these scales are, so we use
submesoscale to designate the range of scales without presupposing their dynamics.

3The data are available at http: / [cmdac. oce.orst . edu/.
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(a) Gulf Stream region (b) Subtropical North Pacific
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Figure 2.2: Tracks along which measurements were collected in the (a) Oleander and (b) Spice experiments
(thick black lines). The satellite tracks used in the analysis are shown as thin blue lines. The site of the
mooring used for Fig. 2.1 is marked in (b) with a black dot. The background color is a map of eddy kinetic
energy from AVISO gridded altimetry.

tide appears as a sharp superinertial peak, and a broad-band internal-wave continuum
spans the frequency range between f and the buoyancy frequency N. It is much less
clear how these motions project onto spatial scales. This is a serious limitation to our un-
derstanding of submesoscale turbulence because the interaction of modes across spatial
scales is at the core of turbulence theories.

It is generally believed that the kinetic energy in the midlatitude upper ocean is dom-
inated by geostrophic eddies at scales larger than the first baroclinic deformation scale—
the wavelength associated with the deformation radius—of about 50-200 km and by in-
ternal waves at scales below 1 km. We here attempt to understand the range of scales in
between, the submesoscale range, using wavenumber spectra of kinetic energy, potential
energy, and tracer variance, together with their vertical variations. Is most of the sub-
mesoscale variability balanced or unbalanced? Do our theories of geostrophic turbulence
successfully describe the balanced part of the flow? Previous attempts to test these the-
ories remain largely inconclusive (e.g. Samelson and Paulson, 1988; Stammer, 1997; Le
Traon et al., 2008).

To answer these questions, we analyze two in-situ data sets in two different dynamical
regimes: the Oleander data set (Wang et al., 2010) in the Gulf Stream region and the Spice
data set (Ferrari and Rudnick, 2000) in the eastern subtropical North Pacific (Fig. 2.2). The
Gulf Stream is a strong baroclinic current with an associated deep reversal of the potential
vorticity (PV) gradient. This induces deep Phillips-type baroclinic instability and strong
mesoscale eddy activity (e.g. Tulloch et al., 2011). In the North Pacific, in the quiescent
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subtropical gyre, on the other hand, interior PV gradients are weak. A surface buoyancy
gradient persists, however, so one might expect shallow instabilities and surface frontal
dynamics to play a prominent role there. Lapeyre and Klein (2006) suggested that surface
quasi-geostrophic (QG) turbulence (Blumen, 1978) may be the relevant framework for
interpreting the submesoscale turbulence that develops in response to frontogenesis.

In the Gulf Stream region, we find spectra consistent with interior QG turbulence
(Charney, 1971) at scales larger than 20 km and consistent with internal-wave dynamics
at smaller scales. In the subtropical North Pacific, the observations are inconsistent with
existing geostrophic-turbulence theories. There is indication that internal tides play an
important role at scales as large as 100 km. At small scales, the internal-wave continuum
again dominates.

The chapter is organized as follows. In Section 2.2, we review the existing theoretical
predictions for the spectra of balanced and unbalanced flows. In Section 2.3, we discuss
how these predictions relate to spectra computed from one-dimensional transects. We
review previous observations in Section 2.4. In Sections 2.5 and 2.6, we introduce and
compare against the theoretical predictions the two sets of observations. We discuss im-
plications in Section 2.7. The appendix examines surface QG turbulence predictions for
wavenumber spectra and their vertical dependence in non-constant stratification.

2.2 Theoretical predictions for submesoscale wavenumber spectra

We here review theories that have been proposed to describe submesoscale turbu-
lence. Two variants of geostrophic-turbulence theory have been put forward: interior QG
turbulence (Charney, 1971), resulting from deep baroclinic instabilities, and surface QG
turbulence (Blumen, 1978), developing in response to frontogenesis. That discussion (e.g.
Stammer, 1997; Le Traon et al., 2008; Wang et al., 2010), however, has largely ignored
the internal-wave field emphasized in earlier works (e.g. Katz, 1973). The internal-wave
continuum, as well as tides, inertial oscillations, and mixed-layer flows, may contribute
significantly to submesoscale variability. A substantial theory only exists for the internal-
wave continuum. The other unbalanced flows nevertheless have certain characteristics
that can be used to assess their relative importance.

2.2.1 Geostrophic turbulence

The theories for submesoscale geostrophic turbulence assume that energy is extracted
from the mean flow through baroclinic instability at scales close to the deformation scale,
which in the midlatitude ocean generally lies at the large-scale end of what we call the
submesoscale range. It is further assumed that dissipation is negligible throughout the
submesoscale range, so that nonlinear interactions between modes transfer energy and
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enstrophy across a submesoscale inertial range. If the turbulence is horizontally homoge-
neous and isotropic, Kolmogorov-like dimensional arguments can be used to deduce spec-
tral slopes of horizontal kinetic energy K = 5(u* +v?) and potential energy P = 3(b*)/N?
in wavenumber space, where u and v are a pair of orthogonal horizontal velocity com-
ponents, b is buoyancy, N is the background stratification, and (-) is the two-dimensional
spatial average. The two-dimensional isotropic spectra will be denoted by K, and 7%,
where ky, = (k2 +1?)1/2 is the magnitude of the horizontal wavenumber. From the spectral
slope of kinetic energy, the spectral slope of the variance of a passive tracer 7 = %(cz) can
also be inferred, where ¢ denotes the tracer concentration. Because the motion is quasi-
geostrophic and therefore along isopycnals, all these spectra are to be understood as along
isopycnals.

Any QG flow can be decomposed into a component due to interior PV anomalies and
a component due to surface buoyancy anomalies (e.g. Lapeyre and Klein, 2006). Char-
ney (1971) considered QG flows due to interior PV anomalies that are far enough from
boundaries that the effect of the surface buoyancy anomalies can be ignored. In the sub-
mesoscale inertial range, potential enstrophy is then cascaded down to small scales. It
follows that the spectra of kinetic and potential energy scale like? K ~ P ~ k3.

Interior QG turbulence scalings, as already noted by Charney, do not apply at and
near the ocean surface. As a complement, Blumen (1978) considered a flow that has a
uniform interior PV and is thus entirely associated with surface buoyancy anomalies.
This limit is commonly referred to as surface QG. In an ocean with constant stratification,
the surface spectra of kinetic and potential energy in the submesoscale inertial range are
relatively flat: Ky ~ Py ~ ky, =373,

In constant stratification, surface QG motions of horizontal scale 27t/k;, have a vertical
decay scale f/Nk;,. Modes with horizontal scales smaller than —Nz/f have decayed signif-
icantly at a given depth z, while larger-scale modes are essentially unattenuated. Surface
QG turbulence thus predicts kinetic- and potential energy spectra to follow the surface
spectra above this transition scale and rapidly decay below (see our Fig. 2.3, described in

4Charney gave the three-dimensional isotropic spectra Kx and Pk, where K = (k2 +12 +f2m2/N2)1/2 is
the magnitude of the three-dimensional wavenumber with the vertical wavenumber m rescaled by f/N. A
three-dimensional isotropic spectrum Sk is related to the two-dimensional isotropic spectrum Sy, by (cf.,

Batchelor, 1953)
o0
Sk
S =kf ————dKk.
=t K(KZ—kp2)1/2

If the three-dimensional spectrum locally follows the power law Sk = AK™", n > -1, and has a slope of less
than +1 at higher wavenumbers, then the integral above is dominated by low wavenumbers:

P ) , oo K—(nﬂ)
dK = A'ky with A'=A (——dK.
1

o0 K—n
Skthkhj K2—1)1/2

kn K(K2? ~ky2)172

In this case, the two-dimensional spectrum follows the same power law as the three-dimensional one. The
spectral slopes given by Charney therefore directly translate to the two-dimensional spectra.
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Figure 2.3: Surface QG turbulence predictions of two-dimensional isotropic wavenumber spectra of kinetic

and potential energies at the surface and at depths 50 m and 200 m for (a) constant stratification, (b) expo-

nential stratification, (c) a mixed layer of depth 100 m overlying constant stratification, and (d) a mixed layer
of depth 100 m overlying exponential stratification
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greater detail below, and Scott, 2006). At any given depth, we might expect surface QG
turbulence to prevail at large scales, but interior PV anomalies to become important at
small scales—with the transition scale depending on depth. This prediction was found to
be consistent with idealized primitive-equation model simulations (Klein et al., 2008).

In an ocean with non-constant stratification, the surface QG turbulence predictions
for energy spectra significantly differ from the case of constant stratification. In exponen-
tial stratification, the kinetic energy spectra are flatter at scales larger than the deforma-
tion scale Nd/f associated with the depth scale d of stratification (see Fig. 2.3 and the
appendix). An overlying mixed layer further changes the predictions, leading to a flat-
tening of the kinetic energy spectra at scales larger than the deformation scale Ny h/f
associated with the depth of the mixed layer h and to drastically decreased energy levels
in the thermocline compared to the mixed layer (Fig. 2.3, see Appendix).

In turbulent inertial ranges as described above, there is a relationship between the ki-
netic energy spectrum and the variance spectrum of a conservative passive tracer stirred
by the turbulence (e.g. Vallis, 2006). If the kinetic energy spectrum rolls off as K ~ k™",
n < 3, the associated passive tracer spectrum rolls off as 7, ~ kn"~5/2_ For kinetic en-
ergy spectra steeper than -3, the tracer stirring is non-local and a Batchelor spectrum
Ty, ~ kn~! emerges. In interior QG turbulence, where the kinetic energy spectrum rolls
off as Ky, ~ kn 3, the passive tracer thus undergoes strong filamentation and develops
a spectrum 77<h ~ kh‘l. In surface QG turbulence, on the other hand, where the surface
kinetic energy spectrum is Ky, ~ ky > or flatter, the more energetic smaller-scale eddies
mix the tracer more effectively at smaller scales and the variance spectrum is correspond-
ingly steeper: 7, ~ kn =3 or steeper. At depth, however, the variance spectrum develops
a Batchelor spectrum 7 (k) ~ k, ™! at the smaller submesoscales, where the surface modes
have decayed at the given depth (Scott, 2006).

The surface QG framework is useful to study geostrophic turbulence in the upper
ocean. The scaling laws predicted by surface QG turbulence theory, however, need to
be revised to account for important ageostrophic corrections (Capet et al., 2008a). The
flat kinetic- and potential energy spectra in surface QG turbulence are indicative of the
creation of strong horizontal shears and sharp buoyancy gradients, the prelude to front-
ogenesis (Hoskins and Bretherton, 1972). If one includes advection by the ageostrophic
part of the velocity in Blumen’s idealized flow (a term ignored in surface QG theory),
discontinuities form in both the velocity and buoyancy fields, and the energy spectra be-
come Ky, ~ Py, ~ ky, 2 (Boyd, 1992). If a passive tracer is stirred by a discontinuous flow
field, it also develops discontinuities and its variance spectrum consequently scales like
Ty, ~ k2.

Beyond the changes in spectral slopes, frontogenesis and ageostrophic motion can sig-
nificantly change the energy cascade. Molemaker et al. (2010) show that ageostrophic
flows are responsible for reversing the direction of the energy cascade of a surface QG-
like flow from upscale in the QG limit to downscale in a Boussinesq system that allows
frontogenesis.
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2.2.2 The internal-wave continuum

Starting with the seminal work of Garrett and Munk (1972), it was realized that inter-
nal waves are characterized by a continuum spectrum spanning frequencies from f to N,
over which a few spectral peaks due to tides and inertial motions are superimposed. The
internal-wave continuum spectrum is understood to be set through weak interactions of
linear waves (e.g. Lvov et al., 2004). It is remarkably uniform across the ocean and has
been shown to be successfully described by the empirical model spectra of Garrett and
Munk (GM; e.g. Munk, 1981). The GM spectra predict the spectral densities of the ki-
netic and potential energies as functions of frequency and vertical wavenumber; they
can be converted to horizontal-wavenumber space using the dispersion relation of inter-
nal waves and summing over all vertical wavenumbers (e.g. Klymak and Moum, 2007).
These wavenumber spectra scale like Ky, ~ P, ~ ky,~2 in the short-wave limit and flatten
out at scales larger than about 10 km, as shown, for example, by the dotted purple line in
Fig. 2.5.

The GM spectra can also be used to deduce the passive-tracer variance generated
by the internal-wave continuum, on both horizontal and isopycnal surfaces. For trac-
ers with vertical gradients much larger than isopycnal gradients, like temperature or
salinity, the tracer variance on horizontal surfaces is dominated by distortions of the
vertical background gradient. We can then estimate ¢ = (dC/dz){ = (dC/dz)b/N?, so that
T = %(8C/az)27>/N2, where C is the background tracer field and { = b/N? is the vertical
displacement due to the wave. Along isopycnals, this variance is filtered out and we are
left with displacements of the much weaker isopycnal gradient. The associated variance
can be estimated analogously by considering the isopycnal wave-induced displacements
and is typically several orders of magnitude smaller. Both vertical and along-isopycnal
displacements generate a tracer spectrum that scales like 7;, ~ kp~2 in the short-wave
limit and flattens out at scales larger than about 10 km.

2.2.3 Tides

Barotropic tides are generated by astronomical forces; baroclinic (internal) tides are
forced by barotropic tides flowing over topography. These baroclinic tides are not in-
cluded in the GM spectra and the associated kinetic energy varies considerably between
geographical locations (e.g. Arbic et al., 2012).

Both barotropic and baroclinic tides have a specific frequency that is set by the forcing,
so that linear theory can be used to deduce the horizontal wavenumbers baroclinic tides
project onto (e.g. Dushaw et al., 1995). Altimetric observations and high-resolution sim-
ulations show that baroclinic tides appear as somewhat broadened peaks in wavenumber
spectra, to the extent that they may be better described as broadband signals (e.g. Ray
and Mitchum, 1997; Ray and Zaron, 2011; Zhao et al., 2012). A theory that explains this
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signature in wavenumber spectra is lacking and in-situ observations are difficult because
of the tides’ large spatial scales and high frequencies.

2.2.4 Inertial oscillations

The ocean is nearly resonant at the inertial frequency. Variable winds therefore easily
excite inertial oscillations in the upper ocean, particularly in the mixed layer (e.g. Pollard,
1970). The oscillations are quasi-two-dimensional and have the frequency of the Corio-
lis parameter f. The internal-wave dispersion relation for waves of frequency f predicts
that the waves have an infinite horizontal scale. Some spreading in frequency results from
changes in f with latitude and from the background vorticity. As a result, the inertial os-
cillations are characterized by a broad peak in the frequency spectrum (e.g. Garrett, 2001)
and have large horizontal scales, but a theory predicting their signature in wavenumber
spectra does not exist. The quasi-two-dimensional nature of inertial oscillations, however,
implies a large kinetic to potential energy ratio. This is not what we find in the observa-
tions, as discussed in Section 2.6.

2.2.5 Mixed-layer flows

In addition to superinertial waves, the wind forces subinertial variability in the up-
per ocean. If the wind field is spatially variable, it transfers its variability to the Ekman
currents. The resultant wavenumber spectrum depends on the wavenumber spectrum of
the winds, which is reddened in the transfer (Frankignoul and Miiller, 1979). Additional
spatial variability is generated by the vorticity of balanced flows (e.g. Niiler, 1969).

Other sources of surface-intensified turbulence are mixed-layer instabilities. Both
symmetric instability (e.g. Emanuel, 1994) and mixed-layer baroclinic instability (e.g.
Blumen, 1979) generate turbulent flows in the mixed layer (Haine and Marshall, 1998).
The most baroclinically unstable mode has a horizontal scale of order 1-10 km (Boc-
caletti et al., 2007). Theory (Fox-Kemper et al., 2008), modeling (e.g. Capet et al., 2008e),
and observations (Shcherbina et al., 2013) indicate that these mixed layer instabilities
can substantially enhance submesoscale energy in the presence of a deep winter mixed
layer. Such mixed layer flows have energy spectra close to kp, 2. The dynamics are distinct
from surface QG and are better described as Eady-like, with eddies confined between the
surface and the strong PV gradient at the mixed layer base.

The mixed layer also features small-scale wind- and buoyancy-driven turbulence (e.g.
Kantha and Clayson, 2000). These flows typically have aspect ratios close to one and scales
that are generally smaller than what we defined as the submesoscale range.

All these flows are strong in the mixed layer and decay rapidly below. As discussed
in Sections 2.5 and 2.6, this is not what we find in the observations: the energy levels in
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mixed layer and thermocline are very similar.

2.3 Relating two-dimensional spectral theories to one-dimensional spectral ob-
servations

All predictions reviewed above are for two-dimensional isotropic spectra. Observa-
tions, however, are more typically taken along a one-dimensional track. In such cases,
only one-dimensional spectra can be computed as functions of the longitudinal (along-
track)® wavenumber, say k. The conversion of a two-dimensional isotropic spectrum Sy,
to a one-dimensional spectrum Sy is given by (cf., Batchelor, 1953)

2 (S

If the two-dimensional spectrum locally follows a power law S, ~ k™", n > 0, and re-
mains red at higher wavenumbers, then the one-dimensional spectrum follows the same
power law® S ~ k~". The predicted scalings given above thus directly translate to the one-
dimensional spectra of kinetic energy, potential energy, and tracer variance, summarized
in Table 2.1.

It is important to realize, however, that for isotropic flow, the one-dimensional spec-
tra of the longitudinal (along-track) and transverse (across-track) components of kinetic
energy, K = %(uz) and KT = %(vz), are not necessarily equal (# and v are the longitudi-
nal and transverse horizontal velocity components, respectively). Instead, for an isotropic
two-dimensional (meaning horizontally nondivergent) flow, they satisfy’

d

T—_—
K =-k3

Kit, (2.2)

so that for a spectrum Ky~ k; ™", the relation between transverse and longitudinal spectra
is ;T = nkCi L (e.g. Batchelor, 1953; Leith, 1971; Charney, 1971).

5We use longitudinal exclusively in this sense and never in the sense of zonal.
The integral in (2.1) is then dominated by low wavenumbers, where Sk, = Akp ™", and can be approxi-

mated by
2 [ Ak, 2 o0 -
Sk = —f —-Z—h—dkh =A’k™" with A’= —AJ LS
wJk (ky? -k2)1/2 i (k2112
7They are related to the two-dimensional isotropic spectrum Kk, by

0o k2_k2 1/2,(
,CkLzzf n” =K Kk e
T )k khz

KT = EkZJ-OO __’f_kh___dkh_
s ko kpl(kn? —k2)172
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Table 2.1: Properties of one-dimensional wavenumber spectra (KT and KL are the transverse and longitudinal kinetic energy spectra,

P is the potential energy spectrum, 7 is the variance spectrum of a passive tracer)

QG turbulence

Interior

Surface
(constant N)

Surface
(non-constant N)

Internal-wave
continuum

KT slope

Relation between
’CkT and ’CkL
Relation between
P and KT, Kb

7y slope

K T =310

Pe=Kit

—5/3 (at surface;
steep below, see
Fig. 2.3)

K T =5/3K L (at
surface)

P = }CkL + }CkT
-5/3 (at the

surface; flatter
below)

(see Fig. 2.4)

(see Fig. 2.4)

(see Fig. 2.4)

(steep at the
surface, flat below)

-2 (in small-scale
roll-off)

K:kT — ’CkL

(see Fig. 2.6)

-2 (in short-wave
roll-off, weak
stirring along

isopycnals)
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Relation (2.2) is particularly relevant for geostrophic turbulence, because those flows
are horizontally nondivergent at leading order. In addition, QG buoyancy is related to
the vertical gradient of the streamfunction and therefore the one-dimensional potential
energy spectrum is also related to the components of the one-dimensional kinetic energy
spectrum. In interior QG turbulence, the potential energy spectrum equals the longitu-
dinal component of the kinetic energy spectrum, P = KL (Charney, 1971), whereas in
surface QG turbulence it equals the total kinetic energy spectrum, P, = KL + KT, in
the case of constant stratification. For more realistic stratification, surface QG turbulence
predicts the kinetic-energy levels to be lower than the potential energy levels at scales
larger than the deformation scale (Fig. 2.4, see Appendix).

In an internal-wave field, the flow is three-dimensional®—so (2.2) does not hold in
general. If the wave field is horizontally isotropic, as assumed in Garrett and Munk (1972),
we instead expect the one-dimensional longitudinal and transverse kinetic energy spectra
to be equal, Kk = ICkT. The same is true for an isotropic internal-tide field.

Ageostrophic circulations at fronts, Ekman flows, and mixed-layer turbulence are all

8For motions of frequency f < w < N, it follows from the WKB solution of the linear Boussinesq equa-
tions that there is significant vertical divergence: the ratio of the sum of the magnitudes of the terms of the
horizontal divergence, du/dx and dv/dy, to the magnitude of the vertical divergence, dw/dz, satisfies

2 2 211912 21912
lw®+f S.k [12]= + 147 2,
2 w? 1112[1£'|2

It must therefore be of order unity, which implies that [dw/dz| is of the same order as [du/dx| and |dv/dy|.
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characterized by strong vertical velocities and far from two-dimensional. Hence, (2.2) is
not expected to hold for these flows. Due to anisotropies, however, K; T = ;L is likely.

The main point here is that considering the longitudinal and transverse components
of the kinetic energy spectrum separately yields additional ways to discriminate between
the different regimes of geostrophic turbulence and between two- and three-dimensional
motions. These relationships are particularly useful because the spectral slopes are often
quite similar for the different regimes.

2.4 Review of previous observations of submesoscale spectra
2.4.1 In-situ observations

Early observations of wavenumber spectra of potential energy in the submesoscale
range were often interpreted in terms of internal-wave variability. Katz (1973) reported
on tow experiments in the Sargasso Sea thermocline and showed that spectra on scales
between about 50 km and 30 m scaled close to P ~ k~2. He discussed their relation to
the GM model spectra, which were later modified to be consistent with these observation
(Garrett and Munk, 1975).

After the Mid-Ocean Dynamics Experiment and the discovery of the mesoscale, sub-
mesoscale wavenumber spectra have increasingly been interpreted as manifestations of
geostrophic turbulence. Samelson and Paulson (1988) presented wavenumber spectra
from the subtropical North Pacific and found that potential energy spectra scaled close to
Py ~ k=2 at scales 10-100 km and close to P ~ k=2 at scales 1-10 km in the mixed layer
(15 m depth); in the thermocline (70 m depth), they found 7 ~ k=2 at scales 1-100 km.
They concluded that the spectral slopes are consistent with interior QG turbulence dom-
inating in the mixed layer and internal-wave variability dominating in the thermocline.
The steep spectrum in the mixed layer, however, was not confirmed by an experiment con-
ducted a few degrees further east and on an even wider range of scales (Ferrari and Rud-
nick, 2000). The potential energy spectra were instead reported to scale close to 7 ~ k™2
in both mixed layer and thermocline.

Wang et al. (2010) analyzed a long-term data set of mixed-layer velocities and tem-
peratures in the Gulf Stream region, along a transect between New York Harbor and
Bermuda. They found that the energy spectra fall off approximately like Ky ~ P ~ k=2
on scales between 250 km and 20 km, consistent with interior QG turbulence. They also
reported that the power spectra of the zonal and meridional velocities are similar and in-
terpreted this result as evidence of horizontal isotropy. The similarity between the power
spectra of kinetic and potential energies was further interpreted as a signature of energy
equipartition. As pointed out in the theoretical review, however, a more stringent test of
whether the flow is two-dimensional and isotropic relies on the comparison of spectra of
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the longitudinal and transverse components of kinetic energy—a test we will explore in
this chapter. Furthermore, interior QG turbulence predicts an equipartition between the
longitudinal component of kinetic energy and potential energy, KL = 7, not between
the total kinetic energy Ky and potential energy Px.

Wang et al. (2010) ignored scales below 20 km and measurements below the base of
the mixed layer, where internal waves are expected to become dominant. A major goal
of this chapter will be to provide a comprehensive analysis of spectra in the mixed layer
and below on scales from a few hundred kilometers down to 1 km (resolution permitting).
Comparing different depths and scales allows a more robust assessment of what dynamics
dominate the submesoscale range in different places.

2.4.2 Altimetry observations

The advent of satellite altimetry sparked numerous investigations of surface kinetic
energy spectra. The TOPEX/POSEIDON? and Jason-1/2 altimeters measured the sea sur-
face height (SSH) along tracks spanning the global oceans from 65°N to 65°S. After cor-
recting for instrument and atmospheric noise and removing the contribution of baro-
tropic tides, geostrophic balance is routinely applied to convert the SSH measurements
to transverse geostrophic velocities at the sea surface, from which the transverse compo-
nent of the geostrophic surface kinetic energy spectrum can be estimated. Stammer (1997)
found this spectrum to fall off like ;T ~ k=3 throughout the extratropical oceans, consis-
tent with interior QG turbulence. Le Traon et al. (2008) instead found the spectra in major
current regions to be closer to K;T ~ k™33 and concluded that surface QG turbulence is
the more relevant dynamical framework.

Xu and Fu (2011, 2012) used Jason-1/2 along-track data to create a global map of
spectral slopes of surface kinetic energy on scales between 250 km and 70 km. They
found large geographical differences with relatively steep spectra in the major current
regions (between k=2 and k=2%) and flatter spectra in the rest of the extratropical oceans
(between k% and k~!%). These slopes are everywhere smaller than those inferred from
in-situ observations. One possible explanation is that Xu and Fu’s estimates, despite the
attempt to remove instrumental noise, are still contaminated by noise at scales that are
only marginally resolved by altimeters. This was corroborated by the modeling results of
Sasaki and Klein (2012) and Richman et al. (2012), who found steeper spectra than the al-
timetric ones in regions of low mesoscale activity. A second possibility is that ageostrophic
flows, like internal tides, have an important signature in SSH, so that velocities inferred
from SSH using geostrophic balance are not accurate (Richman et al., 2012). A third pos-
sibility is that in-situ observations are dominated by ageostrophic flows not measured by

9 Acronyms for “Ocean Topography Experiment” and “Premier Observatoire Spatial Etude Intensive Dy-
namique Océan et Novosphere” (sic) or “Positioning Ocean Solid Earth Ice Dynamics Orbiting Navigator”
(Wunsch and Stammer, 1998) :
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altimeters.

In summary, the surface kinetic energy spectra inferred from altimetry, which only
account for the geostrophic part of the flow (possibly contaminated by ageostrophic flow
that projects onto SSH), are steeper in major current regions than in quiescent gyres.
Spectra inferred from in-situ measurements, which account for the full geostrophic plus
ageostrophic flow, confirm this tendency, but the actual slopes differ substantially. Here
we try to unravel what dynamics dominate the submesoscale in different geographical
regions and at different depths, analyzing in-situ data with a broad set of diagnostics:
(i) the longitudinal and transverse components of kinetic energy spectra, (ii) the potential
energy spectra, (iii) the variance spectra of passive tracers, and (iv) the changes of the
spectra with depth.

2.5 Gulf Stream region
2.5.1 Oleander data set

We revisit the Oleander data set'?, previously analyzed by Wang et al. (2010), to
provide a more thorough test of whether the dynamics are consistent with geostrophic-
turbulence theories. Furthermore, we investigate whether a transition to an internal-wave
regime occurs at scales below 20 km that were not analyzed in Wang et al. (2010).

The ADCP data were collected on repeat transects from New York Harbor to Bermuda
(Fig. 2.2) between 1994 and 2009. We use data at 39 m depth, which is within the mixed
layer, and at 150 m depth, which is below the base of the mixed layer except during a
few occasions of strong convection in winter. We do not choose a deeper level to retain
good statistics; data gaps become more frequent at greater depths. We make the common
fast-tow approximation that assumes the fields to be frozen in time over the course of a
transect. It takes 20 min to cover 10 km and 3.5 hours to cover 100 km at a ship speed
of about 8 m s~!. Geostrophic eddies have generally longer time scales (e.g. Stammer,
1997) and are well-resolved. Internal waves have periods larger than 27t/N = 20 min and
this high-frequency component projects onto small horizontal scales. Waves with larger
horizontal scales have larger periods, so that the frozen-field approximation is also well-
justified for internal waves (cf., Garrett and Munk, 1972). The approximation becomes
problematic for tidal flows with large horizontal scales, for which aliasing will occur.

We select transects at least 1000 km long and with data gaps no wider than 10 km (311
transects in the mixed layer, 264 in the thermocline) and use cubic splines to interpolate
onto a 2.5 km regular grid, which is about the spacing of the original data. Even though
the presence of the Gulf Stream renders the velocity field statistically inhomogeneous, we
use the full transects; discarding the part of the transects that includes the Gulf Stream

10The data are available at http: //po.msrc.sunysb.edu/0leander/ .
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does not give qualitatively different results. We also disregard seasonal variations—the
qualitative characteristics of the spectra are independent of season in this data set. More
recent data from the same transect, but collected with a different instrument, does show
a seasonal cycle with more energetic small scales in the winter mixed layer. The results in
this chapter should therefore be regarded as representative of times with no deep mixed
layer. We rotate the velocities into the reference frame of the ship track to separate the
longitudinal and transverse components. We divide the transects into three segments with
a 50% overlap, apply a Hann window, and calculate the discrete Fourier transform of
each segment. We average the resulting Fourier transforms over the three segments and
ten wavenumber bins per decade to obtain the spectra. Because of the large number of
transects, formal error bars are very small.

For comparison, we use altimetric measurements of the SSH anomaly as distributed
by AVISO (multimission along-track delayed-time product!!). The transverse surface ve-
locity is calculated from the along-track SSH gradient assuming geostrophic balance. The
power spectra of the transverse velocity presented below are averages over all track seg-
ments of the arcs 50 and 126 that lie in a 7° x 8° box centered at 68.5°W, 35°N (years
1993-2002). These track segments nearly parallel the Oleander ship tracks (Fig. 2.2).

2.5.2 Analysis

We analyze kinetic energy spectra at two depths: one in the mixed layer and one in
the thermocline. Kinetic energy levels in the mixed layer are slightly higher than in the
thermocline (Fig. 2.5). At scales between 200 km and 20 km, both the longitudinal and
transverse spectra (solid red and blue in Fig. 2.5) fall off steeply, with a slope close to -3,
both in the mixed layer and the thermocline. The transverse spectra are about three times
larger than the longitudinal ones, which is consistent with a two-dimensional isotropic
flow, because for KL ~ k=3, relation (2.2) yields K;T = 3KL. These characteristics—the
slope and the relation between longitudinal and transverse spectra—are consistent with
the theoretical predictions for homogeneous, isotropic interior QG turbulence reviewed
in Section 2.2. The slight decay of energy levels with depth is consistent with deep vertical
modes. Tulloch et al. (2011) found that the scale of the most unstable baroclinic mode in
this region is considerably larger than the deformation scale of about 150 km, consistent
with the -3 slope extending to scales as large as 200 km.

At scales larger than 100 km, the transverse kinetic energy spectrum in the mixed
layer matches the one derived from altimetry (dashed blue in Fig. 2.5). Below 100 km,
the altimetric spectrum rolls off much more steeply than the in-situ spectrum, but this
range of scales is only marginally resolved by altimeters and strongly affected by the

HThe altimeter product was produced by SSALTO/DUACS and distributed by AVISO, with support from
CNES (http://www.aviso.oceanobs.com/duacs/).
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Figure 2.5: Gulf Stream region wavenumber spectra of longitudinal and transverse kinetic energies KL and
iCkT in (a) the mixed layer (39 m depth) and (b) the thermocline (150 m depth) from in-situ observations
(ADCP); wavenumber spectrum of surface transverse kinetic energy K, T from altimetry; Garrett-Munk (GM)
model spectrum for kinetic energy Ky in the thermocline; lines with slopes —2 and -3 for reference (gray solid
lines). Confidence intervals are too small to be visible.

smoothing filter applied to remove noise. The match of the in-situ and the altimetric
spectra is consistent with the flow being predominantly geostrophic and further supports
the interpretation in terms of geostrophic turbulence.

In the thermocline, at scales below 20 km, the longitudinal and transverse spectra
flatten out, converge, and approach the GM spectrum for a stratification N = 6 x 1073 57!
taken from the ARGO climatology by Roemmich and Gilson (2009) in this region (dot-
ted purple in Fig. 2.5). This convergence and the fact that Kt = KT are consistent with
internal-wave dynamics and inconsistent with two-dimensional isotropic flow, suggesting
that internal waves dominate the kinetic energy at scales below 20 km. The exact match
with the GM spectrum may be fortuitous, however, because the interpolation onto a reg-
ular grid slightly reduces the spectra at these high wavenumbers, so that they ought to
drop below the GM spectrum if only internal-waves were present. A small balanced com-
ponent may explain the slightly increased spectral amplitudes. Another possible cause
of the flattening of the spectra is instrumental noise, but it would be surprising if the
instrumental noise just happened to match the amplitude of the internal-wave field. We
conclude that the convergence of the longitudinal and transverse spectra and the transi-
tion to a flatter slope are a robust result, indicating a change in dynamics. In the mixed
layer, the longitudinal and transverse spectra also flatten out and converge, with energy
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levels slightly higher than in the thermocline. An enhancement of internal-wave energy
in the mixed layer is consistent with the vertical structure of low-mode internal waves:
thermocline modes project up and can induce increased kinetic energies in the mixed
layer, despite the weak stratification (e.g. D’Asaro, 1978). It is, however, also possible that
some of the excess energy is due to Ekman flows and frontal circulations.

The interpretation of the kinetic energy spectra yields a fairly straightforward picture
of submesoscale dynamics in the Gulf Stream region. An interior QG turbulence regime
exists at large scales and an internal-wave regime at small scales, with the transition oc-
curring at about 20 km. We find no evidence of a surface QG turbulence regime in the
upper ocean, which has previously been suggested from analysis of altimetry data from
this region (e.g. Le Traon et al., 2008). Enhanced submesoscale energy in the mixed layer,
however, may occur in the presence of a deep winter mixed layer, as discussed in Sec-
tion 2.2.

2.6 Subtropical North Pacific
2.6.1 Spice data set

We revisit the Spice data set presented in Ferrari and Rudnick (2000) to get a better
understanding of the submesoscale dynamics in view of recent theoretical developments.
The data were collected with a research vessel in successive occupations of the meridian
at 140°W between 25° and 35°N (Fig. 2.2) in the subtropical North Pacific during January
and February 1997. We use temperature and salinity from four SeaSoar tows along this
transect: a sawtooth profile between 5 and 320 dbar with a period of 12 min, two hori-
zontal tows along the 50 and 200 dbar isobars, and a tow along the 25.5 kg m~3 isopycnal.
Velocity measurements in the upper 300 m are available from a shipboard ADCP. The ve-
locity measurements and the sawtooth temperature and salinity profiles are averaged into
bins of 8 m in depth and about 3 km in horizontal extent. For the horizontal and isopyc-
nal tows, temperature and salinity are averaged into 10 m bins. See Ferrari and Rudnick
(2000) for more detailed information on the data and the rationale behind the scales cho-
sen for the horizontal and vertical averaging. Again, the fast-tow approximation is made.
With a ship speed of 4 m s™!, this is slightly less justified than in the Oleander data set, but
geostrophic eddies and the internal-wave continuum remain well-resolved. The 7 hours it
takes to cover 100 km, however, are close to the dominant tidal period—large-scale tidal
flows are likely aliased.

The latitude-depth section of density available from the sawtooth profile reveals that
the mixed layer has a depth ranging from 100 to 150 m. The 50 dbar horizontal tow
is thus within the mixed layer, whereas the 200 dbar horizontal tow is well within the
thermocline. The isopycnal tow straddles around the 200 dbar tow at a depth of about
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Figure 2.6: Subtropical North Pacific wavenumber spectra of longitudinal and transverse kinetic energies Kyl
and ICkT in (a) the mixed layer (50 m depth) and (b) the thermocline (200 m depth) from in-situ observations
(ADCP, CTD); wavenumber spectrum of surface transverse kinetic energy K3 T from altimetry; Garrett-Munk
(GM) model spectra for kinetic and potential energies Ky and P in the thermocline; lines with slopes -2 and
-3 for reference (gray solid lines). The shadings show 95% confidence intervals.

150 to 250 m, that is below the mixed layer.

We again compare to AVISO along-track altimetry data. Here we use all track seg-
ments that were collected in February (years 1993-2002) and lie in a 10° x 10° box cen-
tered at 140°W, 30°N, the midpoint of the ship track (arcs 19, 95, 106, 171, 182; Fig. 2.2).

2.6.2 Analysis

The observations in the subtropical North Pacific do not lend themselves to as simple a
dynamical interpretation as those in the Gulf Stream region. We analyze kinetic- and po-
tential energy spectra in the mixed layer and the thermocline. The kinetic energy spectra
are computed from the ADCP data as before; the potential energy spectra are computed
from the horizontal CTD tows, using averaged mixed-layer and thermocline values of the
stratification N calculated from the sawtooth profile (N = 2.3x1073 s! in the mixed layer,
N =8.7x107% s7! in the thermocline).

The kinetic-energy levels are similar in mixed layer and thermocline (Fig. 2.6). At
scales larger than 20 km, both the longitudinal and transverse components of kinetic
energy (solid red and blue in Fig. 2.6) are much flatter than in the Gulf Stream region—the
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slopes are close to —2.!2 The longitudinal and transverse spectra are similar throughout
the observed scales, in both the mixed layer and the thermocline. With a slope of -2,
relation (2.2) predicts KT = 2K, for two-dimensional isotropic turbulence, which is
not consistent with the observed spectra, but cannot be conclusively rejected because of
the rather large error bars. If we interpret this as a violation of (2.2), one explanation is
that the flow is anisotropic. But an additional transect orthogonal to the ones presented
here shows that again transverse and longitudinal kinetic energy spectra are similar—the
flow appears to be isotropic. The implication is that the near-failure of (2.2) must stem
from a flow that is at least partially horizontally divergent. At scales below 20 km, the
kinetic energy spectra are steeper than —2 and fall below the GM spectra (dotted purple
in Fig. 2.6). This is due to the interpolation onto a regular grid: an artificial internal-
wave field sampled in the same way as the observations shows the same drop at high
wavenumbers.

At scales larger than 20 km, the potential energy spectra (solid green in Fig. 2.6) have
similar magnitudes in the mixed layer and thermocline. At both depths, they also have
similar magnitudes as the kinetic energy spectra and exhibit a slope close to —2. Energy
equipartition P, = KL + KT is only marginally satisfied within error bars; KL + KT is
consistently larger than 7. At scales below 20 km, the thermocline spectrum of poten-
tial energy follows the GM spectrum (dotted green in Fig. 2.6), while the mixed-layer one
is significantly reduced, consistent with the interpretation that the spectrum represents
internal waves: free thermocline internal-wave modes of buoyancy are evanescent in the
mixed layer and must satisfy a zero boundary condition at the surface (rigid lid), so they
must decay in the mixed layer. This is in contrast to the free modes of horizontal veloci-
ties that, as mentioned earlier, can be enhanced in the mixed layer, because their surface
boundary condition is zero shear.

At scales larger than 100 km, the in-situ spectrum of transverse kinetic energy has the
same magnitude as the altimetric spectrum (dashed blue in Fig. 2.6), with slightly more
energy in the in-situ spectrum. This may be interpreted as evidence that a significant
fraction of the flow is in geostrophic balance, but there is also a significant ageostrophic
component. This interpretation, however, ignores the possibility that the altimetric spec-
trum may be contaminated by ageostrophic flow that projects onto SSH.

The analysis so far does not quite support the inference that motions at scales larger
than 20 km are geostrophically balanced. The large error bars, however, preclude definite
conclusions. It would still be plausible to interpret the —2 slopes of the kinetic and po-

12More precisely: Both —2 and —5/3 slopes are consistent with the observations to within error bars. A
slope of -2 gives a better fit over a wider range of scales, but we do not attempt to distinguish between these
two slopes, because this distinction has little impact on the discussion to follow. In contrast, the spectra are
clearly inconsistent with a slope of —3. Note, however, that the error bars presented here are formal ones,
representing the random error only. Biases due to, for example, a finite tow speed, unresolved scales, and
instrument drift are not accounted for. Statements about spectral slopes in what follows are to be understood
with these caveats.
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tential energy spectra as signatures of surface QG turbulence, as suggested by Klein et al.
(2008). The —2 slopes, however, apply only to an ocean with constant stratification; surface
QG turbulence theory predicts different slopes in non-constant stratification (LaCasce,
2012). In the appendix, we show that surface QG turbulence theory predicts flat kinetic
energy spectra in the submesoscale range for an ocean with a weakly stratified mixed
layer and a vertically decaying stratification in the thermocline. In addition, the theory
predicts that surface QG modes with scales smaller than 100 km should have decayed at
200 m depth in the thermocline. The observations instead show that the kinetic energy
spectrum has a slope of -2 across the whole submesoscale range and that the kinetic- and
potential-energy levels are similar in mixed layer and thermocline. The energy must be
in deep modes, not in surface-trapped surface QG modes. The deep modes, however, are
not the result of interior QG turbulence, because the spectra are flatter than -3.

One possible explanation for the failure of geostrophic-turbulence theories, as al-
luded to earlier, is that the flow may have a significant ageostrophic component at scales
larger than 20 km. Because the energy levels exceed the GM spectra at these large scales,
five candidates remain: frontal circulations, Ekman flows, mixed-layer turbulence, near-
inertial oscillations, and internal tides. Ferrari and Rudnick (2000) showed that density
fronts are weak in the region. We further find that the in-situ vertical shear is much
greater than the geostrophic shear in both the mixed layer and the thermocline, which
contradicts the interpretation in terms of frontal circulations, because in frontal flows,
most of the shear is in the along-front component and thus in geostrophic balance. Ekman
flows and mixed-layer turbulence are also unlikely to dominate over these scales, because
these flows decay rapidly below the mixed layer, while the energy levels in the thermo-
cline are observed to be close to those in the mixed layer at these scales. Near-inertial
oscillations have a large ratio of kinetic to potential energy, while the potential energy
is observed to be of the same order as the kinetic energy at all scales. There is instead
support for a strong internal-tide field in the region. Richman et al. (2012) ran numeri-
cal simulations of the global oceans that resolved both geostrophic eddies and low-mode
tides. They found that in regions of low mesoscale and high tidal activity, superinertial
variability dominates the kinetic energy spectra from scales of a few kilometers to 100 km
and larger. Using model output provided by Richman et al., we find that internal tides do
indeed dominate the kinetic energy at scales of order 100 km in the region under con-
sideration here. Richman et al. (2012) also found that the peaks due to internal tides are
considerably broadened, which, together with the superposition with subinertial energy,
could explain why no distinct peaks are apparent in the observed spectra.

If internal tides dominate at these large scales, the finite sampling speed is problem-
atic and temporal variations of tidal motions alias into the wavenumber spectra. This
prevents a straightforward comparison of model results and observations. More work is
required to understand how internal tides project onto spatial scales.

To assess whether geostrophic turbulence is simply masked by unbalanced flow in
the energy spectra, we now turn to an analysis of temperature spectra along isopycnals.
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Temperature fluctuations along isopycnals are fully compensated by salinity and thus be-
have like a passive tracer (e.g. Ferrari and Rudnick, 2000; Smith and Ferrari, 2009). These
spectra allow inferences about the balanced part of the flow, because stirring by inter-
nal waves, including internal tides, is essentially filtered out along isopycnals: only the
along-isopycnal part of internal-wave motion displaces the weak horizontal temperature
gradient.

We calculate temperature spectra along different isopycnals from the CTD tow along
the 25.50 kg m~3 isopycnal and by interpolating temperature from the sawtooth profile
onto isopycnals. The tracer spectra along the different isopycnals, which have a depth
range of about 130 m to 250 m, all have very similar variance levels and have slopes close
to —2, so there is no change with depth (Fig. 2.7). Recent observations with gliders in a
nearby region confirm this finding: the slopes of passive-tracer spectra remain close to —2
down to 800 m depth (Cole and Rudnick, 2012). The slopes are again inconsistent with
the vertical decay of surface QG modes. One would expect that passive-tracer spectra
transition, as one moves deeper into the thermocline, from the surface QG surface spec-
trum to a flatter Batchelor spectrum at small scales, either due to interior QG turbulence
or non-local stirring by large-scale modes (cf., Scott, 2006). Given the spectra estimated
in the appendix, this transition should be well-resolved by the observations, but is not
observed. Flows associated with frontal dynamics, as described by semi-geostrophy, have
a less rapid vertical decay than surface QG flows and generate —2 spectral slopes (Hos-
kins and Bretherton, 1972; Badin, 2012). This may help explain the vertical structure of
the tracer spectra, but further study is needed to clarify what spectra frontal dynamics
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produce at different depths.

Another possible explanation for the failure of geostrophic-turbulence theories is that
the assumption of a submesoscale inertial range is violated. Tulloch et al. (2011) suggested
that baroclinic instability can inject energy and enstrophy throughout the submesoscale
range. They performed a linear stability analysis in the subtropical North Pacific and
found that there are submesoscale instabilities, in contrast to strong baroclinic current
regions, where instabilities are confined to the mesoscale. The reason for the different in-
stability regimes are the different PV gradient structures. There is a deep reversal of PV
gradients in strong baroclinic currents, which induces a Phillips-type instability (Phillips,
1954). In quiescent gyres, on the other hand, the instability is more Charney-like, with a
surface buoyancy gradient interacting with an interior PV gradient, which allows for the
growth of small-scale Charney modes (Charney, 1947; Tulloch and Smith, 2009; Roullet et
al., 2012). Capet et al. (2008d) performed high-resolution primitive-equation simulations
that exhibit submesoscale instabilities. The kinetic- and potential energy spectra in these
simulations transition from ki, 2 near the surface to k, > at depth, while the spectrum of
temperature remains ky, 2. This indicates that subinertial flows with submesoscale insta-
bilities are capable of producing tracer spectra similar to the ones observed, but again,
the mechanisms require further study.

A further possibility is that vertical shear enhances vertical diffusion, which can then
act on relatively large horizontal scales (Haynes and Vanneste, 2004; Smith and Ferrari,
2009). Further investigation is required to determine whether this mechanism can steepen
the spectra from k! to k2.

2.7 Conclusions

The observations indicate that in the Gulf Stream region, interior QG turbulence dom-
inates at scales larger than 20 km, where a transition to internal waves occurs in both
mixed layer and upper thermocline. In the eastern subtropical North Pacific, geostrophic-
turbulence theories fail. There is some indication of a significant unbalanced contribution
to the kinetic energy up to scales of 100 km, most likely due to internal tides.

The results in the Gulf Stream region suggest that in a strong baroclinic current, where
there are strong interior PV gradients, a Phillips-type instability creates deep mesoscale
modes whose variability is then transferred into the submesoscale through an interior-
QG enstrophy cascade. The associated flows dominate the kinetic energy down to scales
of tens of kilometers, where internal waves become important. This picture, however, may
change substantially in the presence of a deep winter mixed layer. Energetic submesoscale
flows can develop and dominate over the interior modes in the mixed layer (e.g. Fox-
Kemper et al., 2008; Capet et al., 2008e).

In quiescent-gyre regions, like the eastern subtropical North Pacific, interior PV gra-
dients are much weaker. There is still a surface buoyancy gradient, so one might expect
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surface QG dynamics to play a prominent role. But there is no evidence for surface QG
turbulence in the observations: both kinetic-energy and tracer spectra are inconsistent
with its predictions. Instead, unbalanced flows appear to make a leading-order contribu-
tion to the energy throughout the submesoscale range. Passive-tracer spectra along isopy-
cnals, which filter out the effect of internal waves, show a -2 slope independent of depth.
These tracer spectra indicate that also the balanced part of the flow does not follow pre-
dictions of geostrophic-turbulence theories: neither interior nor surface QG turbulence
can explain this behavior. Small-scale Charney-type instabilities may be important in set-
ting these spectra, but how -2 slopes emerge remains obscure. Another possibility is cou-
pling between surface buoyancy anomalies and interior PV anomalies, an aspect of the
dynamics considered in neither surface nor interior QG turbulence theory. This also war-
rants further investigation. A third possibility is that the tracer spectra are modified by
shear-enhanced diffusion.

We found that previous claims that kinetic energy spectra with a —5/3 slope are telltale
signatures of surface-QG dynamics failed to take into account the role of the mixed layer.
The presence of a weakly stratified layer in the upper ocean acts to flatten the surface QG
kinetic energy spectra in the submesoscale range between the first baroclinic deformation
scale of order 100 km and the mixed layer deformation scale of order 10 km. Surface QG
theory also ignores the strong PV gradient at the mixed layer base, which may introduce
Eady-like dynamics in the mixed layer. Our analysis suggests that —2 spectral slopes in
kinetic energy spectra can also be associated with a variety of unbalanced processes like
fronts and internal tides. Clearly, the question of what sets the spectra of kinetic and
potential energies at the ocean surface has not been fully answered yet.

That ageostrophic flows may be important near the surface in regions of weak meso-
scale eddy activity has implications for attempts to retrieve the surface flow with altime-
ters, especially for the upcoming Surface Water and Ocean Topography (SWOT) mission
that is expected to resolve SSH fluctuations down to scales of 10 km (e.g. Fu and Ferrari,
2008). Two problems come to the fore: (i) if the ageostrophic flow can project significantly
onto SSH, it will contaminate the geostrophic surface velocity estimates and (ii) if the
ageostrophic flow has no significant SSH expression, it will need to be inferred through
other instruments, because it apparently contributes significantly to the surface velocities.

2.A Surface QG for non-constant stratification

In theories of surface QG turbulence (Blumen, 1978; Lapeyre and Klein, 2006), the
stratification is typically assumed to be constant. Below the injection scale, which is
thought to be the mesoscale with its baroclinic instability, there is an enstrophy cascade,
in which the surface potential energy scales like P, (0) ~ ky,~>/3. With constant stratifica-
tion, the surface kinetic energy spectrum then also scales like K, (0) ~ kn~>’* throughout
the enstrophy cascade range. The ocean, however, has highly non-constant stratification,
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with an approximately exponential stratification in the thermocline and a weakly strat-
ified mixed layer on top. LaCasce (2012) pointed out that in an ocean with exponential
stratification and finite depth, the kh‘5/3 surface potential energy spectrum translates into
a surface kinetic energy spectrum that changes slope. We here consider a similar case with
parameters appropriate for comparison with our observations in the subtropical North
Pacific. We furthermore consider how the presence of a mixed layer changes the spec-
tra. Because our observations span a range of depths below the surface, we also compute
the vertical dependence of the spectra predicted by surface QG turbulence. In constant
stratification, small-scale modes decay faster in the vertical than large-scale modes, so
spectra at depth fall off steeply at small scales (Scott, 2006). We here extend this result to
non-constant stratification.

To recapitulate Scott’s result, let us start with the case of constant stratification. For
simplicity, we consider an infinitely deep ocean, to avoid the introduction of an additional
length scale associated with the depth of the ocean. The spectral surface QG stream-
function 1 is then found by inverting the zero interior PV condition (e.g. Blumen, 1978;
Lapeyre and Klein, 2006)

. d f2 dv,l) dz[' . R
— 2 —_—— ] = _— = — =
ki) + dZ(N2 T)-0 fRO=k0, dew-0 (2.3)
which gives, for constant N,
« o b(o) v
P(z) = —Nkhe f (2.4)

and the kinetic- and potential energy spectra are
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Kx,(2) = Py, (2) = Py, (0)e 7. (2.5)

These spectra are shown in Fig. 2.3 (top left), using the stratification N = 8.7 x 1073 57!
observed at 200 m depth in the subtropical North Pacific. There is equipartition between
kinetic and potential energy at all scales. At a certain depth z, the spectra follow the
surface potential energy spectrum at scales large enough for the modes to penetrate to this
depth, that is at scales larger than the deformation scale associated with z, k;, << —f/Nz.
Around ky, = —f/Nz, the spectra fall off sharply, because smaller-scale modes do not reach
this depth.

For exponential stratification N = Nyexp(z/d) and again an infinitely deep ocean, the
surface QG streamfunction is (cf., LaCasce, 2012)

A

- _ b(0) Iiuet) .
zZ)= [4
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where the I, are modified Bessel functions of the first kind and y = Nykpd/f. The kinetic-

(2.6)
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and potential energy spectra are
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These are shown in Fig. 2.3 (top right) with d = 600 m, which is representative of the sub-
tropical North Pacific thermocline, and Ny chosen such that the stratification matches the
observed thermocline value N = 8.7x 1073 s~! at 200 m depth. Let us consider the surface
spectra first. For scales small compared to the deformation scale ki, > f/Nyd associated
with the depth scale of stratification d, the kinetic- and potential energy spectra are equal,
because I (#)/Io(p) ~ 1 for p > 1. In thisrange, the spectra behave in the same way as with
constant stratification.!® At scales larger than the deformation scale, k, < f/Nod, how-
ever, the surface kinetic energy spectrum is

_ No%ky2d?

K, (0) Ve

P, (0), (2.8)

because Ij(u)/Iy(p) = p/2 for p < 1. The surface kinetic energy spectrum in this range
of scales is therefore much smaller than the potential energy spectrum and has a differ-
ent slope—the equipartition between kinetic and potential energy is broken. Below the
surface, as with constant stratification, the spectra fali off at smalil scales, because modes
decay away from the surface.

The presence of a mixed layer also modifies the energy spectra. To demonstrate this,
we consider a mixed layer of depth h with constant stratification Ny overlying an in-
finitely deep ocean, which also has constant but higher stratification Nty. The surface
QG streamfunction for this case is

b(0) Nrpusinh N—T—MLkh(”m +Nyy cosh N—MLI}}‘(HM 2> —h
A Nwkn  Npycosh IMLERF N sink MMLER !
P(z) = (2.9)

. Nty kpizth)
b(0) e 7 z<—h
23 Ny cosh Nﬁmﬁ+NML sinh ﬁ%iﬁ

13This can also be rationalized by WKB arguments: if the modes are shallow enough to not feel the change
in stratification, they behave as if the stratification were constant.
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and the kinetic- and potential energy spectra are
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These are shown in Fig. 2.3 (bottom left) for Nyyp = 2.3x1073 57! and Ny = 8.7x1073 571,
the values observed at 50 m and 200 m depth, and 4 = 100 m, approximately the observed
mixed-layer depth. The surface kinetic energy spectrum again follows the potential en-
ergy spectrum at small scales, where modes decay within the mixed layer, but transitions
to a lower level at large scales, where modes are much deeper than the mixed layer and the
thermocline stratification dominates the mode structure. This transition occurs around
the deformation scale associated with the depth of the mixed layer, Ny h/f. In the ther-
mocline, energy levels are drastically reduced, due to the jump to higher stratification at
the base of the mixed layer.

Let us now combine a mixed layer of depth h and constant stratification Ny with ex-
ponential stratification N = Nyexp(z/d) below, yielding a somewhat realistic stratification
profile. The surface QG streamfunction for this case is
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and the kinetic- and potential energy spectra are
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The spectra shown in Fig. 2.3 (bottom right), again using parameters appropriate for the
subtropical North Pacific, exhibit the combined effect of exponential stratification and
a mixed layer: there is a flattening of the kinetic energy spectra at large scales due to
the exponential stratification, potential-energy levels in the mixed layer are much higher
than in the thermocline, mixed-layer kinetic energy spectra transition from the potential
energy spectra at small scales to lower energy levels at large scales, and all spectra at
depth fall off steeply at small scales.

To make connection with the observations, we transform the two-dimensional isotro-
pic spectra to one-dimensional spectra using (2.1) and compute both longitudinal and
transverse kinetic energy spectra (Fig. 2.4). The overall shape of the spectra is similar
to the associated two-dimensional isotropic spectra, with slight modifications where the
spectra are flat. The longitudinal and transverse kinetic energy spectra still obey (2.2)—
but for non-constant slopes, they are not separated by a constant factor anymore.

This analysis shows that taking both non-constant stratification and the vertical decay
of modes into account leads to surface QG turbulence predictions of energy spectra at
depths 50 m and 200 m that do not exhibit k>3 power laws anywhere in the submesoscale
range. Even the surface kinetic energy spectrum does not exhibit this scaling throughout
the submesoscale range: it is much flatter at scales larger than 10 km. It should also be
noted that throughout the submesoscale range, both kinetic- and potential-energy levels
are predicted to drop significantly going from the mixed layer into the thermocline.

The discussion in this appendix follows a literal interpretation of surface QG turbu-
lence. The jump in stratification at the base of the mixed layer, however, is associated
with a large PV gradient and may act like a surface itself (Smith and Vanneste, 2013).
Such a scenario could be represented with a simplified model consisting of two constant-
PV layers—the mixed layer and the thermocline—joined by an interface at the base of the
mixed layer. This model will produce different modal structures and energy spectra than
that considered above, but it remains to be addressed whether these match the observa-
tions.
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CHAPTER 3

WAaAVE—VORTEX DECOMPOSITION OF ONE-DIMENSIONAL
SHiP-TRACK DATA

This chapter was published as O. Biihler, J. Callies, and R. Ferrari (2014) Wave-vortex decomposition of
one-dimensional ship-track data. J. Fluid Mech. 756, 1007-1026. © 2014 Cambridge University Press. Repro-
duced with permission. OB led the development of the method presented in this chapter. JC and RF helped
mold the method into a form applicable to real noisy observations and JC applied the method to ocean data.
OB, JC, and RF collaboratively wrote the manuscript.



3.1 Introduction

The decomposition of a complex flow into various constituents that are distinguished
by their intrinsic physical and mathematical properties is a powerful conceptual tool,
which is particularly useful in the flows typical for the atmosphere and ocean, where
small-scale dispersive waves, quasi-two-dimensional large-scale vortical flows along iso-
pycnal surfaces, and pockets of three-dimensional turbulence all intermingle in a non-
linear jigsaw puzzle. The most elementary of such flow decomposition methods is based
on the linearized fluid equations relative to a state of rest, which for a rotating and strat-
ified three-dimensional fluid system such as the Boussinesq model leads to the familiar
decomposition into a horizontal flow in geostrophic and hydrostatic balance on the one
hand and into unbalanced inertia-gravity waves on the other. However, even this most
basic decomposition method in principle requires knowledge of all the flow variables
throughout the entire three-dimensional domain, a task that is as straightforward in a
numerical model as it is hopeless in observational practice.

Indeed, many observations in the atmosphere and ocean are confined to a fixed loca-
tion, or to a sequence of locations along a horizontal transect following an airplane flight
or a ship track, say. In this latter situation it is possible to compute one-dimensional spec-
tra along the ship track of flow variables such as the horizontal velocities or the buoyancy.
By assuming stationarity and homogeneity as needed, this allows the estimation of one-
dimensional covariance functions or, equivalently, of one-dimensional power spectra. Of
course, such ship track data is highly aliased in the sense that the power spectra at the
one-dimensional wavenumber k > 0 along the ship track, say, are affected by the multi-
dimensional dynamics associated with all wavenumber vectors with magnitude greater or
equal to k. The situation improves if one can assume horizontal isotropy at least, in which
case one can exploit the link between one-dimensional and isotropic two-dimensional
spectra. In particular, one can then exploit the well-known differences between the power
spectra of along-track and across-track velocity components (e.g. Batchelor, 1953; Char-
ney, 1971) to gain some insight into the dynamics of the underlying flow, such as its de-
composition into waves and other constituents.

These issues are of pressing concern especially in oceanography, where observations
are sparse and our understanding of the relevant dynamical processes is poor. For exam-
ple, the oceanic motions are very energetic in the submesoscale horizontal range between
order 100 km, the scale of the Rossby radius of deformation, and order 1 km, the smallest
scale at which rotation strongly affects dynamics. These motions play an important role
in the overall ocean circulation, because they connect the large scales where the ocean is
energized by atmospheric forcing to the small scales at which energy is dissipated (Fer-
rari and Wunsch, 2010). Despite the explosion of theoretical studies of submesoscale dy-
namics in the last decade, the dearth of observations on this range of scales has slowed
progress.

A major question is to partition the relative contributions of geostrophic eddies or
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inertia—gravity waves at the submesoscales, because they have different impact on dynam-
ics and tracer transport (e.g. Chapter 2). A turbulent field of geostrophic eddies tends to
transfer energy to larger scales and mix tracers along density surfaces. Internal wave in-
teractions, instead, transfer energy to smaller vertical-scale waves, which break and mix
tracers across density surfaces. In situ mooring observations are useful to separate sub-
inertial and super-inertial motions, but the lack of spatial information prevents any con-
clusive statement about whether the sub-inertial motions are submesoscale geostrophic
eddies or larger-scale motions and whether the super-inertial motions are inertia—gravity
waves or other forms of stratified turbulence. Two dimensional sections (along ship tracks
and depth) of velocity and density provide snapshots of the superposition of all submeso-
scale motions with no temporal information to separate the relative contributions. Maps
of potential vorticity (PV) could be used to distinguish the two classes of motion, because
geostrophic eddies are associated with PV anomalies whilst inertia—gravity waves have no
PV signature. But PV requires three dimensional sections and it is extremely difficult to
measure accurately.

In Chapter 2, we used the fact that the ratio of the power spectra of along and across
ship track velocities can be used to determine whether a velocity field is horizontally
nondivergent, a necessary condition for flows to be in geostrophic balance. In this sense
the geostrophic flow left a clear fingerprint in the observed horizontal velocities that could
be tracked down. However, the horizontal velocity field due to inertia-gravity waves has
both rotational and divergent components, so its fingerprint in the observed fields is not
so immediately apparent.

In this work, we present a two-step method that allows extracting the fingerprint of
inertia—gravity waves from ship track spectra. First, we show that measurements of the
two horizontal velocity components along ship tracks are sufficient to partition the flow
uniquely into rotational (i.e. horizontally nondivergent) and divergent (i.e. horizontally
irrotational) components, provided one can assume that the two fields are horizontally
homogeneous and isotropic at the measured scales, and that their rotational and divergent
components are uncorrelated in a statistical sense. This Helmholtz decomposition of the
one-dimensional velocity spectra is purely kinematic in nature and is achieved by solving
two simple ODE:s in spectral space, an easy numerical task. We have not been able to find
a direct prior reference in the literature for this kind of exact Helmholtz decomposition
method for one-dimensional spectra, although related theoretical investigations do exist
(e.g. Lindborg, 2007).

Second, we show that the one-dimensional inertia—gravity wave energy spectrum can
be computed from the aforementioned Helmholtz decomposition in combination with a
statement about wave energy equipartition for hydrostatic and vertically homogeneous
inertia-gravity waves. If buoyancy spectra are also available then this means that the to-
tal observed energy spectrum can be exactly decomposed into its inertia—gravity wave
component and its residual vortical component in geostrophic balance. We also show that
one can derive additional relationships between the power spectra if one has some infor-
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mation about the frequency content of the wave field (for example that it is narrow band,
or that it follows a simple model spectrum). In this case it is possible to decompose not
just the total observed energy spectrum but also the individual observed field spectra into
their balanced and unbalanced components. This allows a complete decomposition of the
one-dimensional spectra into their wave and vortex components, which is of obvious dy-
namical significance.

In Section 3.2, we introduce the Helmholtz decomposition method for separating the
rotational and divergent components of a two-dimensional velocity field from one dimen-
sional spectra. Then we show how to determine what part of the spectrum is composed
of inertia—gravity waves. Throughout, we consider only a very simple fluid set-up, which
is a three-dimensional Boussinesq model with constant Coriolis parameter f and buoy-
ancy frequency N. In Section 3.3, the method is applied to ship based measurements of
the upper ocean velocity field from two field experiments, one in the eastern subtropi-
cal North Pacific and one in the western North Atlantic. Despite noisy data and restric-
tive assumptions, in both cases the separation of submesoscale geostrophic motions from
inertia—gravity waves appears to be fully successful.

3.2 Helmholtz decomposition and wave diagnostics

We begin by assembling some generic facts about one-dimensional velocity spectra
that derive from a two-dimensional horizontal flow with homogeneous and isotropic
statistics. For horizontally nondivergent flows this is a subset of well-known results from
homogeneous turbulence theory, but for inertia-gravity waves we need to accommodate
horizontal velocity fields that have both rotational and divergent components, which is a
less studied case.

3.2.1 Helmholtz decomposition of one-dimensional spectra

Let u and v be horizontal velocity components defined in the xy-plane with x aligned
with the ship track, so u is the along-track, “longitudinal” component and v is the across-
track, “transverse” component. The time t and depth z are considered fixed during the
measurement, so we may ignore these coordinates at this stage. If the flow is purely rota-
tional, i.e. horizontally nondivergent, then (u,v) derive from a stream function §(x,y) in
the standard way:

uy+vy, =0 = wu=-9, and v=+y,. (3.1)
Let i be a homogeneous and isotropic zero-mean random function such that
E[p]=0 and C¥(x,p)=E[p(x0,y0)ip(x0 +x,y0 +y)] = F(r) (3.2)
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where r = (x? + y2)1/2 and E denotes taking the expected value. The function F(r) is the

covariance of the stream function, which is a function of horizontal distance r > 0 in the
two-dimensional plane and encapsulates all the statistical knowledge that is available

for the random velocity field. The power spectrum C¥(k,I) is the Fourier transform of
C¥(x,y), i.e

CY(k, 1) = Jm Jw C¥(x,9)e 0D dxdy = 27 fo Loty E(r) rdr = B(ky)  (3.3)
—00 J—00 0

where k;, = (k2 +12)1/2. The corresponding velocity spectra follow from (3.1) as
C*(k,1)=12C¥%(k,1)=12F(ky) and CV(k,1)=k*>CV(k,1) = k* F(ky). (3.4)
These are clearly not isotropic even though C¥ is. For completeness, the cross-spectrum
C¥(k,1) = k1 C¥(k,1) = —kI F(ky,). (3.5)

Now, along the ship track y = 0 and r = x, so the relevant one-dimensional covariance
functions are given by C¥(x,0) = F(x), for example. For the power spectra this corresponds
to integrating over the transverse wavenumber [:

k):‘zlﬁj CtP(k,z)dz:-z-l;J F(ky)dl. (3.6)

This integrand is even in ! and, at fixed k, we have Idl = kydk;, which allows rewriting

(3.6) as
qu - ——— Iy dky,. (3.7)
-k

The same steps lead to the one-dimensional ve]oc1ty spectra
ponly: CUk)= lf E(ky)\k2 — k2 k,dk,, (3.8)

j Bk g ak,, (3.9)
k| —k2

where “ip only” is added as a reminder that these expressions hold only for horizontally
nondivergent flows that can be expressed through a stream function 3. The corresponding
cross-spectrum C*?(k) = 0, because the relevant symbol kI in (3.5) is odd in ! and hence
integrates to zero. This will always be the case, so we won’t consider the cross-spectrum
any further. By inspection, and using Leibniz’s rule, we obtain the celebrated formula

d

i only: C”(k)——kd—E “(k) (3.10)
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for the horizontally nondivergent case (e.g. Charney, 1971). For power-law velocity spec-
tra of the form k=" this yields

ponly:  CV(k)=nC"(k), (3.11)

which, for n > 1, means that along a ship track the transverse spectrum dominates the
longitudinal spectrum for two-dimensional incompressible flows. This is the fingerprint
that was exploited in Chapter 2.

Conversely, we may consider a purely divergent flow, i.e. one that is two-dimensionally
irrotational such that (3.1) is replaced by

vn-uy,=0 = wu=¢, and v=¢, (3.12)
in terms of a homogeneous and isotropic zero-mean random potential ¢(x,y) defined by
E[¢]=0 and C?(x,y)=E[$p(x0,30)¢p(x0 +% 30 +y)] = G(r), (3.13)

where G(r) is the covariance of ¢. Clearly, apart from the sign change, this simply reverses
the roles of u and v in (3.1), so all the spectra can be worked out just as before. For the
two-dimensional spectra this yields

CU(k,1)=k>G(ky) and CV(k,1)=1%2G(ky) (3.14)

and the one-dimensional ship track spectra are

kZJ‘

k| ,kZ k2
A 1 A

Cv(k)zEJ‘k‘ G(kh)w/kﬁ—k2khdkh, (3.16)

where “¢ only” is added as a reminder that these expressions hold only for irrotational
flows that can be expressed through a velocity potential ¢. The relationship (3.10) is re-
placed by

¢ only:  C%( — kydky, (3.15)

¢ only: C*(k) = —kd—d};C"(k) (3.17)
and hence now the longitudinal spectrum dominates for power laws with n > 1:

A

¢ only:  C"(k) =nCV(k). (3.18)

Note that by definition both F and G are real and non-negative functions of kj,.
Now, a general two-dimensional flow has a Helmholtz decomposition into rotational
and divergent components of the form

u=-¢,+¢, and v=1i,+¢,y, (3.19)
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which implies the two-dimensional Poisson equations

UrxtPyy =V —uy and  yy + Py = Uy + vy (3.20)
y y Y

This determines both ¢ and ¢ up to a harmonic function, but with doubly periodic
boundary conditions such a harmonic function could only be a physically meaningless
constant, so ¢ and ¢ are in fact uniquely determined by (3.20). Progress with the statisti-
cal theory is then possible if (x,y) and ¢(x,y) are uncorrelated in the sense that

E[(x0,yo)Pp(xo+x,90+3)] =0 (3.21)

holds for all (x,y). Under this assumption the velocity covariances due to i and ¢ simply
add up, which yields the one-dimensional ship track spectra

. il I 2G(k
CH(k) = %Jl F(k;,)w/kf, —-k2+ % ky,dk;, (3.22)
k2 - k2

. 1 (| k2E(k .
cv(k)zgjlk| %+G(kh),/kf—k2 kydky,. (3.23)
L,/kh—k

These expressions can be substantially simplified if one introduces the auxiliary functions

D¥(k) and D? (k) defined by
1 o0 . 1 o .
Pik) = — 26y = (k2 _ k2
DY (k) J‘ I“C¥(k,1)dl = T(JI F(kp)Jky — k* kpdky, (3.24)

), K|
D®(k) = %J- 1?CP(k,1)dl = %Jm G(kh),/kg-kahdkh, (3.25)

The functions D¥ and D? are the spectra of 1, and ¢, respectively, and they allow rewrit-
ing (3.22-3.23) in the succinct form

A d A d
u ¢ v Y
CH(k) —D"D(k)—k———-kD (k) and C¥(k)=D®%(k)-k kD"b(k). (3.26)

This is the main result of this section, which neatly incorporates both (3.10) and (3.17)
as special cases. The functions D¥ and D? can be viewed as analogous to i and ¢ in the
Helmholtz decomposition of the ship track velocity spectra. Correspondingly, the hori-
zontal kinetic energy spectrum can be viewed as the sum of a rotational and a divergent
part:

d

11 ay Av 1
E[C (k)+ C¥ (k)] = E[D‘P(k)—kcﬁD‘P(k)]+

1
2

d
(k) — ¢
[D (k)= kzD?(k) |- (3.27)
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3.2.2 Numerical method for Helmholtz decomposition

The spectral functions D¥ (k) and D?(k) are not directly observable from the ship track
data, but (3.26) suggests a simple and robust method for computing them from the di-
rectly observed C* and CV. First, the functions D¥ and D? are symmetric in k so we only
need to find their values for k > 0. Second, in the limit k — co we have the robust decay
boundary conditions

D¥(+00) = D?(+00) = 0 (3.28)

and this allows us to compute D¥ and D? for k > 0 by integrating the two ODEs in (3.26)
backwards in k, starting from zero values at k = +o0. This is particularly easy in the loga-
rithmic wavenumber

d d
s=1Ink such that e k@ (3.29)
The ODEs in (3.26) can be integrated numerically, but there is also a closed-form solution
J [C“ )sinh(s —35) + C¥(s )cosh(s—s)] ds (3.30)
D%(s) = J [C 5)cosh(s - 5) + C¥(s )sinh(s—s?)] ds. (3.31)

In this formulation, the functions D¥ and D? at wavenumber k only depend on the veloc-
ity spectra at wavenumbers larger than k, which is consistent with the aliasing apparent
in their definition in (3.24). Notably, the sinh(s—35) terms in (3.30) and (3.31) are negative,
which can lead to unphysical negative values in D¥ or D?. This may occur when either
DY or D? become very small, say comparable to the instrumental noise threshold or to
the errors imposed by the limitations of the assumptions of isotropy and homogeneity in
the data (cf. Section 3.3.2 below).

3.2.3 Inertia—gravity waves and the wave energy spectrum

We now consider the linear Boussinesq equations with constant f and N in a domain
with doubly periodic horizontal boundary conditions. The horizontal velocity field in-
duced by linear inertia-gravity waves then has both a stream function and a velocity po-
tential component, which are related as follows. The vertical vorticity satisfies the linear
equation

(vx_uy)t:fwz:—f(ux+vy) = P+fep=0. (3.32)
Equation (3.32) shows that ¢ and ¢ are in quadrature in time, which we will take to
imply that for a stationary and horizontally isotropic field of random waves 1) and ¢ are
uncorrelated at any fixed time t, and therefore the key assumption (3.21) indeed holds for
linear inertia—gravity waves. The reasoning behind this is described in appendix 3.A.
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It is of course possible to define further spectral relationships based on the linear

equations, for example (3.32) implies the frequency-dependent relationship
2

Ch k1, w) = % CP k1, w) (3.33)
between the three-dimensional wave spectra of 1) and ¢, which are defined in the usual
way as functions of the horizontal wavenumbers and the wave frequency. (Here and in
the following we denote wave-related functions by the subscript W.) However, such re-
lationships include the wave frequency w as a parameter, which depends on (k,I) but
also on the vertical wavenumber or some other information about the vertical structure
of the waves. This is of limited use for general ship track observations, where the verti-
cal structure is typically not known and therefore (3.33) cannot be reduced to a unique
statement for two-dimensional or one-dimensional spectra. We note in passing that the
situation would be very different in a two-dimensional fluid system such as the shallow-
water equations, where the dispersion relation determines w? as a function of (k,I). In this
case (3.33) would indeed hold for the two-dimensional spectra, with w? determined from
the dispersion relation.

We will therefore pursue a different course of action under the assumption that the
waves are hydrostatic, implying that the vertical velocity is negligible in the wave energy
budget. Somewhat surprisingly, this assumption will allow us to deduce the exact one-
dimensional wave energy spectrum

Ew (k) = %[c‘gv(k)+é’;v(k)+c3v(k)] (3.34)
solely from ship track observations of u and v! Here C{jv(k) is the spectrum of b/N where
b is the linear buoyancy disturbance, which is related to the vertical velocity w by

b+ N?w=0. (3.35)

Hence %Ctl:v is the potential energy spectrum. The computation of Ey (k) in (3.34) hinges

on the following statement about the energy equipartition for linear hydrostatic inertia—
gravity waves that are stationary in time as well as spatially homogeneous in all three
directions: the sum of the potential energy plus the rotational horizontal kinetic energy
due to ¥ then equals the divergent horizontal kinetic energy due to ¢. This statement is
demonstrated in appendix 3.B and using (3.27) it takes the form

- ¥ d p ¢ d ¢
C (k) + Dw(k)-kﬁDw(k)] = [Dw(k)—kd—ka(k) . (3.36)
Substitution in (3.34) then immediately yields the key result
Ew(k) =D (k) —k%D&(k). (3.37)
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In a nutshell, this equation asserts that a Helmholtz decomposition of the horizontal ve-
locity spectra along a ship track yields the exact wave energy spectrum of linear hydro-
static inertia—gravity waves, at least under the assumption that the waves can be modeled
as spatially homogeneous, including in the vertical. For a wave field dominated by low-
order vertical modes this latter assumption would fail, but otherwise the generality of
(3.37) is remarkable.

3.2.4 Combination with a geostrophic flow component

If the inertia—gravity wave field is embedded in a quasi-geostrophic flow then the
horizontal velocity field can be viewed as the sum of an unbalanced wave part and of a
balanced “vortex” part. We allow for this by extending the Helmholtz decomposition to

Yp=¢w+yPy and ¢ =y, (3.38)

where the subscript V denotes the vortex part. The vortex part is horizontally nondiver-
gent and therefore ¢ has no vortex part.

It is reasonable on physical grounds to assume that iy is statistically independent of
Pw and ¢, in which case the covariances due to 1y simply add to the wave covariances
we have already considered, i.e.,

A

C*(k) = Cly(k)+ C¥(k) and CV(k)=Cl (k)+ CL (k). (3.39)

The corresponding Helmholtz decomposition leads to

DY(k) = Dy (k) + DY(k) and D?(k) =D (k) (3.40)

such that
¢ (k) = DY (k) - kdd—kDW(k), Cl (k) = —k%p‘f\,(k) + DY (k) (3.41)
Ci(k)=DY(k), Clik) = —kgd,;D\l/; (k). (3.42)

Crucially, Dé’v = D? can be computed from the observed velocity spectra exactly as be-
fore, i.e., the function D(& computed from the velocity observations is unaffected by the
quasi-geostrophic flow component. The same is hence true for the hydrostatic wave en-
ergy spectrum Ey computed in (3.37). In other words, allowing for the presence of a
quasi-geostrophic stream function does not affect the method of computation of the wave
energy spectrum at all, because the crucial potential part of the Helmholtz decomposition
of the spectra is not affected by the quasi-geostrophic flow.
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At this point Ey, D% = D(g, and the sum D¥ = Dllv(, + D"’l,) are known, but not Débv and
D$ individually. So the vortical energy spectrum as well as the individual wave and vor-
tex velocity spectra in (3.41-3.42) are still unknown. Either additional assumptions or
additional observations are needed to progress further. We consider two options: either
observing b/N along the ship track, or assuming additional information about the fre-
quency content of the wave field.

3.2.5 Observed buoyancy spectrum

If b/N is observed along the ship track then we know the potential energy spectrum
%C‘b and hence also the total energy spectrum

E(k) = Ey(k)+ Ey (k) = %[C”(k) +C(k)+ C¥(k)). (3.43)
Now, because Ey can be computed from (3.37), the vortical energy spectrum
l1pa A A
Ev(k) = 5 [Ch k) + CY (k) + C) (k)] = E(k) - Ew(k) (3.44)

simply follows by subtraction, so we now know both Ey and the residual Ey. This pro-
vides an exact energy decomposition into wave and vortex parts based solely on observing
(u,v,b/N) along a ship track, which is of obvious physical importance.

On the other hand, it is still not possible to compute the spectra of the individual
wave and vortex fields from the available data. For example, C?% is known but not its
constituents C’v’v and C{’,. At least one further auxiliary assumption would be needed to
overcome this. For example, in Charney’s conception of energy equipartition in three-
dimensional quasi-geostrophic turbulence with isotropic statistics (after rescaling the
vertical coordinate by f/N) (Charney, 1971), the vortical buoyancy spectrum is approxi-
mately equal to the longitudinal velocity spectrum, which in the present notation would

imply

Ch(k) = C¥ (k) = DY (k). (3.45)
Combining this with (3.44) and (3.42) yields
by kd oy
Ey (k) = DY (k) - 5 =DV (k) (3.46)

which is an ODE for D\l/; in terms of the known Ey. This is again easily solved for D‘l’g(k)
by starting with a zero value at k = +o0 and solving backwards in k for all k > 0. There-
after D‘lf\), =DV - D$ is known as well and hence all fields have been completely decom-
posed into their wave and vortex constituents. This is an attractive theoretical result, but it
must be clearly noted that the underlying heuristic assumption (3.45) based on isotropy
in rescaled coordinates may in practice hold only for the smallest scales of the quasi-
geostrophic flow, if it holds at all. We will not use this approach in this chapter.
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3.2.6 Frequency models for the wave spectrum

Substantial progress can be made if one assumes a more detailed model for the fre-
quency content of the wave spectrum. For example, if the wave field is narrow-banded in
frequency then it makes sense to assign a single typical value to the parameter f2/w? that
appears in relationships such as (3.33). If we denote this constant value by f2/w? then
(3.33) implies the spectral relationships

2 2
C¥ (k1) = f—gc;@(k,l) and D (k)= w—qu’(k). (3.47)
With D"’/bv and DY = DV - Dg’v now in hand we can evaluate all the terms in (3.41) and
(3.42). Moreover, (fé’v follows from the known Eyy as

Ch (k) = 2Ey (k) - CL (k) - CL, (k). (3.48)

This narrow-band approach for the wave spectrum might be relevant for inertia-gravity
wave fields dominated by specific tidal components such as the M2 tide, but such internal
tides also tend to be quite anisotropic.

A more flexible modeling approach extends the second equation in (3.47) to a function
w,(k), say, which is defined by

2
DY (k) = wjzc(k)D‘f’(k). (3.49)

Clearly, if w,(k) is somehow known then one can again compute Dv"l\’, from the observed
D? and hence again obtain the complete decomposition of the spectra into their wave
and vortex constituents in (3.41-3.42). For ease of reference, in terms of D¥ and D¢ these
relations become

2 2
Ci (k) = f D‘i’(k)—kiD (k), Cik)= kd[ f D¢(k)]+D¢(k) (3.50)

w2(k) dk " dk | w2(k)
. 2 3 d 2
C (k)= D¥ (k) - wﬁ(k)m(k), Chk) = - @[D”b(k)— wf(k)m’(k)]. (3.51)

Again, C{fv can then be computed from (3.48), which provides a “sight unseen” prediction
for the buoyancy spectrum.

Of course, this only works if the function w, (k) is known by some method, for example
by using a model spectrum for the wave field to evaluate the definition of w,(k) that
follows from the exact three-dimensional spectral relationship between C% and Cy, in
(3.33), namely

2 Db [[Lreekw)dldw

026 T DHK) ] PGPk Lo)dlde (3:52)
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For example, in the next section we will use the standard Garrett-Munk (GM) spectrum
(e.g. Garrett and Munk, 1979) for ocean inertia—gravity waves as a basis for modeling the
function w,(k). Notably, w,(k) as defined by (3.52) is insensitive to the overall amplitude
of the wave spectrum. Alternatively, if the observed spectra are dominated by waves in
some wavenumber band (i.e. DY ~ Dlvpv there), then it is possible to estimate w,(k) in that
wavenumber band directly from its definition (3.49), with Dg}v approximated by D¥. This
can provide a useful check on the validity of any assumed model spectrum, as we shall
see in Section 3.3.1 below.

3.2.7 Summary of the Helmholtz decomposition method

We can summarize the theoretical results as follows. Observations of the longitudinal
and transverse velocity spectra C* and CV allow a unique Helmholtz decomposition in
terms of the functions D? and D¥. Moreover, the function D? then implies the energy
spectrum Eyy for hydrostatic inertia-gravity waves, and this implication is unaffected by
the presence of a quasi-geostrophic vortex flow component, provided only that this com-
ponent is uncorrelated with the wave component. Additional observations of C? allow
computation of the vortex energy spectrum Ey as well, which can then be compared with
the wave energy spectrum Ey. Finally, by making additional assumptions either about
the structure of the balanced flow or about the frequency content of the wave field, it be-
comes possible to decompose all measured fields into their wave and vortex components.

3.3 Application to oceanic data sets

We now illustrate how these methods can be used to decompose observed ship-track
spectra in the upper thermocline of the eastern subtropical North Pacific and of the Gulf
Stream region. These spectra, spanning the mesoscale (about 200-500 km) and submeso-
scale (about 5-200 km) ranges, are the same as those analyzed in Chapter 2, to which we
refer the reader for a more in-depth discussion of the data sets as well as of mesoscale and
submesoscale dynamics.

In the eastern subtropical North Pacific, both velocity and buoyancy measurements
are available, which allows an exact decomposition of the energy spectra into a balanced
vortex part and an inertia-gravity wave part. Moreover, by approximating the function
w,(k) using the GM model spectrum, we can decompose all the observed fields into their
balanced and wave parts. In the Gulf Stream region, on the other hand, only velocity data
are available, but by assuming a GM model for w,(k) a decomposition of the observed
fields can be achieved there, too.

The eastern subtropical North Pacific has weak mesoscale eddy activity and in Chap-
ter 2 we argued that much of the submesoscale range is dominated by inertia-gravity
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waves. In the Gulf Stream region, on the other hand, where the mesoscale eddy field
is strong, the submesoscale is dominated by balanced motions down to a scale of about
20 km, where a transition to inertia-gravity waves occurs. The decompositions performed
here confirm these results.

3.3.1 Eastern subtropical North Pacific

Velocity and buoyancy data were collected in successive occupations of the 140°W
meridian between 25° and 35°N in January and February 1997 (cf. Ferrari and Rudnick,
2000; Chapter 2). We use shipboard acoustic Doppler current profiler (ADCP) data from
four transects at 200 m depth (8 m depth bin), which is below the base of the mixed layer.
Buoyancy data are obtained from a transect of a CTD-equipped SeaSoar programmed to
stay at constant depth 200 m. An average stratification of N = 8.7 x 1073 s7! is obtained
from a transect with the SeaSoar following a sawtooth profile. We interpolate both velocity
and buoyancy data onto a 3 km regular grid, which is about the spacing of the raw velocity
data averaged over 12 min bins, and rotate the velocities into a frame of reference aligned
with the ship track. Spectra are obtained by dividing all transects into three segments with
50% overlap, applying a Hann window to each segment, computing the discrete Fourier
transform, and averaging over all transforms and over 10 wavenumber bins per decade.

The resulting C*, C?, and C? show relatively low mesoscale energies and are rela-
tively flat in the submesoscale range (Fig. 3.1a). Using equations (3.30-3.31), we perform
the Helmholtz decomposition into rotational and divergent components (Fig. 3.1b). The
rotational component dominates at scales larger than 200 km, below which the divergent
component dominates. From the velocity spectra C* and C?, we can diagnose the total
energy due to inertia—gravity waves Eyy using (3.37). The diagnosed E, matches the ob-
served total energy E remarkably well below 100 km (Fig. 3.1c). This indicates that the
observed signal is consistent with an isotropic, hydrostatic inertia—gravity wave field in
this range. At scales larger than 100 km there is a substantial balanced component.

We can exploit the fact that the range below 100 km is dominated by inertia—gravity
waves to estimate the frequency content of the wave field expressed by w,. The ratio
DY/D? =~ f%/w? roughly follows the GM curve between 20 and 100 km (Fig. 3.2). At
larger scales the ratio becomes larger than unity, which is incompatible with inertia—
gravity waves, for which w? > f2 holds robustly. At smaller scales, the diagnosed ratio
is much larger than the GM value, but in this range the effects of both the interpolation
onto a regular grid and the cutoff at the Nyquist wavenumber contaminate the estimate.
At 100 km, the diagnosed ratio drops below the GM curve and has a value close to that
of a monochromatic M, tidal wave (f2/w? = 0.27 at 30°N), which may be interpreted
as evidence for a significant tidal signal at this scale. Nevertheless using the GM curve
to perform the decomposition (3.48, 3.50, 3.51), we find that the balanced components
C‘”}, C‘v,, and C{’, match the observed spectra C*, C?, and C? at scales larger than 200 km
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Figure 3.1: Observations from the eastern subtropical North Pacific: (a) observed transverse and longi-
tudinal kinetic energy and potential energy spectra CY, C?, and C!, (b) decomposition into rotational
and divergent components DY and D? from (3.30-3.31) and (3.27); here KY = %(D‘f"—de‘P/dk) and
K= %(D —kdD?/dk), (c) total observed energy E and total inertia—gravity wave energy Eyy from (3.37)
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(Fig. 3.3a) and that the inertia—gravity waves components ¢4, €L, and Ch, match the
observed spectra C¥, C?, and Ct at scales smaller than 100 km (Fig. 3.3b).

In summary, kinetic and potential energy spectra are dominated by balanced eddies at
scales of 200 km and larger. This is consistent with our finding in Chapter 2 that at these
scales, the in situ CV also matches that obtained from applying geostrophic balance to
along-track altimetric measurements of sea surface height. At scales smaller than 100 km,
the energy spectra are dominated by inertia-gravity waves. The inertia-gravity wave field
may have a substantial tidal component.

3.3.2 Gulf Stream region

Velocity data in the Gulf Stream region were collected using a 150 kHz shipboard
ADCP on repeat transects from New York Harbor to Bermuda between 1994 and 2004
(cf. Wang et al., 2010; Chapter 2). We use data at 150-m depth, which is below the base of
the mixed layer in most of the year. We select transects that are at least 1000 km long and
have at least 400 data points, resulting in a total of 306 transects. We interpolate onto a
2.5 km regular grid, which is about the spacing of the raw data averaged over 5 min bins,
and rotate the velocities into a frame of reference aligned with the ship track. Spectra are
obtained by the same procedure as described for the Pacific data set.

The resulting C* and C? show large mesoscale energies and fall off steeply in the
submesoscale range (Fig. 3.4a). The spectra exhibit a conspicuous flattening at a scale of
about 20 km. Using equations (3.30-3.31), we perform the Helmholtz decomposition into
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Figure 3.3: Observations from the eastern subtropical North Pacific: (a) diagnosis of the balanced components
of the observed spectra C!, €V, and CY,, (b) diagnosis of the inertia-gravity wave component of the observed
spectra Clt, Cly, and ol ol

rotational and divergent components (Fig. 3.1b). In contrast to the eastern Pacific case,
the rotational part D¥ here vastly dominates over a wide range of scales: only at 20 km
does the divergent component D? become comparable to the rotational component DY.
Notably, at large scales the true D? becomes close to zero, but our computed D? actually
becomes negative, which is of course unphysical. This is the numerical robustness issue
discussed at the end of 3.2.2.

Since no buoyancy data are available, the only way to decompose into a balanced part
and an inertia-gravity wave part is to make an assumption about the frequency content of
the waves. We choose the GM curve to perform the decomposition, since the GM empiri-
cal spectrum is largely based on observations collected nearby the North Atlantic region
considered here. The diagnosed balanced components C¥ and C}, show good agreement
with the observed spectra C* and C? in the range 50-200 km (Fig. 3.4c). At larger scales,
the reconstruction overestimates the longitudinal component C*. This is likely the effect
of anisotropy in the flow: the Gulf Stream, running mostly transverse to the ship track,
has scales of a few hundred kilometers and renders the geostrophic flow field highly
anisotropic cf. Wortham et al., 2014, violating the isotropy assumption made through-
out the development of the theory. At the small-scale end, the balanced components ¥
and C}, start deviating from the observed spectra C* and CV at 20-50 km. This scale is
coincident with the scale at which the observed spectra C* and CV start flattening out.
The balanced components C}, and CY, show no sign of a transition and keep falling off

65



power spectral density [m?s~2]

power spectral density [m3s72)

inverse wavelength [km™!]

inverse wavelength [km™!]

108 (a) observed spectra (b) Helmholtz decomposition
E ] T T IS
] — ko 1
1 3 3 3 E
10° L 3 3 3
102 | - . -
10! £ 4 . i
F F ]
100 [ - 1 1
107!
15 (c) diagnosed balanced part (d)diagnosed inertia—gravity wave part
— - ——rr———r Pt
é — a1 —
L . C—,. p e . C'p E
104 E .4 3 hu ! e
E e feil E ‘.\ o CII 5
¢y ] ¢v ]
103 L 4 5 \ 4
3 3 \\.
107 3 3 \ 3
F F N
3 3 \- -
10! | . a N\ E
100 L - 3 3
107! [ sl " o | [ e s ’ saaadl
1073 1072 107! 100 1073 1072 1071 10°
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steeply. The diagnosed inertia-gravity wave components C%, and C}, start contributing
substantially at this scale (Fig. 3.4d), indicating that the flattening of the spectra C* and
CV is due to a transition to a range dominated by inertia—gravity waves.

In summary, the decomposition into a balanced part and an inertia—gravity wave part
shows that in the Gulf Stream region, in contrast to the eastern Pacific case, much of the
submesoscale range is dominated by balanced flows. The transition in the slope of the
observed spectra at about 20 km is due to inertia—gravity waves.

3.4 Concluding comments

Our proposed method is very easy to implement and gave robust results when applied
to real oceanic data sets. Of course, there are restrictions inherent in the derivation of our
method, which one needs to bear in mind. The assumptions of stationarity, homogeneity,
and horizontal isotropy will have obvious limitations in any practical situation. Another
obvious restriction that is hindering in practice is that we needed to assume that the wave
field was homogeneous in the vertical in order to exploit the energy equipartition result
(3.36) for the wave diagnostic. Strictly speaking, this step disallows considering standing
normal modes in the vertical, which is a relevant case for large-scale ocean inertia—gravity
waves such as low-mode internal tides. So it would be nice to have an extension of our
method that covers that case.

Slightly less obvious will be the impact of nonlinear effects, as our method relied on
geostrophic balance and linear waves dynamics. For example, the assumption of uncor-
related ¢ and ¢, which underlies both steps in our method, presumably would fail for
vortex motions with a noticeable divergent component (the so-called “ageostrophic” ve-
locities of quasi-geostrophic theory). Submesoscale balanced flows tend to develop a large
divergence close to the ocean surface through frontogenesis (Chapter 2). It is not obvious
what this would entail for the correlations between the rotational and divergent parts of
the balanced velocity field.

Similarly, nonlinear effects would also modify the linear argument for the uncorre-
lated ¢ and ¢ for the wave field. That argument can be viewed as a statement of zero
linear PV, or of stretching of background vorticity, in the sense of v, —u, = -fb,/N 2. In
nonlinear theory one could imagine that nonlinear terms in the definition of PV become
important, and that the stretching of background vorticity might reasonably contain a
contribution from the vorticity of the geostrophic flow. A model equation for the wave
vorticity to study in a weakly nonlinear regime might be

(9% +02,)0,pw = [ f + (0% + O3y oy | (% + 03 )pw (3.53)

Compared to (3.32) this includes a nonlinear coupling term between 1y and the wave-
related i and ¢. Of course, in a strongly nonlinear regime one would also encounter
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stratified turbulence, a broad subject heading describing three-dimensionally turbulent
flows that are significantly modified by, and interact with, the stable stratification (e.g.
Smith and Waleffe, 2002; Waite and Bartello, 2004; Riley and Lindborg, 2008). It is an
open question whether such stratified turbulence, perhaps also modified by background
rotation, would leave a detectable fingerprint in the one-dimensional spectra that would
allow distinguishing it from the spectrum due to nearly linear waves, for example.
Finally, our method should naturally be applicable to the substantial body of commer-
cial air flight track data that has been collected near the tropopause in the atmosphere,
where attention has been focused for some time on disentangling the dynamical processes
that underlie the conspicuous spectral slopes that are observed in the so-called Gage-
Nastrom spectrum (e.g. Nastrom and Gage, 1985; Lindborg, 1999; Tulloch and Smith,
2006). We are hoping to report on the results of this application in the near future.

3.A Horizontally uncorrelated wave stream function and potential

We seek to demonstrate that

(3.21): E[tp(xq, 0,20, to)P(X0 + X, V0 + ¥, 20, tg)] = 0

holds if the expectation is taken over a stationary, homogeneous, and horizontally isotro-
pic wave spectrum, and if 1 and ¢ are wave fields related by a time derivative, as in the
relation ; = —f ¢ that holds for inertia-gravity waves. Here we rewrote (3.21) in a form
that highlights that the covariance is taken at different horizontal positions but equal al-
titude zo and time t,. By stationarity, the statement (3.21) is trivially true in the case of
x =y =0, but not otherwise.

We illustrate this issue using a slightly simpler model, namely the rotating shallow-
water in one spatial dimension x, say, in which horizontal isotropy is replaced by left-right
symmetry. The standard variables are (h, u,v) and the linear equations are

u—fv+ghy=0, v+fu=0 and h+Hu,=0, (3.54)

where g is gravity and H is the basic layer depth. Note that u and v are in quadrature
because of the time derivative linking the two fields in (3.54), just as ¢ and ¢ were in the
inertia—-gravity wave case. The fields depend on x and t and we assume stationarity and
homogeneity. We then like to find out whether

E[H(Xo,to)V(xO+X,t0)] =0 (3.55)

holds for left-right symmetric waves. Now, it is easy to construct a homogeneous and
stationary spectrum for which (3.55) fails. Specifically, consider this spectrum of plane-
wave solutions corresponding to right-going waves only:

f

u=pcoslk[x—ct]-a), v= o

Bsin(k[x—ct]-a), and h:gﬁcos(k[x—ct]—a). (3.56)
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Here k > 0 is a wavenumber, ¢ = w/k > 0 is the phase speed corresponding to the positive
root of the dispersion relation w? = f2 + gHk?, a € [0, 27] is a uniformly distributed ran-
dom phase shift and g is a random zero-mean amplitude that is independent of « and has
variance o2, say. It follows that

E[u(xq, tg)v(xg+ X, t9)] = Cf—kazsinkx, (3.57)

where it was crucial to take the expectation over the random phase shift a. Obviously,
for this random wave field (3.55) failed. However, if we impose left-right symmetry on
the random wave field then we must augment (3.56) by a second wave with identical and
uncorrelated statistics, but going in the opposite direction. This corresponds to setting
¢ = —w/k < 0 and obviously uses the other branch of the dispersion relation. This leads to
a second term in (3.57) with equal-and-opposite sign, which cancels the first term, and
therefore (3.55) is indeed satisfied.

The conclusion is that for wave systems with equal-and-opposite frequency branches
in the dispersion relation a horizontally isotropic stationary random wave field has the
property that (3.21) is guaranteed to hold if the two fields ¢ and ¢ are related by a sim-
ple time derivative and hence in quadrature. This is the case for the rotating Boussinesq
equations as well as for the rotating shallow-water equations and therefore holds quite
generally for gravity waves.

3.B Energy equipartition statement (3.36) for plane inertia—gravity waves

We derive

d

(3.36):  Ch(k)+|Df (k) -k d D‘”(k)] - lDﬁ,(k)—k—Dﬁ,(k)

dkW dk
for a spectrum of stationary, homogeneous, and horizontally isotropic three-dimensional
plane inertia—gravity waves. For such waves the wavenumber vector (k,[,m) and the in-
trinsic frequency w are related by the hydrostatic dispersion relation of the Boussinesq
system with constant f and N:
k2
2_ g2 2%
w =f“+N e (3.58)
It suffices to derive the following equivalent statement for three-dimensional spectra,
from which (3.36) then follows by integration over [ and m:

Ch(k, 1, m) + K2CH (K, 1,m) = K2CP (1, m). (3.59)

For a plane wave with frequency w the linear buoyancy equation b; + N>w = 0 and the
continuity equation w, = —(u + v,) imply

w2CA€v=N2CA& and mzéwzkfééﬂ,. (3.60)
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Combining this with wzé& = fZCAf,)V from (3.33) and substituting in (3.59) yields

2 2
[Nzk i ]k2c¢(k I)=0. (3.61)

w? fn2 (u2

This holds by (3.58), which therefore establishes (3.59) and hence (3.36) after integration
over | and m.

This calculation does depend on the assumption of plane waves. For example, if stand-
ing vertical modes were considered instead, then the result would not hold, because the
spectrum is then not homogeneous in the vertical. Mathematically, this is because the sec-
ond equation in (3.60) does not hold for standing waves. Physically, this occurs because
at nodal horizontal planes, where b = w = 0 at all times, there is no potential energy at all
and equipartition fails even for non-rotating waves.
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CHAPTER 4

TRANSITION FROM GEOSTROPHIC TURBULENCE TO
INERTIA—GRAVITY WAVES IN THE ATMOSPHERIC ENERGY
SPECTRUM

This chapter was published as J. Callies, R. Ferrari, and O. Buthler (2014) Transition from geostrophic tur-
bulence to inertia-gravity waves in the atmospheric energy spectrum. Proc. Natl. Acad. Sci. U. 5. A. 111 (48),
17033-17038. JC planned the research, analyzed the data, and wrote the manuscript, under the supervision
of RF and OB.



The mid-latitude high and low pressure systems visible in weather maps are associ-
ated with winds and temperature fluctuations that we experience as weather. These fluc-
tuations arise from a baroclinic instability of the mean zonal winds at horizontal scales of
a few thousand kilometers, commonly referred to as the synoptic scales (Charney, 1947;
Eady, 1949; Phillips, 1954). The combined effects of rotation and stratification constrain
the synoptic-scale winds to be nearly horizontal and to satisfy geostrophic balance, a bal-
ance between the force exerted by the changes in pressure and the Coriolis force resulting
from Earth’s rotation. It is an open question whether the same constraints dominate in the
mesoscale range, i.e. at scales of 10-500 km, or whether qualitatively different dynamics
govern flows at these scales.

The synoptic-scale flows are turbulent in the sense that nonlinear scale interactions,
which lie at the core of the difficulty to predict the weather, exchange energy between
different scales of motion (Batchelor, 1953; Lorenz, 1963, 1969; Vallis, 2006). Under the
constraints of rotation and stratification, the synoptic-scale winds are approximately two-
dimensional and nondivergent (Rossby, 1939; Charney, 1971). In two-dimensional flows,
nonlinear scale interactions tend to transfer energy to larger scales, i.e. the synoptic-scale
pressure anomalies often merge and form larger ones, contrary to nonlinear scale interac-
tions in three-dimensional flows, which tend to transfer energy to smaller scales (Fjortoft,
1953). Little energy is thus transferred to scales smaller than those at which the synoptic-
scale fluctuations are generated through instabilities. Theory and numerical simulations
predict that the energy per unit horizontal wavenumber k decays as rapidly as k=3 at
wavenumbers larger than the wavenumber corresponding to the instability scale (Char-
ney, 1971; Kraichnan, 1967). This predicted kinetic energy spectrum is roughly consistent
with synoptic-scale observations (Charney, 1971; Leith, 1971).

Long-range passenger aircraft have been instrumented to collect velocity and temper-
ature measurements as part of the Global Atmospheric Sampling Program in the 1970s
and the Measurement of Ozone and Water Vapor by Airbus In-Service Aircraft (MOZAIC)
project in the 1990s and 2000s. The resulting dataset, described in the materials section,
consists of tens of thousand of flights. Because aircraft travel at altitudes between 9 and
14 km, the data largely reflect the upper troposphere and lower stratosphere, near the
tropopause. These measurements confirm that the kinetic energy spectrum drops as k=3
in the synoptic wavenumber range, but there is a transition in behavior at a scale of about
500 km (Nastrom and Gage, 1985) (cf. Fig. 4.1a). In the mesoscale range, at scales smaller
than 500 km, the kinetic energy spectrum decays more slowly, roughly like k=3 (Nastrom
and Gage, 1985; Gage, 1979; Cho and Lindborg, 2001).

The measured kinetic energy spectrum is intriguing, because it agrees so well with
Charney’s theory of geostrophic turbulence at the synoptic scales (Charney, 1971), but
deviates from that prediction at the mesoscale. The transition to the flatter k=53 mesoscale
spectrum has been interpreted as the signature of small-scale geostrophic flows generated
by convective events (Gage, 1979; Lilly, 1983; Vallis et al., 1997), as the development of
fronts at the edge of synoptic-scale cyclones and anticyclones at the top of the troposphere
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Figure 4.1: Observed wavenumber spectra of near-tropopause midlatitude winds and decomposition into
geostrophic component and inertia-gravity wave component. (a) Observed spectra of longitudinal kinetic
energy S"(k), transverse kinetic energy S¥(k), and potential energy $(k). (b) Helmholtz decomposition of
the observed kinetic energy spectrum K(k) into its rotational and divergent components K¥(k) and K®(k).
(c) Partitioning of the total energy spectrum E(k) into the diagnosed inertia-gravity wave component E (k)
and the residual geostrophic component Eg(k).
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(equivalent to the warm and cold mesoscale fronts we experience at the Earth’s surface)
(Tulloch and Smith, 2006), or as the signature of stratified turbulence at scales where
the rotational constraints become less important (Lindborg, 2006). These explanations of
the synoptic-to-mesoscale transition invoke turbulent dynamics and strong interactions
between the synoptic and mesoscale flows.

A rotating and stratified atmosphere, however, supports an additional, much faster set
of motions: inertia—gravity waves. These are internal gravity waves, modified by the effect
of rotation, that have periods of several minutes to a few hours. In contrast to the strongly
nonlinear, turbulent synoptic-scale flow, these motions are wave-like and at small ampli-
tude they are approximately governed by linear dynamics (Pedlosky, 2010). It has been
proposed that the mesoscale energy is dominated by inertia-gravity waves (Dewan, 1979;
VanZandt, 1982), which are easily excited by any fast fluctuation of the atmospheric flows
(Fritts and Alexander, 2003). In this explanation of the mesoscale part of the spectrum,
linear inertia—gravity and nonlinear synoptic-scale turbulence coexist with little interac-
tion.

In this chapter, we present an analysis of the MOZAIC data that utilizes the decom-
position method developed in Chapter 3. For the first time, this new analysis provides
compelling evidence that linear inertia-gravity waves indeed dominate the observations
in the mesoscale.

4.1 Theories for the synoptic-to-mesoscale transition

Dewan first suggested that the mesoscale energy is dominated by a continuum of
weakly nonlinear inertia—gravity waves (Dewan, 1979). VanZandt showed that the meso-
scale spectra of horizontal wind fluctuations as a function of horizontal wavenumber,
vertical wavenumber, and frequency are related through the dispersion and polarization
relations of inertia—gravity waves (VanZandt, 1982). The dominance of inertia-gravity
waves at the mesoscale, however, appeared inconsistent with vertical velocity frequency
spectra measured from radar in light-wind conditions (Gage and Nastrom, 1985). More
recently Vincent and Eckerman showed that the signature of inertia—gravity waves is re-
covered after correcting for Doppler-shift effects in radar observations (Vincent and Eck-
ermann, 1990).

In the last two decades, the interpretation of the synoptic-to-mesoscale transition in
terms of inertia—gravity wave dynamics has received little attention. The k>3 power-law
dependence of the mesoscale spectrum has instead been interpreted as evidence that the
mesoscale is strongly turbulent. The strong nonlinear interactions characteristic of turbu-
lent flows continuously redistribute energy across wavenumbers and are known to result
in power-law energy distributions (Batchelor, 1953; Vallis, 2006). A number of competing
turbulent theories have been proposed.

The earliest turbulent theory argues that the mesoscale spectrum is due to an inverse
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cascade of energy injected at even smaller scales, for example by convective activity (Gage,
1979; Lilly, 1983; Vallis et al., 1997). The hypothesis is that nonlinear mesoscale interac-
tions, much like at synoptic scales, transfer energy to larger scales because of the con-
straints of rotation and stratification. The kinetic energy spectrum in such a quasi-two-
dimensional inverse cascade scales like k=3 at wavenumbers smaller than the injection
scale (Kraichnan, 1967), in contrast to Charney’s k=3 spectrum, which develops at wave-
numbers larger than the injection scale. The theory does not predict at which scale the
dynamics switch from the synoptic to the mesoscale regime.

The second turbulent theory proposes that the flat mesoscale spectrum is the signature
of sharp temperature fronts, which develop when synoptic-scale flows intersect a rigid
boundary, like the Earth’s surface, or a strongly stratified layer, like the tropopause (Tul-
loch and Smith, 2006). Importantly, the winds associated with the temperature fronts are
still largely in geostrophic balance. In this view, the k=3 mesoscale spectrum is a feature
of measurements taken at the tropopause level, the cruising altitude of long range com-
mercial aircraft, but should not appear in the mid troposphere. This prediction cannot be
tested with available data.

The third turbulent theory proposes that the k=3 mesoscale spectrum emerges at the
scales where the flows escape the rotational constraint and energy can be transferred to
smaller scales (Lindborg, 2006). Turbulent flows constrained by stratification, but not ro-
tation, are collectively known as “stratified turbulence”. The forward energy cascade is
achieved by the overturning of layer-like structures. These flows are not in geostrophic
balance, and thus differ from the quasi-two-dimensional dynamics of the previous two
theories; and they are strongly nonlinear, and thus differ from approximately linear
inertia—gravity waves.

4.2 Inertia—gravity waves and geostrophic flow

The understanding that atmospheric winds are composed of slow flows in approxi-
mate geostrophic balance and fast inertia—gravity waves has been the foundation for much
progress in atmospheric science. The first numerical weather predictions were based on
quasi-geostrophic dynamics, an approximation to the more complete primitive equations
that filters out inertia—gravity waves (Charney, 1949; Charney and Eliassen, 1949; Char-
ney et al., 1950). In the troposphere and lower stratosphere, inertia—gravity waves typi-
cally have small amplitudes and therefore interact only weakly with geostrophic flows.
While there is a growing appreciation of rare instances of inertia-gravity waves directly
influencing sensitive weather patterns (Ruppert and Bosart, 2014), strong interactions be-
tween inertia—gravity waves and the geostrophic flow are typically confined to the mid-
dle and upper atmosphere, where the wave amplitude becomes large enough to allow
for breaking of inertia~gravity waves and the concomitant drag force on the geostrophic
flow that is well known to be crucial for the global angular momentum budget of the
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atmosphere (Fritts and Alexander, 2003).

In the deep ocean, breaking inertia—gravity waves mix heat and carbon. This leading-
order effect has led to intensive study of the oceanic inertia—gravity wave field. It is com-
posed of a continuous spectrum of linear waves together with isolated peaks at the inertial
and tidal frequencies (Garrett and Munk, 1979). Similar to the lower atmosphere, these
linear waves interact only weakly with the geostrophic flow. Only at small vertical scales
of a few tens of meters do the waves break.

In Chapters 2 and 3, we showed that the energy spectra of oceanic flows are dominated
by geostrophic flows at large scales and by inertia—gravity waves at small scales. The tran-
sition between the two classes of motion occurs at scales of 10-100 km, depending on the
relative strength of the geostrophic eddies and the waves. In what follows, we show that
the synoptic-to-mesoscale transition in the atmospheric kinetic energy spectrum is likely
an equivalent transition from geostrophic to inertia-gravity wave dynamics.

4.3 Decomposition

From the MOZAIC aircraft observations of wind near the midlatitude troposphere,
we compute power spectra of the longitudinal (along-track) velocity u and transverse
(across-track) velocity v, S¥(k) = {Ji2(k)|*) and S¥(k) = (|9(k)|?), where the caret denotes
a Fourier transform and the angle brackets an average over flights. From the tempera-
ture observations, we compute the potential energy spectrum Sb(k) = (|b(k)|?)/N?, where
b = g(6 — 0y)/0, is buoyancy, g = 9.81 m s~2 is the gravitational acceleration, 6y = 340 K is
the reference potential temperature, and N2 is the average vertical gradient of b. Poten-
tial temperature is the temperature of an air parcel corrected for dynamically irrelevant
compression effects. We use a typical stratification of the lower stratosphere, N = 0.02 s1,
estimated from the ERA-Interim reanalysis (Dee et al., 2011). Fig. 4.1a shows that these
MOZAIC spectra display the transition from a steep synoptic range to a flat mesoscale
range at about 500 km.

If simultaneous wind and temperature observations were available in space and time,
one could directly test whether the dispersion and polarization relations of inertia-gravity
waves are satisfied by mesoscale motions. One could further separate out inertia—gravity
waves and geostrophic flows, because inertia-gravity waves are restricted to frequencies
between the Coriolis frequency f (equal to twice the rotation rate of the Earth multiplied
by the sine of the latitude) and the buoyancy frequency N (the frequency at which a
vertically displaced parcel of air will oscillate within the stably stratified atmosphere),
while geostrophic flows evolve on much longer time scales. But it is extremely difficult to
collect simultaneous measurements of mesoscale fluctuations of winds and temperature
in space and time.

We showed in Chapter 3 that the decomposition can be achieved from space-only mea-
surements, provided that concurrent observations of horizontal velocities and tempera-
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ture are available (Chapter 3). Applying this new decomposition to the MOZAIC data (see
Materials and Methods) produces two powerful arguments in support of the hypothesis
that the mesoscale spectrum is dominated by inertia—gravity waves.

First, assuming that the flow is an uncorrelated superposition of a geostrophic flow
and inertia-gravity waves, we diagnose the inertia—gravity wave component of the to-
tal energy, the sum of the kinetic and potential energies, solely based on the observed
horizontal velocities. We then show that the thus predicted inertia-gravity wave energy
spectrum closely matches the observed total energy spectrum in the mesoscale range.
This indicates that the mesoscale potential energy spectrum, predicted by this procedure,
is consistent with linear wave theory.

Second, assuming that the geostrophic component of the flow obeys Charney’s isot-
ropy relation for geostrophic turbulence (Charney, 1971), we decompose the three ob-
served individual spectra of longitudinal kinetic energy, transverse kinetic energy, and
potential energy into a geostrophic component and an inertia—gravity wave component.
The diagnosed inertia-gravity wave spectra closely match the observed spectra in the
mesoscale range. This is another powerful test of the mesoscale flow’s consistency with
the dispersion and polarization relations of inertia—gravity waves.

4.3.1 Helmholtz decomposition

Fig. 4.1a shows that in the synoptic range, the spectra approximately satisfy Charney’s
prediction for geostrophic turbulence: $*(k) = Sb(k) and S¥(k) = 35%(k) (Charney, 1971;
Leith, 1971). At the transition to the mesoscale, all three spectra converge. As shown by
Lindborg and in the following, this convergence is evidence that the flow is no more in
geostrophic balance at leading order (Lindborg, 1999, 2007).

Any horizontal flow field can be decomposed into its rotational and divergent com-
ponents: u = —i, + ¢y, v = P + ¢y, where ¢ is the streamfunction, ¢ is the velocity po-
tential, x is the along-track coordinate, and y is the across-track coordinate. If the flow
is statistically isotropic horizontally and ¢ and ¢ are uncorrelated (as is the case for a
superposition of geostrophic flow and linear inertia—gravity waves), the spectra S*(k) and
SY(k) can be written in terms of spectral functions associated with 1) and ¢ (see Material
and Methods):

S*(k) = D‘/’(k)—k%D‘f’(k), (4.1)
SY(k) = —k%D‘P(kHDd’(k). (4.2)
The spectral functions D¥(k) and D? (k) can easily be computed from the observed S$*(k)
and SY(k) by solving the system of ordinary differential equations (4.1) and (4.2) (see

Materials and Methods). Using D¥(k) and D?(k), the observed kinetic energy spectrum
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K(k) = %[S“(k) + S?(k)] can be decomposed into its rotational and divergent components,

K¥(k) = %(1 —k(?—k)D%"(k), (4.3)
K®(k) = %(1 —k%)D‘i’(k). (4.4)

The Helmholtz decomposition of the MOZAIC kinetic energy spectrum in Fig. 4.1b
shows that the rotational component dominates in the synoptic range, whereas the di-
vergent component becomes of the same order at the transition to the mesoscale range.
In the mesoscale range, the divergent component slightly dominates over the rotational
component.

The dominance of the rotational component in the synoptic scales is consistent with
Charney’s geostrophic turbulence, because a geostrophic flow is horizontally nondiver-
gent and thus purely rotational. The significant divergent component in the mesoscale,
on the other hand, is inconsistent with the mesoscale theories that rely on a leading-order
geostrophic balance, namely the inverse-cascade theory and the frontogenesis theory. In-
stead, it points to the dominance of ageostrophic dynamics.

Lindborg also found that the rotational and divergent components of the flow are of
the same order in the mesoscale range (Lindborg, 2007). In his analysis, based on curve
fitting and selective Fourier transforming, the rotational component slightly dominated
the divergent component in the mesoscale range. He argued that this was inconsistent
with inertia—gravity waves, for which he expected the divergent component to be much
larger than the rotational component. If the inertia—gravity wave field is dominated by
near-inertial waves, however, as suggested by balloon measurements in the lower strato-
sphere (Hertzog et al., 2002), the rotational component is expected to be of the same order
as the divergent component. In the following section, we show that the mesoscale signal
is indeed consistent with linear inertia-gravity wave dynamics, i.e. with the dispersion
and polarization relations of hydrostatic inertia-gravity waves.

4.3.2 Decomposition of the total energy spectrum into geostrophic and inertia-gravity
wave components

Geostrophic flows are horizontally nondivergent and therefore only have a rotational
component, while inertia-gravity waves have both a rotational and a divergent compo-
nent. To perform the decomposition into these two classes of motion, we note that the
component of the total energy spectrum E(k) = %[S”(k) +SV(k) + S?(k)] that is due to hy-
drostatic inertia—gravity waves can be diagnosed from D?(k) alone (see Materials and
Methods):

d

—oxt = (1 -k 3\ po
E.(k) = 2K (k)_(l kdk)D (k), (4.5)
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where the subscript “w” designates the inertia—gravity wave component. This somewhat
surprising result follows directly from linear inertia—gravity wave dynamics, if horizontal
isotropy and vertical homogeneity are assumed. Provided there is no additional type of
motion, the residual of the observed total energy spectrum can be attributed to a geo-
strophic flow: Eg(k) = E(k) — Ey(k), where the subscript “g” designates the geostrophic
component.

The decomposition into geostrophic flow and inertia-gravity waves of the MOZAIC
data is shown in Fig. 4.1c. The mesoscale range is dominated by inertia-gravity waves,
which do not contribute much energy at the synoptic scales. The residual spectrum, i.e.
the total spectrum minus the inertia-gravity wave component, dominates at the synop-
tic scales. This component can be confidently attributed to geostrophic flows, because
we have shown that the spectrum in the synoptic range is purely rotational and hence
horizontally nondivergent. At the transition scale, the geostrophic component of the total
energy keeps falling off steeply—the transition appears to be due to inertia—gravity waves
becoming dominant in the mesoscale range. This is the main result of this chapter.

Notice that the geostrophic spectrum keeps falling off steeply past the transition at
500 km, but eventually flattens out at smaller scales. This flattening is likely an artifact,
because at these scales the geostrophic component makes up a small fraction of the ob-
served signal. It is quite possible that the flattening is due to noise or biases introduced by
the interpolation procedure or by truncation errors in the reported wind and temperature
data.

4.3.3 Decomposition of kinetic and potential energy spectra

We have shown that the total energy spectrum can be decomposed into its geostrophic
and inertia—gravity wave components. To confirm that the observed spectra are consistent
with geostrophic dynamics at synoptic scales and with inertia~gravity wave dynamics at
mesoscales, we now decompose into its two components each of the atmospheric spectra,
the longitudinal and transverse kinetic energy spectra, S*(k) and S”(k), and the potential
energy spectrum, S¥(k). This can be done if one makes one further assumption. Follow-
ing Charney and results from numerical simulations of geostrophic turbulence, the geo-
strophic streamfunction is assumed to be three-dimensionally isotropic, with the vertical
coordinate rescaled by f/N (Charney, 1971). This implies Sg/(k) = Sé’(k), a relation that we
noted is satisfied by the observed spectra in the synoptic range (Fig. 4.1a).

This decomposition—obtained by applying (4.15)-(4.17) and (4.20)—(4.22), given in
the Materials and Methods section—confirms the main conclusion that the observed
synoptic-scale flow is consistent with geostrophic dynamics and that the observed meso-
scale flow is consistent with inertia~gravity wave dynamics. In the synoptic range, the
observed spectra match the diagnosed geostrophic components (Fig. 4.24). At the tran-
sition scale, the diagnosed geostrophic spectra start deviating from the observed spectra
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Figure 4.2: Decomposition of observed wavenumber spectra into the geostrophic and inertia-gravity wave
components. (a) Diagnosed geostrophic component of the spectra of longitudinal kinetic energy Sy (k), trans-
verse kinetic energy Sy (k) and potential energy Sg(k) (heavy lines) and observed spectra for reference (faint
lines). Note that by constructlon Sg (k) = S (k). (b) Diagnosed inertia—gravity wave component of the spec-
tra of longitudinal kinetic energy Sv“‘,(k) transverse kinetic energy SY (k), and potential energy S% (k) (heavy
lines) and observed spectra for reference (faint lines).

and keep falling off steeply. At this scale, the diagnosed inertia—gravity wave spectra be-

come comparable to the observed spectra and start matching them in the mesoscale range
(Fig. 4.2b).

4.4 Discussion

Our analysis shows that the aircraft observations are consistent with a geostrophic
flow that dominates the synoptic range and with inertia-gravity waves that dominate the
mesoscale range. This conclusion is predicated on the assumption that the total observed
flow is a superposition of geostrophic flow and inertia-gravity waves and that these two
components are uncorrelated and horizontally isotropic.

In accord with Lindborg’s result (Lindborg, 1999), our analysis conclusively shows
that mesoscale flows are not in geostrophic balance, thus falsifying previous suggestions
that mesoscale spectra represent geostrophic eddies generated by atmospheric convective
events or geostrophically balanced fronts at the tropopause. Our analysis then further
shows that the observed mesoscale spectra §*(k), S¥(k), and SP(k) are consistent with the
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dispersion and polarization relations of linear hydrostatic inertia—gravity waves. Presum-
ably, it would be very surprising if the strongly nonlinear ageostrophic flows characteristic
of stratified turbulence were to yield the same relations between these mesoscale spectra
as the linear waves.

A similar transition between a dominant geostrophic flow at large scales and dominant
inertia—gravity waves at small scales is well established in the oceanic spectra (Chapter 2),
providing further support for our interpretation of the synoptic-to-mesoscale transition.
The ocean, like the atmosphere, is a strongly rotating and stratified fluid. The most ener-
getic large-scale fluctuations are generated by baroclinic instabilities in both fluids, while
small-scale inertia—gravity waves are triggered by any fast perturbation. A posteriori, it
should not be surprising that both fluids exhibit a transition from geostrophic dynamics
at large scales to inertia—gravity wave dynamics at small scales.

That inertia~gravity waves dominate the mesoscale spectrum does not mean that the
atmosphere is filled with a nearly uniform and stationary wave field, as appears to be
the case in the ocean (Garrett and Munk, 1979). The atmospheric wave field is likely
highly intermittent in both space and time (Fritts and Alexander, 2003). Our result merely
suggests that on average, inertia-gravity waves dominate the mesoscale range. A good
understanding of what sets the shape of the average atmospheric inertia-gravity wave
spectrum is lacking. The oceanic inertia-gravity wave spectrum, however, has been shown
to be an equilibrium solution of weakly interacting inertia—gravity waves with slopes close
to k=3 (McComas and Miiller, 1981; Polzin and Lvov, 2011). While the residence time
of waves in the atmosphere is shorter and shears provided by jet streams stronger, weak
turbulence theory may similarly yield insight into the atmospheric inertia—gravity wave
field.

The spatial patterns of mesoscale energy are also consistent with the dominance of
inertia-gravity waves at the mesoscales. The aircraft spectra in the mesoscale range are
up to six times larger in mountainous regions than over flat terrain (Nastrom et al., 1987).
The inertia—gravity wave activity is expected to be enhanced over mountains, where lee
waves are excited by large- and synoptic-scale flows impinging on topography. Stratified
turbulence, on the other hand, is fed directly by synoptic-scale energy and therefore not
expected to be enhanced over mountainous regions.

High-resolution numerical models reproduce the synoptic-to-mesoscale transition
(Koshyk et al., 1999). Model results are consistent with the observation that the synop-
tic range is dominated by rotational flow, while the rotational and divergent components
are of the same order in the mesoscale range (Koshyk and Hamilton, 2001; Hamilton
et al., 2008). Models also show a pattern of enhanced mesoscale energies in regions of
high topography (Hamilton et al., 2008). The simulations further show that the mesoscale
spectrum is not the result of stratified turbulence (Skamarock et al., 2014), in agreement
with our conclusion that they are the signature of inertia—gravity waves.

The emergent picture is relatively simple. Geostrophic synoptic-scale baroclinic dis-
turbances force a forward enstrophy cascade that continues through the synoptic-to-
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mesoscale transition. The k=3 or slightly steeper geostrophic spectrum is masked by
inertia—gravity waves at scales smaller than 500 km. This picture does not rule out the
possibility that some fraction of the energy in the mesoscale spectra is associated with
fronts and stratified turbulence, but these contributions must be small.

The result of this chapter may also have some implications for the theoretical pre-
dictability of atmospheric flows. Lorenz argued that a turbulent flow with a k=33 kinetic
energy spectrum has a finite predictability time, which is of the order of the eddy turnover
time (Lorenz, 1969). More and more accurate knowledge of the initial state cannot push
forecasts beyond that limit—even if we had a perfect model. In contrast, turbulent flows
with a k73 kinetic energy spectrum do not have such a predictability limit and ever more
accurate initial conditions can lead to ever longer forecasts.

If the flat mesoscale spectrum were due to a turbulent cascade, that would pose a
limit on predictability of synoptic systems (Vallis, 2006; Palmer, 2000). Observing and
modeling the atmosphere beyond the transition at 500 km would yield rapidly diminish-
ing returns in predictability. If this part of the spectrum is due to inertia-gravity waves,
however, improving observational systems and forecast models may not prove as futile.
Inertia—gravity waves do not propagate errors in the same way as the turbulent flows
discussed by Lorenz. If the geostrophic component of the mesoscale flow were to be ob-
served, despite the dominance of inertia~gravity waves, the forecast times of synoptic
systems could potentially be extended considerably.

It should be noted, however, that other processes not considered in this theoretical
argument may affect predictability. Moist convective processes, for example, lead to rapid
growth of errors that can leak into the geostrophic flow (Zhang et al., 2007). Currently,
the practical predictability of the weather is likely limited by inadequate representation
of such processes.

4.5 Materials
4.5.1 Aircraft data

The spectra shown in Fig. 4.1a are calculated from wind and temperature measure-
ments obtained by the MOZAIC program, which equipped commercial aircraft with in-
strumentation to measure trace gases, but also records wind speed and direction from the
board computer. The data used here were obtained in 2002-2010 and are restricted to
the northern hemisphere midlatitudes (30 to 60 degrees latitude). Great circles are fit to
the flight paths and segments are discarded if they are shorter than 6,000 km, the average
sample spacing is coarser than 1.2 km, or the deviation from the great circle is greater than
2 degrees. The data are then linearly interpolated onto a regular grid with 1 km spacing.
Data at pressures larger than 350 hPa are discarded. Subsequently, for each flight, data
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deviating more than 1 km in altitude from the mean altitude are also discarded. Temper-
ature data are adjusted to account for remaining variations in flight altitude, assuming a
constant stratification N = 0.02 s™!, but this correction is of no consequence for the results
discussed in the main part of the chapter. Nastrom and Gage (Nastrom and Gage, 1985)
and Cho and Lindborg (Cho and Lindborg, 2001) showed that the spectral shapes are
qualitatively the same in the upper troposphere and lower stratosphere, thus we do not
separate the data into vertical bins. Spectra are computed by applying a Hann window,
compensating for the variance loss, performing a discrete Fourier transform, and aver-
aging over all 458 segments. Spectra at wavelengths smaller than 20 km are discarded
because they are potentially affected by the interpolation procedure or by truncation er-
rors in the reported data. Locations were reported in longitude/latitude with an accuracy
of 0.01 degrees; zonal and meridional winds were reported with an accuracy of 0.01 m s1;
temperatures were reported with an accuracy of 0.01 K. These noise levels do not affect
the spectra on scales larger than 20 km. We also discard the largest resolved wavelength,
because the power at this wavelength is reduced artificially by the window.

4.5.2 Details of decomposition

We here give more detail on the decomposition techniques used to analyze the aircraft
spectra. We gave a more comprehensive description of these techniques in Chapter 3 and
illustrated their skill to analyze oceanic spectra.

Let u and v be horizontal velocity components defined in the xy-plane with x aligned
with the aircraft track, so u is the longitudinal (along-track) component and v is the
transverse (across-track) component. The time t and altitude z are considered fixed dur-
ing the measurement, so they will be ignored. Now, a general two-dimensional flow has
a Helmholtz decomposition into rotational and divergent components of the form u =
—py + ¢ and v = P, + ¢,. The functions ¢ and ¢ are uniquely determined in terms of the
velocity field with doubly periodic boundary conditions.

Progress with the statistical theory is possible if (x,y) and ¢(x,y) are uncorrelated.
We can then write the two-dimensional power spectra of u and v as

S¥(k,1) =128¥(k,1) + k*S?(k, 1), (4.6)
SV(k,1) = k*S¥(k, 1)+ 12S®(k, 1), (4.7)

where [ is the across-track wavenumber. Integration over / and some manipulation gives

(4.1) and (4.2) with
1 oo
Yik)= — 2_ 4
D (k)_nJ; k2 — k28 (ky ), (4.8)

D?(k) = %Lm\/kﬁ—kzsqﬁ(kh)dkh, (4.9)
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where S¥(ky) and S?(ky,) are the two-dimensional isotropic spectra of ¢ and ¢, related to
the two-dimensional spectra by S(ky) = 21k, S(k, 1), ky, = Vk2 + 12 is the magnitude of the
horizontal wavenumber vector, and k > 0 is the along-track wavenumber.

The equations (4.1) and (4.2) can be solved explicitly, given the boundary conditions
D¥(c0) =0 and D%(c0) =0,

D¥(s) = j [S¥(o)sinh(s — o) + S¥(0)cosh(s — 0)] do, (4.10)
S
D¢(s)=f [S¥(0)cosh(s — o)+ S¥(0)sinh(s —0)] do, (4.11)
N
where for convenience the coordinate was transformed to s = Ink.
Relation (4.5) follows from the dispersion and polarization relations of hydrostatic

inertia—gravity waves. Combining the vorticity and continuity equations of the linearized
primitive equations yields V2i, = fV2¢ (Pedlosky, 2010), which implies that

SY(k,1,w) = f—25¢(k lw) (4.12)
¥ - a)z rhy .

and thus, with the use of (4.6) and (4.7),
2
SU(k,1,w)+ S?(k,1,w) :(1 + f—z)(k2+ 12)s¢(k,1,w). (4.13)
w

The linear buoyancy equation is b; + N%w = 0 and the potential energy spectrum S¥(k) =
(1b(k)12)/N? can also be related to the spectrum of the velocity potential,

2
Sb(k, 1, w) =(1—%)(k2+12)54’(k,l,a)), (4.14)

if uncorrelated plane waves are assumed, with slowly varying background allowed. Add-
ing (4.13) and (4.14) then eliminates the dependence on w, so that (4.5) follows by inte-
grating over / and w.

The decomposition of the three individual spectra can be achieved by decomposing
D¥(k) = Dg)(k) + Dx(k). The divergent part D?(k) needs no such decomposition, because
the geostrophic component of the flow is divergence-free. Using

S!'(k) = DY (k), (4.15)
S (k)= kddkpg(k) (4.16)
Si(k) = D¢ (k), (4.17)
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where Charney’s assumption Sgb(k) = Sy (k) was applied, we can write the total energy
spectrum of the geostrophic component Eg(k) = %—[Sé‘(k) +Sg(k)+ Sé’(k)] as

k d P
Eg(k)—(l —EJ)D (k). (4.18)
Since Eg4(k) = E(k) — E, (k) can be diagnosed from the observations and (4.5), this can be

solved for Dé‘b(k): .
DY(s) = zJ- Eq(0)e**9)do, (4.19)
N

where the boundary condition Dgl'b(oo) = 0 was used and the coordinate was again trans-
formed to s = Ink for convenience. The decomposition is now complete. The wave spectra
are

S4(k) = DY (k) ~ kDY (R, (420
v _ i P ¢
Swik) = kdew(k)""Dw(k)r (4.21)
bpy — d ¢ P
Sw(k)—(l—ka)[ w(k)_Dw(k)]r (4.22)

where Dﬁ(k) =D¥(k) - Dg)(k), D‘%(k) =D®(k), and (4.5) was used to deduce the last equa-
tion.
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CHAPTER 5

SEASONALITY IN SUBMESOSCALE TURBULENCE

This chapter was published as J. Callies, R. Ferrari, ]. M. Klymak, and J. Gula (2015) Seasonality in
submesoscale turbulence. Nat. Commun. 6 (6862). © 2015 Macmillan Publishers Limited. Published under
the Creative Commons Attribution 4.0 International License. JC planned the research, analyzed the data,
and wrote the manuscript, under the supervision of RF. JMK planned, collected, and processed the Moving
Vessel Profiler observations. ]G performed the model simulations shown in Fig. 5.2.
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Figure 5.1: Locations of velocity transects (black lines), of additional buoyancy transects (dark gray lines),
and of the model snapshots shown in Fig. 5.2 (transparent shading). The color shading shows sea surface
temperatures on 13-20 March 2012 (8-day L3 MODIS Aqua composite of 4 um nighttime temperature).
Missing data are indicated by white shading.

5.1 Introduction

The ocean supports motions on a wide range of scales. The most energetic flows are ed-
dies with horizontal scales of a few hundred kilometers, which are the oceanic analogues
of the atmospheric cyclones and anticyclones. These mesoscale eddies are dynamically
well understood and are routinely observed with satellite altimeters (Stammer, 1997).
Classic theories predict that the kinetic energy in the mesoscale eddy field should decay
very rapidly at smaller scales (Charney, 1971) and be associated with weak vertical veloc-
ities. Recent numerical modeling studies suggest, however, that there is a very dynamic
near-surface eddy field on scales 1-100 km, which drives vertical velocities one or two
orders of magnitude larger than those of order 1 m day~! associated with the divergence
of mesoscale flows (Lapeyre and Klein, 2006; Capet et al., 2008a). These submesoscale
flows consist of narrow horizontal currents associated with strong horizontal gradients in
buoyancy.
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Figure 5.2: Surface buoyancy gradient magnitudes from a numerical simulation in the Gulf Stream region in
(a) winter (February 15) and (b) summer (August 15)

High-resolution numerical simulations suggest that submesoscale flows are much
stronger in winter than in summer (Capet et al., 2008d; Mensa et al., 2013; Sasaki et al.,
2014). This is illustrated here with snapshots from a simulation of the Gulf Stream region
with a horizontal resolution of 750 m (Fig. 5.1). More detail on the simulation is given
in the Methods section. The snapshots of surface buoyancy gradients show that fronts are
strong in winter and much less pronounced in summer, except for the Gulf Stream front
that persists throughout the year (Fig. 5.2). This seasonality provides important clues to
the dynamics of submesoscale turbulence.

One mechanism that has been proposed to energize submesoscale flows is mesoscale-
driven surface frontogenesis (Lapeyre and Klein, 2006): the presence of the ocean surface
allows strain fields at the edges of mesoscale eddies to sharpen surface buoyancy gradi-
ents (Stone, 1966a; Lapeyre et al., 2006). Unlike in the ocean interior, upwelling of dense
water and downwelling of light water cannot counteract the increase of lateral buoyancy
gradients at the surface, where the vertical transport of waters must vanish. The result-
ing surface fronts have been shown to break up in secondary roll-up instabilities, which
drive a nonlinear cascade of surface buoyancy variance and energize the entire range
of scales below the mesoscale (Held et al., 1995). Surface quasi-geostrophic theory has
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been used to qualitatively illustrate these dynamics and predicts surface kinetic and po-
tential energy spectra to scale like k=3 (ref. Blumen, 1978), where k is the horizontal
wavenumber. Surface quasi-geostrophic flows are predicted to be confined to a shallow
surface layer; they decay exponentially away from the surface, with smaller-scale motions
decaying more rapidly than larger-scale ones. Energy spectra are therefore expected to
fall off with wavenumber more rapidly away from the surface. Surface quasi-geostrophic
dynamics are modified by ageostrophic effects that accelerate frontogenesis (Hoskins and
Bretherton, 1972), lead to true frontal collapse, and thereby produce k=2 energy spectra
(Boyd, 1992).

Another mechanism that has been proposed to energize submesoscale flows in the
mixed layer is baroclinic instability (Haine and Marshall, 1998; Boccaletti et al., 2007).
This instability allows perturbations to extract energy from the lateral buoyancy gradients
generated by mesoscale stirring or by spatial variations in atmospheric forcing. Eady edge
waves can propagate both along the surface and along the sharp increase in stratification
at the base of the mixed layer (Eady, 1949; Blumen, 1979; Rivest et al., 1992; Juckes, 1994;
Held et al., 1995). Edge waves with scales close to the mixed layer deformation radius,
Nh/f, propagate at the same speed along the surface and the base of the mixed layer and
can therefore constructively interfere (N is the density stratification of the mixed layer,
his its depth, f is the Coriolis parameter). This interference results in an amplification of
these disturbances on a time scale N/fA (Eady, 1949; A is the geostrophic shear in the
mixed layer), which causes water from the denser side of the lateral buoyancy gradient
to slide under the more buoyant waters. The most unstable mode in the Eady model,
which assumes that N and A are constant through the mixed layer and that the base of
the mixed layer is rigid, has a wavelength of 4Nh/f and a growth rate of 0.3f A/N (Eady,
1949; Vallis, 2006). In deep mixed layers of a few hundred meters and for typical values of
f~10"%s1, A ~10%s71,and N ~ 1073 571, disturbances therefore grow on horizontal
scales of order 1-10 km and time scales of order 1 day (Boccaletti et al., 2007). Once
these disturbances have grown to finite amplitude, turbulent scale interactions exchange
kinetic energy between scales. If the flow is sufficiently constrained by the Earth'’s rotation,
kinetic energy is preferentially transferred to larger scales, filling in the spectrum between
the mixed layer deformation radius and the mesoscale (Boccaletti et al., 2007; Fjortoft,
1953; Kraichnan, 1967; Sasaki et al., 2014). A major prediction of this scenario, which
distinguishes it from mesoscale-driven surface frontogenesis, is that the full depth of the
mixed layer is energized and that the energy decays rapidly below the base of the mixed
layer.

The energization of the submesoscale by such mixed layer instabilities depends cru-
cially on the mixed-layer depth. Mixed layer baroclinic instabilities are powered by the
potential energy stored in lateral buoyancy gradients. The deeper the mixed layer, for a
given lateral buoyancy gradient, the more potential energy is released by the slumping
isopycnals and the more energetic the resulting submesoscale flows. Given that lateral
buoyancy gradients are fairly constant throughout the year, the kinetic energy generated
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by the instabilities is thus expected to peak in winter, when mixed layers are deepest. In
summer, when mixed layers are shallow, the instabilities can easily be damped out. While
the growth rate of mixed layer instabilities is independent of the mixed-layer depth h, the
damping of mixed layer motions by atmospheric forcing is faster in shallower mixed lay-
ers (Marshall and Schott, 1999). Additionally, the mixed layer deformation radius scales
with %, so the instability scale is smaller when the mixed layer is shallow. Since smaller-
scale flows can more easily escape the influence of rotation, kinetic energy created in shal-
low mixed layers may cascade to smaller rather than larger scales, so that the instability
fails to energize the range between the mixed layer deformation radius and the mesoscale
(Molemaker et al., 2005; Capet et al., 2008c).

The instability mechanism therefore implies a seasonal cycle in submesoscale turbu-
lence. In winter, when the mixed layer is deep, instabilities grow on a time scale of about
1 day and at a horizontal scale between 1-10 km, subsequently energizing the entire sub-
mesoscale range through turbulent scale interactions. In summer, the instability is either
damped out or fails to energize the submesoscale range because of the lack of a strong
inverse cascade, when the mixed layer deformation radius is very small. The mesoscale-
driven surface frontogenesis mechanism, on the other hand, only depends on the presence
of a mesoscale eddy field, which does not undergo a strong seasonal cycle. The strong
seasonality at the submesoscale visible in numerical simulations (Fig. 5.2) supports the
instability mechanism.

Observational confirmation of a seasonal cycle in submesoscale turbulence, however,
is so far lacking. Numerical models used for studying submesoscale dynamics typically
do not explicitly resolve small-scale processes in the mixed layer. In summer, for example,
when the mixed layer is shallow, the models do not resolve the instability scale of the baro-
clinic instability in the mixed layer, which can be as small as 10-100 m. High-resolution
satellite observations show a seasonal cycle in sea surface temperature gradients in the
Gulf Stream region (Armstrong et al., 2012), but it remains unclear whether the tem-
perature variations are reflected in density or compensated by salinity variations (Ferrari
and Rudnick, 2000), whether the temperature signal is accompanied by along-front flows,
whether these flows are in geostrophic balance, and what the subsurface structure of these
flows is.

In-situ observations of velocity and buoyancy in the upper ocean are used in this study
to conclusively show that submesoscale flows undergo a strong seasonal cycle on scales
of 1-100 km. An enhancement of the observed submesoscale flows throughout the win-
ter mixed layer and the flows’ leading-order horizontal non-divergence are argued to be
further evidence for the instability mechanism.
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5.2 Results
5.2.1 Data

We present data from the western subtropical North Atlantic, where the mixed layer
is known to undergo a strong seasonal cycle (de Boyer Montégut et al., 2004). The data
were collected as part of two separate observational programs: the Oleander project along
a transect between Elisabeth, New Jersey, and Hamilton, Bermuda, occupied weekly in
2005-2013, and the Lateral Mixing Experiment (LatMix) along several straight transects
off Cape Hatteras in June 2011 (summer) and just south of the Gulf Stream extension
in March 2012 (winter) (Shcherbina et al., 2013) (Fig. 5.1). We consider only the Olean-
der data south-west of the Gulf Stream extension and separate the transects into winter
ones (January through March, when the mixed layers are deepest, de Boyer Montégut et
al., 2004) and summer ones (June through August). In the Oleander region, mixed lay-
ers are on average 150-200 m deep in winter and shoal to order 10 m in summer (de
Boyer Montégut et al., 2004). In the LatMix winter experiment, the mixed layer was about
h = 220 m deep and had an average stratification of N = 2x 1073 s71, giving an Eady in-
stability scale 4Nh/f = 20 km. In the LatMix summer experiment, the mixed layer was no
deeper than 4 =5 m and, while there were no shallow measurements of stratification, the
Eady instability scale was most likely no larger than 100 m.

Power spectra are computed at constant depths for the longitudinal (along-track) ve-
locities u, the transverse (across-track) velocities v (both obtained with acoustic Doppler
current profilers, ADCP), and the buoyancy b (obtained from towed conductivity—tem-
perature—depth sensors, CTD; available only for the LatMix data):

SH(k) = (u(li®y, STk =(ok)i%),  Sb(k) =(b(k)[*)/N?, (5.1)

where k is the along-track wavenumber, the caret denotes a Fourier transform, and (-) de-
notes the average over transects. More detail on the observations and the computation of
these spectra is provided in the Methods section. Departing from recent literature, we do
not focus solely on spectral slopes, because they do not uniquely determine the dynamics:
different dynamics can produce the same spectral slopes. We instead use power spectra
primarily to diagnose submesoscale energy levels at different times and depths. Together
with the relationships between the spectra of u, v, and b, this allows a more nuanced
assessment of submesoscale dynamics.

5.2.2 Seasonality

The near-surface spectra of kinetic and potential energy,

K(k)=$[S*(k)+S¥(k)],  P(k)=1Sk), (5.2)
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Figure 5.3: (a) Kinetic energy spectrum at 50 m depth for the Oleander winter data. (b) Potential and kinetic
energy spectra at 20 m depth for the LatMix winter experiment. (c) Kinetic energy spectrum at 50 m depth
for the Oleander summer data. (d) Potential and kinetic energy spectra at 20 m depth for the LatMix summer
experiment. The light shadings are 95% confidence intervals. Also shown are Garrett-Munk (GM) model
spectra for internal waves in the seasonal thermocline, estimates for the noise level of the LatMix velocity
data, and reference lines with slopes -2 and 3.
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at 50 m depth for Oleander and 20 m depth for LatMix are shown in Fig. 5.3. The kinetic
energy spectra from Oleander and LatMix have similar shapes, suggesting that the dy-
namics are similar across the different geographical locations. All spectra exhibit marked
differences between summer and winter. While the energy levels at the mesoscale (scales
larger than 100 km) remain fairly constant across seasons, the submesoscale energy lev-
els (scales of order 10 km) undergo a seasonal transition: they are significantly higher in
winter than in summer (Fig. 5.3). This seasonal difference in submesoscale energy lev-
els is reflected in how rapidly the energy falls off with wavenumber in the submesoscale
range. In winter, the spectra are relatively flat and approximately follow a k=2 power law
(Fig. 5.3a,b). In summer, the spectra in the range 20-100 km fall off more rapidly and ap-
proximately follow a k=3 power law (Fig. 5.3c,d); at scales smaller than 20 km, the spectra
flatten out and roughly match the Garrett-Munk (GM) empirical model spectrum of in-
ternal waves (Munk, 1981). Potential and kinetic energy spectra are approximately equal
in the LatMix winter experiment (Fig. 5.3b). In the LatMix summer experiment, the ki-
netic energy spectrum is considerably larger than the potential energy spectrum at scales
larger than 20 km (Fig. 5.3d). At smaller scales, they are roughly equal and consistent
with the GM spectrum for internal waves.

These spectra confirm that submesoscale turbulence is more energetic in winter than
in summer. The seasonal transition in submesoscale potential energy levels is consistent
with the seasonal transition in frontal strength seen in numerical simulations (Fig. 5.2).
In winter, the observed equipartition between kinetic and potential energy, K(k)/P(k) ~ 1,
and the k™2 spectral slopes are likely the result of the turbulent dynamics induced by
mixed layer instabilities and their interaction with the mesoscale straining field, but how
these dynamics shape the spectra is currently not understood. The wintertime spectral
slopes are also consistent with the mesoscale-driven surface frontogenesis mechanism,
but the seasonal transition is not. In summer, the steep energy spectra are consistent with
interior quasi-geostrophic turbulence (Charney, 1971). Eddies generated through baro-
clinic instability in the thermocline transfer very little energy to submesoscales. The ob-
servation that the kinetic energy spectrum is substantially larger than the potential energy
spectrum in this range is also consistent with the ratio K(k)/P(k) ~ 4 predicted by inte-
rior quasi-geostrophic turbulence (Charney, 1971; Chapter 2). The emergence of the GM
spectrum at scales below 20 km confirms that internal waves dominate these scales and
mask an even more dramatic drop-off of geostrophic submesoscale motions in summer,
as pointed out in Chapters 2 and 3.

5.2.3 Wintertime submesoscale flows
We examine the vertical structure of kinetic energy in the LatMix winter experiment,

which provides further evidence for the mixed layer instability mechanism. We use the
LatMix data because the accompanying buoyancy data provide information on the mixed
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Figure 5.4: Vertical structure in the LatMix winter experiment: (a) Kinetic energy spectrum as a function of
depth. The depth of the mixed layer i = 220 m is indicated by the black horizontal line. (b) Kinetic energy
spectrum at a depth of 450 m. The light shadings are 95% confidence intervals. Also shown is the Garrett—
Munk (GM) model spectrum for internal waves in the thermocline, an estimate of the noise level of the
LatMix velocity data, and reference lines with slopes -2 and -3.
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layer depth. It is roughly constant at 220 m across the transects, which facilitates the in-
terpretation of the vertical structure in observed kinetic energy. The submesoscale kinetic
energy is fairly constant throughout the mixed layer at scales larger than 20 km (Fig. 5.4a).
At smaller scales, the energy is slightly enhanced at the surface and at the base of the
mixed layer, as expected from Eady dynamics at scales below the deformation radius. The
spectra uniformly scale like k=2 in the mixed layer. Below the base of the mixed layer, the
energy decays rapidly; the spectra steepen to k=3 in the permanent thermocline at scales
larger than 20 km (Fig. 5.4b). At smaller scales, the spectra in the thermocline follow the
GM model and internal waves mask a steep drop-off. This vertical structure is consistent
with submesoscale turbulence induced by baroclinic instabilities in the mixed layer, but
inconsistent with the mesoscale-driven surface frontogenesis, for which the vertical decay
of submesoscale turbulence would start in the mixed layer (Chapter 2).

The observations further suggest that the energetic submesoscale flows in winter are
to leading order in geostrophic balance, as required for an inverse energy cascade. Hor-
izontally nondivergent, isotropic flows have a distinct signature in the power spectra of
transverse and longitudinal velocities: for a flow with a k™2 kinetic energy spectrum, the
ratio SY(k)/S¥(k) =~ 2 is expected (Charney, 1971; Leith, 1971; Chapters 2 and 3). Error
bars are substantial, but a clear trend across scales is evident, which suggests that the
observed spectra are roughly consistent with this relation. In the Oleander data, where
the large number of transects results in smaller error bars, the relation is roughly sat-
isfied over the entire submesoscale range (Fig. 5.5a). In the LatMix winter experiment,
the relation is roughly satisfied throughout the submesoscale range (Fig. 5.5b) except for
scales smaller than 5 km, where noise may affect the spectra significantly (cf. Fig. 5.3b).
This is consistent with a flow that is to leading order geostrophically balanced. Strongly
ageostrophic dynamics, on the other hand, have a leading-order horizontal divergence
and thus a different SV(k)/S¥(k) ratio. Near-inertial waves forced by strong winter winds
or wind- and buoyancy-driven three-dimensional turbulence can thus be ruled out to
dominate the submesoscale observations in winter.

Calculation of the Rossby and Froude numbers as functions of scale, Ro(k) =
(k3K (k)]V?/f and Fr(k) = [k3P(k)]'/2/f, further suggests that the observed wintertime
submesoscale flows follow quasi-geostrophic dynamics. Quasi-geostrophic dynamics de-
scribe flows with Fr(k) ~ Ro(k) < 1 (e.g. Pedlosky, 1987). For k=2 kinetic energy spectra,
as observed in winter, Ro(k) increases moderately with k, approximately like k!/2. Since
Ro(k) is small in the mesoscale, it remains fairly small throughout the observed submeso-
scale range (Fig. 5.5¢,d). The condition Fr(k) ~ Ro(k) is satisfied because of the approxi-
mate equipartition between kinetic and potential energy (Fig. 5.3b, 5.5d). Extrapolating
Ro(k) and Fr(k) to smaller scales, we expect that they reach order 1 at order 1 km. The
dynamics are thus expected to become strongly ageostrophic—allowing effective trans-
fer of energy to dissipation scales (Molemaker et al., 2005; Capet et al., 2008c)—at scales
smaller than the observed range.
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Figure 5.5: (a) Power spectra of transverse and longitudinal velocities at 50 m depth for the Oleander winter
data. (b) Power spectra of transverse and longitudinal velocities at 20 m depth for the LatMix winter exper-
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20 m depth for the LatMix winter experiment. The light shadings are 95% confidence intervals.
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5.3 Discussion

The near-surface observations are characterized by a pronounced seasonal cycle in ki-
netic and potential energy: submesoscale flows are much more energetic in deep winter
mixed layers than in the seasonal thermocline in summer. In contrast, the mesoscale en-
ergy remains fairly constant throughout the year. The near-surface submesoscale spectral
roll-off changes from a rapid k=2 in summer to a frontal k=2 in winter. In winter, sub-
mesoscale energies are fairly constant with depth throughout the mixed layer and decay
rapidly below its base, transitioning to a k=3 regime in the main thermocline.

We can rationalize these results in terms of quasi-geostrophic turbulence theory. A
very weak forward transfer of energy below the scale of the deep mesoscale instability
prevails in the seasonal thermocline in summer and in the main thermocline through-
out the year. In winter, deep mixed layers allow a secondary baroclinic instability in the
mixed layer that converts potential to kinetic energy in the submesoscale, over a range
of scales around the mixed layer deformation radius between 1-10 km. This injection of
kinetic energy throughout the depth of the mixed layer drives an inverse cascade of ki-
netic energy to larger scales and energizes the entire range between the mesoscale and the
mixed layer deformation radius.

The observations are consistent with realistic high-resolution numerical simulations
(Mensa et al., 2013; Sasaki et al., 2014) and thereby suggest that these simulations capture
the leading-order dynamics of submesoscale turbulence. This consistency further builds
confidence in the instability mechanisms, because in the simulations one can directly
diagnose a seasonal cycle in the release of available potential energy through mixed layer
instabilities and an inverse cascade of kinetic energy thus created (Mensa et al., 2013;
Sasaki et al., 2014). While this inverse cascade is not directly diagnosed from data, two
crucial ingredients are. First, the lack of a spectral peak at the instability scale indicates
that the instability has grown to finite amplitude and become fully turbulent. Second,
the diagnosed horizontal non-divergence indicates that the flow is to leading-order in
geostrophic balance, which is necessary for turbulent scale interactions to preferentially
transfer energy to large scales.

The observed seasonal cycle of submesoscale energy levels, the vertical structure of
the flow, and its horizontal non-divergence in winter are all consistent with the instabil-
ity mechanism. In conjunction with the results of numerical simulations, the observations
therefore strongly favor the hypothesis that the submesoscale is energized through a baro-
clinic instability in the mixed layer. This consistency, of course, does not constitute a proof
of the instability mechanism, and further progress can be made by deriving additional
falsifiable predictions or by obtaining additional observations. But at the moment, the in-
stability mechanism appears to be the only available explanation for the observations on
hand.

Previous studies suggested that mesoscale-driven surface frontogenesis generates the
submesoscale kinetic energy in the upper ocean (Lapeyre and Klein, 2006). This process
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appears to be weak in the western subtropical North Atlantic. In summer, when the mixed
layer instability is not active, the submesoscale spectra roll off like k~3—surface fronto-
genesis, which can occur year-round, would generate steps in the velocity field and thus
produce k=2 spectra. It appears that in this region the summertime flow is dominated by
interior quasi-geostrophic turbulence, even close to the surface.

The mixed layer instability mechanism is likely to dominate the generation of sub-
mesoscale kinetic energy in all parts of the ocean that are characterized by deep mixed
layers. For example, the mechanism appears to be at work in the entire Gulf Stream and
Kuroshio regions in winter, as found in high-resolution numerical simulations (Mensa et
al., 2013; Sasaki et al., 2014). We also expect this mechanism to be at work in parts of
the Southern Ocean, where winter mixed layers can reach as deep as 500 m (Dong et al.,
2008).

Our results further suggest that a strong seasonal cycle in submesoscale energy is
probably characteristic of regions with relatively strong interior potential vorticity gra-
dients reversing sign at depth, like the western subtropical North Atlantic analyzed here
(Tulloch et al., 2011). With such potential vorticity profiles, the mesoscale field is gener-
ated through a Phillips-type baroclinic instability (Phillips, 1954), which energizes low-
mode eddies and transfers little energy to scales smaller than the mesoscale instability
scale. Surface buoyancy gradients are relatively weak, rendering any mesoscale-driven
surface frontogenesis ineffective. In other regions, where surface buoyancy gradients are
larger and deep potential vorticity gradients weaker, Charney-type baroclinic instabil-
ities and mesoscale-driven surface frontogenesis may become a leading-order driver of
submesoscale turbulence in the upper ocean (Roullet et al., 2012).

Submesoscale turbulence is associated with strong flows along steep isopycnals. These
generate large vertical fluxes of physical and chemical tracers (Capet et al., 2008a) and
may impact the exchange of these tracers between the mixed layer and the interior ocean.
The submesoscale enhancement of fluxes of heat and salt has been suggested to affect the
water mass properties and circulation of the permanent thermocline (Lévy et al., 2010).
Furthermore, submesoscale fluxes of nutrients between the nutrient-depleted mixed layer
and the nutrient-rich thermocline are believed to play an important role in maintaining
primary production in subtropical gyres (Klein and Lapeyre, 2009). It remains to be stud-
ied, however, how the seasonality in submesoscale turbulence affects these exchanges.
Stommel (Stommel, 1979) argued that the properties of waters subducted from the mixed
layer into the permanent thermocline are set in winter, when mixed layers are deepest.
Our study has shown that winter is also the time when submesoscale turbulence is most
vigorous—just when Stommel’s demon opens the trapdoor. An impact of submesoscale
turbulence on the physical and chemical properties of interior waters therefore appears
plausible.
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5.A Methods

5.A.1 Numerical simulation

The snapshots of buoyancy gradients shown in Fig. 5.2 are taken from a numerical
simulation of the Gulf Stream region performed with the Regional Ocean Modeling Sys-
tem (Shchepetkin and McWilliams, 2005). This simulation has a horizontal resolution
of 750 m and 50 vertical levels. The model domain spans 1050 km by 900 km, which
provides generous padding to the domain shown in the snapshots. Boundary conditions
are supplied by a lower-resolution simulation that spans the Atlantic basin (Mason et al.,
2010). The simulation is forced by daily winds and diurnally modulated surface fluxes.
The modeling approach is described in detail in Gula et al. (2015).

5.A.2 In-situ observations

The Oleander data were collected in 2005-2013 with a 75 kHz ADCP, averaged over
8-meter depth bins and 4.5-6-minute intervals, which at a ship speed of about 8 ms~!
results in an average spacing of 2.0-2.5 km. Data west of 68°W and north of 36.5°N are
discarded, so the inhomogeneities of the Gulf Stream extension do not affect the results
(Fig. 5.1). Subsequently, transects with fewer than 190 data points are discarded. The
measured velocities are transformed into a coordinate system aligned with the ship track
and interpolated with cubic splines onto a regular grid with a spacing of 2.6 km. After
selecting for the season, a Hann window is applied and the Fourier transforms are aver-
aged over the different transects to form the spectra. The summer spectrum is an average
over 46 transects; the winter spectrum is an average over 11 transects. The spectra are
further averaged over ten wavenumber bins per decade. The spectral amplitudes at the
smallest resolved scales are affected by the averaging and interpolation procedures, but
an assessment of these effects using synthetic signals suggests that the impacts are small
and that they do not affect our conclusions, which depend mostly on larger scales.

A comparison to the Oleander data collected with a 150 kHz ADCP in 1994-2004
reveals that while the two data sets are consistent in summer, the 1994-2004 data set
exhibits less submesoscale energy in winter than the 2005-2013 data set. More accurate
navigational data can be used in the processing of the 2005-2013 data, which makes it
more reliable and leads us to suspect that the submesoscale energy is artificially reduced
in the 1994-2004 data set during winter.

The LatMix velocity data were collected with 75 kHz ADCPs aboard the RV Endeavor
(summer) and RV Atlantis (winter). They are averaged over 8-meter depth bins and 5-
minute intervals, which at a ship speed of about 3 m s™! results in an average spacing
of about 1 km. Four straight large-scale transects are used from the summer experiment,
three from the winter experiment (Fig. 5.1). The winter data were previously analyzed
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by Shcherbina et al. (2013). The measured velocities are transformed into a coordinate
system aligned with the ship track and interpolated onto a regular grid with a spacing of
1 km. The spectra are obtained following the same procedure as described above for the
Oleander data. Estimates of the noise level are calculated as in Shcherbina et al. (2013).

The LatMix buoyancy data were collected using Moving Vessel Profilers (MVP), sam-
pling the water column 5-100 m in summer and 10-250 m in winter. We use three tran-
sects occupied by the RV Endeavor in summer (Fig. 5.1) and three transects occupied by
the RV Atlantis in winter (same as for velocity). Data from the nearly vertical downcasts
are averaged over 1-meter depth bins; data from upcasts are discarded. The data are fur-
ther interpolated onto a regular along-track grid with a spacing of 2 km. The stratification
is obtained by fitting a second-order polynomial to the horizontally averaged buoyancy
profile in the range 10-100 m in summer and 20-200 m in winter. The spectra are ob-
tained following the same procedure as described above for the velocities.
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CHAPTER 6

THE ROLE OF MixED LAYER INSTABILITIES IN
SUBMESOSCALE TURBULENCE



6.1 Introduction

The upper ocean is host to energetic flows at scales smaller than the order 100 km
mesoscale eddies. Sharp surface fronts associated with strong along-front currents are
generated in high-resolution numerical simulations (e.g. Capet et al., 2008a; Klein et al.,
2008) and are observed in the wintertime midlatitude ocean (Shcherbina et al., 2013;
Chapter 5). These submesoscale flows at scales 1-100 km are associated with large vertical
fluxes of both physical and biogeochemical tracers that have been argued to regulate the
oceanic heat and carbon uptake in global warming scenarios (Capet et al., 2008a; Klein
and Lapeyre, 2009; Ferrari, 2011; Lévy et al., 2012; Mahadevan, 2014). Current global
ocean models do not resolve submesoscale flows, so these fluxes must be represented by
parameterizations that should be based on physical understanding.

Despite the attention received by submesoscale flows in both the theoretical and ob-
servational oceanographic communities, the dynamics that generate them remain a topic
of debate. Two mechanisms have been proposed: mesoscale-driven surface frontogene-
sis (Lapeyre and Klein, 2006; Roullet et al., 2012) and baroclinic mixed layer instabili-
ties (Boccaletti et al., 2007). It is important to understand the differences between these
two mechanisms, because they produce—as we shall see—distinct submesoscale flow
characteristics and vertical fluxes.

The essential physics of mesoscale-driven surface frontogenesis can be understood
with quasi-geostrophic (QG) dynamics (Stone, 1966a). A mesoscale strain field sharpens
lateral buoyancy gradients at the surface more effectively than in the interior of the ocean.
An ageostrophic circulation develops in response to the increasing lateral buoyancy gra-
dient, as described by the omega equation (e.g. Hoskins et al., 1978). In the interior, this
circulation acts to weaken the lateral buoyancy gradient: light water downwells on the
dense side and dense water upwells on the light side of the gradient. At the surface, how-
ever, the vertical velocity must vanish and the ageostrophic circulation cannot counteract
the increase in lateral buoyancy gradient—the mesoscale strain field is left unopposed to
create strong submesoscale surface fronts.

Mixed layer instabilities, on the other hand, can energize submesoscale flows by re-
leasing available potential energy stored in large- and mesoscale buoyancy gradients in
the surface mixed layer. The weak stratification in deep wintertime mixed layers allows
baroclinically unstable modes to rapidly amplify (Haine and Marshall, 1998). Much like
deep mesoscale modes in the ocean interior (e.g. Gill et al., 1974), these mixed layer modes
slide dense water under light water, but their horizontal scale is 1-10 km and they grow
on time scales of order 1 day (Boccaletti et al., 2007).

The presence of a seasonal cycle in submesoscale turbulence suggests that baroclinic
mixed layer instabilities are an important aspect of upper-ocean dynamics. Both model-
ing (Mensa et al., 2013; Sasaki et al., 2014) and observations (Chapter 5) show that sub-
mesoscale turbulence is energized in winter and suppressed in summer. Mixed layer in-
stabilities are expected to undergo a strong seasonal cycle, following the seasonal cycle of
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the mixed layer depth and the associated mixed layer potential energy. Mesoscale-driven
surface frontogenesis, on the other hand, is not expected to vary seasonally, because meso-
scale eddies do not undergo a strong seasonal cycle (cf. Qiu, 1999; Qiu and Chen, 2004).
A full understanding of how submesoscale turbulence is energized by baroclinic mixed
layer instabilities, however, is not as well established as that of mesoscale-driven surface
frontogenesis.

The simplest model capturing the essence of mesoscale-driven surface frontogenesis
is the surface QG model (Blumen, 1978; Held et al., 1995). It assumes an infinitely deep
ocean with constant stratification and vanishing interior QG potential vorticity (PV),

f? 3'#)

mg :0; (6.1)

J
_ 2 9
q=V ‘“az(

where g is the PV, i is the geostrophic streamfunction, f is the (constant) Coriolis fre-
quency, and N the buoyancy frequency. The streamfunction is related to the horizontal
flow by u = (-dy/dy,dp/dx). The evolution of the flow is completely determined by the
lateral advection of buoyancy at the surface, which represents the no-normal-flow bound-
ary condition (i.e. the vertical advection of the background stratification vanishes),

db
5 P b) =0, (6.2)
where b = fdi/dz is buoyancy and
dp db Jdy db
J(r,b,b)=—l’b———l’b—— (6.3)

dx dy dy dx

is the Jacobian operator. The surface buoyancy supplies the boundary condition for the
elliptic problem (6.1). Straining by mesoscale eddies creates sharp buoyancy gradients as-
sociated with strong flows at the surface. Filamentary instabilities eventually lead to fully
turbulent dynamics (Held et al., 1995). Kolmogorov-like dimensional arguments (Kol-
mogorov, 1941) predict that the fully turbulent surface kinetic and potential energy spec-
tra scale like Ky, = Py, ~ ky,~>’3 in a submesoscale inertial range in which surface potential
energy b?/N? is cascaded to small scales (Blumen, 1978)—ky, is the horizontal wavenum-
ber. This prediction implies that the gradients of velocity and buoyancy (i.e. fronts), whose
spectra scale like kthkh and kh2th, are stronger at small submesoscales (large k) than
at large submesoscales (small ky,). The forward cascade of surface potential energy oc-
curs in conjunction with an inverse cascade of surface kinetic energy fed by the release of
potential energy through slumping fronts (Capet et al., 2008e). The submesoscale energy
generated by surface QG turbulence is surface-trapped: modes decay exponentially in the
vertical, with small-scale modes decaying more rapidly than large-scale modes (e.g. Scott,
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2006).1

If non-QG dynamics are taken into account, ageostrophic advection of buoyancy fur-
ther accelerates frontogenesis and potentially leads to frontal collapse, the formation of
true discontinuities in buoyancy (Hoskins and Bretherton, 1972). In this case, the sub-
mesoscale energy spectrum is modified to Ex, ~ k, ™2 (Boyd, 1992) and the decay in the
vertical becomes less rapid (Badin, 2012). An additional modification of the dynamics by
non-QG effects is that the release of potential energy leads to near-surface restratification
(Hakim et al., 2002; Lapeyre et al., 2006). This effect is neglected in QG dynamics, where
stratification is fixed. Non-QG surface frontogenesis also induces a finite forward flux of
kinetic from small submesoscales (order 1 km) to dissipation scales, which is not present
in QG dynamics (Capet et al., 2008b,a; Klein et al., 2008; Molemaker et al., 2010). De-
spite these omissions, surface QG turbulence predicts many of the characteristics found
in primitive equation simulations of mesoscale-driven surface frontogenesis (e.g. Klein et
al., 2008). Our working hypothesis is thus that surface QG turbulence faithfully captures
the leading-order dynamics of the balanced flow in mesoscale-driven surface frontogene-
sis.

The upper ocean does not have a nearly constant PV, however, contrary to what is
assumed in surface QG turbulence. Instead, a weakly stratified mixed layer typically
overlies a strongly stratified thermocline (Fig. 6.1). There is a sharp step-like increase
in stratification at the base of the mixed layer, corresponding to a step-like increase in
background PV. This PV jump is dynamically important, because it supports edge waves
that have the potential to interact with surface edge waves and thus produce a baroclinic
instability in the mixed layer (e.g. Haine and Marshall, 1998). This linear instability is to
leading order captured by an Eady model with a rigid interface at the base of the mixed
layer (Eady, 1949). Corrections due to ageostrophic effects and a moveable interface at
the mixed layer base can be computed (Stone, 1966b; Boccaletti et al., 2007), but for typi-
cal wintertime conditions the instability scale and growth rate are qualitatively captured
by Eady’s QG model. When baroclinic mixed layer instabilities grow to finite amplitude,
turbulent scale interactions distribute energy across scales. Because of the rotational con-
straint, they transfer energy preferentially to larger scales. These nonlinear dynamics have
been studied in idealized mixed layer models, where baroclinic mixed layer instabilities
grow on a prescribed front (e.g. Boccaletti et al., 2007; Fox-Kemper et al., 2008).

In the real ocean, baroclinic mixed layer instabilities occur in the presence of an en-
ergetic mesoscale eddy field, so mixed layer modes can grow on mesoscale buoyancy gra-
dients and can be sheared by mesoscale strain fields. Realistic submesoscale-permitting
models capture these dynamics (e.g. Mensa et al., 2013; Sasaki et al., 2014), but the mod-
els’ complexity makes it hard to distill the essence of the dynamics and even these simula-

"Heuristic extensions of surface QG ideas have been developed to infer interior flows from surface proper-
ties (Lapeyre and Klein, 2006). These extensions are diagnostic in nature and do not attempt to describe the
evolution of the flow or make predictions for submesoscale energy levels. We therefore limit our discussion
of surface QG dynamics to the case with zero interior PV.
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Figure 6.1: Potential temperature section from the wintertime eastern subtropical North Pacific. The data
were obtained using a conductivity-temperature-depth sensor towed on a sawtooth profile along 140°W as
part of the Spice experiment on Jan. 28 to Feb. 2, 1997. For more information on the data, see Ferrari and
Rudnick (2000).

tions only marginally resolve many submesoscale phenomena. In this chapter, we explore
submesoscale dynamics by formulating a QG model that allows both mixed layer and
thermocline instabilities. This simple model of submesoscale turbulence energized by
baroclinic mixed layer instabilities captures salient features of wintertime observations
of submesoscale flows. If the mixed layer in this model is eliminated, the submesoscale
dynamics dynamics revert to surface QG turbulence, which allows a straightforward com-
parison of the two mechanisms that can energize submesoscale turbulence.

We use QG scaling to formulate the dynamics of the model, which requires small
Rossby and Froude numbers (e.g. Pedlosky, 1987). Typical mesoscale Rossby and Froude
numbers are on the order 0.1 and increase slowly with wavenumber if the submesoscales
are energetic, reaching order 1 at scales of order 1 km (Chapter 5). While the QG approx-
imation does not apply anymore at these small scales, the QG system can be expected to
capture the leading-order dynamics over the 10-100 km range.

A major limitation of QG dynamics in representing mixed layer instabilities is that
QG scaling does not allow for restratification. The weak mixed layer stratification will be
fixed in our QG model, whereas in reality there is a competition between restratification
and atmospherically forced mixed layer turbulence, which tends to keep the mixed layer
deep and unstratified. The assumption is that the slower balanced dynamics described
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Figure 6.2: Schematic of the model setup in a vertical-horizontal plane. There are rigid surfaces at z= 0 and
z = —H and a deformable interface at the mean depth z = —h, separating layers of constant stratifications, Np
in the mixed layer and Ny in the thermocline.

by the QG model develop on top of this background state, which is maintained by fast
small-scale turbulence. A full description of mixed layer dynamics will eventually need
to consider the interplay of the fast and slow dynamics, a topic we hope to address in a
future study (cf. Chapter 7; Hamlington et al., 2014). We take up the discussion of how
other non-QG effects may alter the dynamics toward the end of the chapter.

As described above, our inquiry into the dynamics of a weakly stratified mixed layer
coupled to a strongly stratified thermocline is motivated by the study of the submesoscale
upper ocean. The model we present and the dynamics we describe, however, have rele-
vance for the atmosphere as well, where a weakly stratified troposphere is capped by a
strongly stratified stratosphere (e.g. Eady, 1949). The dynamics may also apply to the at-
mospheres of gas giants (e.g. Seiff et al., 1998) or other geophysical fluids that have layers
of different stratification.

We formulate the model and give some physical intuition for its behavior in Sec-
tion 6.2. In Section 6.3, we investigate the linear dynamics of the model to understand
its stability properties. These linear dynamics are suggestive of the fully nonlinear turbu-
lent dynamics that we address in Section 6.4, where we analyze the energy spectra and
fluxes for cases with and without baroclinic mixed layer instabilities. We compare the
results to observations in Section 6.5 and conclude in Section 6.6.

6.2 Model formulation

Consider two layers with constant stratification and constant mean shear on an f-
plane, so that each layer has constant PV (Fig. 6.2). The upper layer represents the mixed
layer, which has a mean depth h, stratification N, and mean zonal shear Ay, that is in
thermal wind balance with the mean meridional buoyancy gradient —fAy,. The lower
layer represents the thermocline and has stratification N; and mean zonal shear A, that
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is in thermal wind balance with the mean meridional buoyancy gradient —f A;. The total
depth is H. The layers are coupled through a deformable interface; flat rigid boundaries
are assumed at both the surface and the bottom. The presence of a rigid bottom at the base
of the thermocline is not realistic, but we will show that the bottom layer still captures
the key thermocline physics relevant to our study. A weakly stratified abyssal layer could
be included but is omitted here for simplicity, because it does not significantly affect the
surface submesoscale dynamics of interest here. The approximation that the stratification
is discontinuous at the base of the mixed layer is appropriate at horizontal scales larger
than the deformation radius Nd/f associated with the transition depth d between the
mixed layer and the thermocline (Smith and Bernard, 2013). The transition at the base
of the mixed layer is typically quite sharp (Fig. 6.1), so this deformation radius is much
smaller than the submesoscales we are interested in here.

The assumption of a uniform PV within the two layers greatly simplifies the dynamics.
PV conservation within the layers is trivial, as in the classic Eady (1949) problem. The flow
in the interior of the layers is obtained by solving (6.1), with the boundary conditions
supplied by the distribution of buoyancy at the surface and bottom and by matching
conditions at the interface between the mixed layer and the thermocline.

In QG, the buoyancy anomaly b is governed by the horizontal advection of buoyancy
anomalies by the geostrophic flow and by the vertical advection of the background buoy-
ancy field,

db

2 _
5 +J(,b)+ wN? = 0. (6.4)

At the surface and bottom, where the vertical velocity w vanishes, buoyancy anomalies are
conserved under horizontal advection and (6.4) reduces to (6.2). To ensure that pressure
is continuous at the interface, we require that the streamfunction ¥ is continuous. Mass
conservation requires that the vertical velocity w also is continuous. These conditions are
applied at z = —h, consistent with QG scaling. The conservation equations for buoyancy
just above the interface at z = —h,

db* d
e +J(, bT)+wN2 =0, bt = fa—f(—hw, (6.5)

and just below the interface,

db- d
e +J(1,b7)+wN2 =0, b= fa—'i’(—h-), (6.6)

can then be combined to eliminate w, where 1p; denotes the streamfunction at z = —h. This
gives a conservation law for the quantity

bt b~
o -1(xg5) 7
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which is simply advected by the horizontal flow at the interface,

d0
jﬁl+ymph91):o. (6.8)

It should be noted that this does not ensure buoyancy to be continuous at z = —h. Instead,
there is an implied interface displacement and buoyancy is continuous across the dis-
placed interface. The displacement is small and, consistent with QG scaling, the matching
conditions are applied at z = —h.

The quantity 6 is nothing but the integrated PV associated with the interface dis-
placement, as can be verified by integrating

2 d(b
q=Y ’P+f$(m) (6.9)
across the interface. (The relative vorticity term vanishes because ¥ is continuous across
the interface.) While there are no PV anomalies within the two layers, the displacement
of the interface between the layers induces a PV anomaly that, according to (6.8) and con-
sistent with QG dynamics, is advected by the geostrophic flow at z = —h. The conservation
equation (6.8) has been used to study the dynamics of the tropopause, which is similarly
an interface between the weakly stratified fluid in the troposphere and the strongly strat-
ified fluid in the stratosphere (Eady, 1949; Rivest et al., 1992; Juckes, 1994; Held et al.,
1995).

The two-layer model can equivalently be interpreted as consisting of three PV sheets:

q=0¢0(z)+618(z+h)+60,0(z+ H), (6.10)

where 8 is Dirac’s delta function and 6y = —fb/N2 atz=0, 0, = fb/N2 at z = —H, and 6,
at z = —h is given in (6.7). PV is advected by the geostrophic flow, so

90
5; H;0))=0, (6.11)
where j = 0,1,2and g; is the streamfunction at the level corresponding to 6;. This formu-
lation is simply an extension of Bretherton’s (1966) representation of boundary conditions
to include an interior PV sheet due to the deflection of an interface between layers of dif-
ferent stratification.

Note that even though 6, is only advected by the geostrophic flow, this does not imply
that the vertical velocity vanishes at the interface, much like the fact that interior PV
anomalies in the QG system are only advected by the geostrophic flow does not imply
that the vertical velocity vanishes. The vertical velocity is implicit in the dynamics and
can be solved for using the omega equation (e.g. Hoskins et al., 1978).

To complete the dynamics, we require an inversion relation that allows us to obtain
the streamfunctions i; from the conserved quantities 8;. For simplicity, we consider a
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Figure 6.3: Vertical structure of streamfunction amplitude associated with anomalies of @ (surface), 0 (in-
terface), and 0, (bottom). Shown are the vertical profiles for 8; anomalies with different horizontal wave-
numbers k;, = 27t/A. The wavelength A is given in the respective panel title.

doubly-periodic domain and express the inversion relation as a linear equation for Fourier
coefficients of the variables 6; and 1;:

O=Lp, 6=(00,0,6,)", ¥=oP2)" (6.12)

where Fourier transforms are denoted by carets. The matrix L, which depends on the
zonal and meridional wavenumbers k and I, is determined by solving

[ frep

—kih+r—[I==L]|=0 6.13

h ¥ dz (N2 dz ) ( )

in each layer, where ky, = (k?+1?)'/2 is the magnitude of the horizontal wavenumber vector.

The first column of L is determined by setting ¢ = (1,0,0)", solving (6.13) for i)(z), and

subsequently calculating 6y, 6, and 6,. Repeating for #=(0,1,0)Tand 9 = (0,0,1 )T gives

" coth yip, csch py,

=y 0
esch i, coth p ™ coth csch
= Hm m M SCAL Hi
L_fkh N TN, N N P (6.14)
0 csch _ coth y

t t

where py, = Npkyh/f and py = Nyk(H—h)/f are nondimensional wavenumbers. This 3x3
matrix can easily be inverted.

This model can be generalized to an arbitrary number of layers of constant stratifi-
cation and shear, which may be a useful way to approximate more realistic stratification
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and shear profiles. This is discussed in Appendix 6.A. The model can also be extended
to include a density jump at the interface, as is sometimes present at the base of the
mixed layer. The formulation is given in Appendix 6.B. Here we consider only the case
of a continuous density profile, which is simpler and captures the essential physics of the
submesoscale ocean.

To build intuition for the dynamics of the model, we illustrate the vertical structure of
the flow associated with anomalies of 91 at the surface, the interface, and the bottom. Here
and throughout the chapter, we use the parameters given in Table 6.1, which are typical
of the wintertime midlatitude ocean.? At the largest scales, for 6; anomalies with wave-
length A =1000 km or k;, < f/N;H, the flow is nearly depth-independent, irrespective of
which level the anomaly is at (Fig. 6.3a). Around the thermocline deformation radius, at
A =100 km or ky ~ f/N{H < f/Nyh, flow anomalies significantly decay in the thermo-
cline, while the flow is nearly uniform across the mixed layer (Fig. 6.3b). Surface (6,) and
interface (6;) anomalies still induce significant flow at the bottom and vice versa. Around
the mixed layer deformation radius, at A = 10 km or ky ~ f/Np,h > f/NH, surface (6;)
and interface (6) anomalies induce very little flow at the bottom and vice versa (Fig. 6.3c).
The flow now varies significantly across the mixed layer, but surface anomalies (8) still
induce significant flow at the interface and vice versa. At A = 1 km or ky, > f/Nh, all
levels are decoupled: 6; anomalies on any one of the levels induce very little flow at the
other levels (Fig. 6.3d).

The dependence of the vertical flow structure on the horizontal scale of the anomalies
illuminates the qualitative dynamics of the model. At the largest scales, the flow is essen-
tially depth-independent and follows two-dimensional dynamics. At scales k, ~ f/N;H,
around the thermocline deformation radius, surface or interface anomalies can interact
with bottom anomalies, allowing phase locking and a thermocline instability. At scales
ky, ~ f/Nyh, around the mixed layer deformation radius, surface and interface anomalies
can interact, enabling an instability in the mixed layer. Bottom anomalies, on the other
hand, are decoupled, so there is no thermocline instability at these scales. At the smallest
scales, all three levels are independent and follow surface QG dynamics.

2The values listed imply a mixed layer Richardson number of N&/AZ = 400, which is larger than the
order-1 Richardson numbers typically considered (e.g. Boccaletti et al., 2007). The relatively large Richardson
number is the result of a relatively weak shear, which is chosen such that realistic energy levels are reached
in the nonlinear simulations described below. QG dynamics overestimate the baroclinic growth rate for small
Richardson numbers (Stone, 1966b), which would result in unrealistically strong mixed layer instabilities if
a larger shear was chosen. It should also be noted that the leading-order QG dynamics can be rescaled to
different Richardson numbers.
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Figure 6.4: Mean buoyancy structure in the meridional-vertical plane for (a) the full model and (b) the
thermocline-only model. The contours show isopycnals; light shading indicates more buoyant fluid.

6.3 Linear stability analysis

We now analyze the linear stability of the model formulated above. This linear anal-
ysis reveals the nature of the instabilities that fuel the nonlinear turbulence, which we
describe in the next section.

Blumen (1979) analyzed short-wave instabilities in the atmosphere using a model con-
sisting of two coupled constant-PV layers. He performed a linear stability analysis equiv-
alent to what will be presented here. For completeness, we repeat the analysis in the con-
text of upper ocean dynamics to emphasize the aspects most relevant for the nonlinear
regime.

We consider the linear stability of normal-mode perturbations to a zonal flow with
constant vertical shear A, in the mixed layer and A; in the thermocline (Fig. 6.4). The
linearized conservation equation for the perturbations from this mean state, written in
Fourier space, is

?ﬂkuéwkrzp:o, (6.15)

where the mean zonal flows and mean meridional PV gradients at the respective levels
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Table 6.1: Parameters used throughout this chapter unless oth-
erwise noted. These are typical of the wintertime midlatitude

ocean.

Parameter Symbol Value
Mixed layer depth h 100 m
Total depth H 500 m
Mixed layer stratification Nn 2x1073 57!
Thermocline stratification N 8x103s!
Mixed layer shear Am 1074571
Thermocline shear Aq 1074571
Coriolis frequency f 1074571
Domain size a 500 km
Numerical resolution Ax ~1km

are represented by the diagonal elements of the matrices U and I":
U = diag(0,~Amh, ~Amh — A(H - ), (6.16)
I =diag(f2Am/Na, —f2Am/NZ + f2A/NZ, —f2A/N?). (6.17)

The system is Galilean invariant, so we are free to set the mean zonal flow to zero at the

surface. Using the inversion relation (6.12), we can replace the § and obtain an equation
for the O coefficients only,
%§+ikué+ier‘lé =0. (6.18)

Substituting & = B¢'“!, with complex frequency w, turns this equation for 8 into the eigen-
value problem

(U+TL ™8 =B, (6.19)
where the eigenvalue is ¢ = w/k. The real part of c is the zonal phase speed; the imaginary
part gives the growth rate 0 = kImec.

Being a third-order system, (6.19) can be solved analytically, but the solutions are
rather complicated and give little useful insight. We instead explore the characteristics of
the solutions numerically for the set of parameters given in Table 6.1. We then explain the
stability properties and parameter dependencies by considering special limit cases.

6.3.1 Full model

We start by considering the growth rate o as a function of horizontal wavenumber.
The eigenvalue problem (6.19) only depends on ki, = (k? +1?)1/2, so the eigenvalue c is a
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Figure 6.5: Linear stability analysis of the model equations. (a) growth rates and (d) phase speeds of the full model, (b) growth rates and
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function of ky, only. For a given ky, the maximum growth rate ¢ = kIm ¢ hence occurs at
I = 0. We therefore consider disturbances with no meridional dependence only.

Plotting the growth rate ¢ as a function of zonal wavenumber k reveals that there
are two lobes of instability: one at the mesoscale and one at the submesoscale (Fig. 6.5a,
branches ‘b’ and ‘e’). The maximum growth rates occur at zonal wavelengths of about
160 km (mesoscale) and 9 km (submesoscale). The two lobes can overlap, for example
if the mixed layer is deeper or if a density jump at the base of the mixed layer is in-
cluded (not shown). The submesoscale instability has a peak growth rate much larger
than the mesoscale instability. The growth rates are similar to what Boccaletti et al. (2007)
found in a linear QG stability analysis of a realistic mean state of the wintertime eastern
subtropical North Pacific. The magnitudes are slightly smaller here, because the shear is
slightly weaker. But the similarity of the instabilities supports that this model, despite
being highly idealized, captures the essential physics of mesoscale and submesoscale in-
stabilities. Whether it also captures the essential physics in the nonlinear regime will be
discussed in Sections 6.4-6.6.

The mesoscale and submesoscale instabilities have very different vertical structures,
as also noted by Boccaletti et al. (2007). The perturbation streamfunctions—derived from
the eigenvectors of (6.19)—show that the fastest-growing mesoscale mode is deep and
spans the entire water column (Fig. 6.6a), whereas the fastest-growing submesoscale mode
is almost completely confined to the mixed layer, with only weak penetration into the
thermocline below 100 m depth (Fig. 6.6b). Both modes exhibit the familiar pattern of
baroclinically unstable modes with streamfunction perturbations tilted into the shear,
which is necessary to extract potential energy from the mean flow.

Further insight into the dynamics of the model can be gained by considering the prop-
agation speeds of the linear modes in conjunction with their growth rates (Fig. 6.5a,d).
Being a third-order system, the model has three normal modes at each wavenumber. In
both lobes of instability, the growing modes are conjugate to decaying modes, which have
the same phase speeds. This is the familiar phase locking of counter-propagating waves
in baroclinic instability (branches ‘b’ and ‘e’). In these unstable wavenumber ranges, there
is an additional neutral mode (branches ‘a’ and ‘d’). At wavenumbers with no instability,
all three modes have distinct phase speeds—no phase locking occurs. We will discuss the
dynamics of the various branches by considering approximations to the full model.

6.3.2 Thermocline only

We start by examining the deep mesoscale instability of the full model. As discussed
in the model formulation (Section 6.2), the mesoscale modes are deep and only slightly
modified by the presence of the mixed layer. We can understand the mesoscale insta-
bility by eliminating the mixed layer altogether and consider a thermocline-only model
(Fig. 6.4b). This amounts to setting h = 0 (or N, = N; and A, = A;) in the full model.
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Figure 6.6: Perturbation streamfunction of the most unstable (a) mesoscale and (b) submesoscale modes of
the full model. Red and blue shading represents positive and negative values, respectively.

In this limit, the model reduces to one layer with the dynamics controlled by buoyancy
advection at the surface and bottom only—the classic Eady (1949) model. The inversion
matrix (6.14) reduces to

coth p, csch p,
- ] t ]
L= fkh[ csch _cm\'\ Hy ]' (6.20)
t ]it
and the matrices representing the mean flow are
U = diag(0,-AH), (6.21)
I =diag(f>A/NZ,—f2A/NE) (6.22)

Solving the eigenvalue problem (6.19) with these matrices, we find the eigenvalues

1

]12 2
(ﬂtcothm— _Tt) , (6.23)

AH iAH
c=———=

2 Hm

where p, = Niky H/f is the nondimensional wavenumber (Eady, 1949).

The solution (6.23) shows that this thermocline-only model has a baroclinic insta-
bility near the thermocline deformation radius NyH/f. The maximum growth rate o =
0.31fA/N; occurs at gy = 1.6 and | = 0, which corresponds to a zonal wavelength A =
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3.9N{H/f. The growth curve for this thermocline-only model approximates the meso-
scale lobe of the full model very well (Fig. 6.5b). The short-wave cutoff in the Eady model
at A = 2.6 N H/f nearly coincides with the short-wave cutoff of the mesoscale instability in
the full model. The phase speed of the phase-locked waves —A{H/2 very nearly matches
the phase speed of the unstable mesoscale mode of the full model (Fig. 6.5e). The split
at the short-wave cutoff into surface and bottom modes also features in the full model.
In the thermocline-only model, these surface and bottom modes are very nearly Eady
edge waves that do not sense the other boundary. The bottom mode of the thermocline-
only model very nearly matches that of the full model (branch ‘d’). The surface mode
of the thermocline-only model traces out branch ‘c’ of the full model, but then the full
model transitions to dynamics associated with the mixed layer that are not present in the
thermocline-only model.

This comparison shows that the mesoscale instability of the full model very nearly fol-
lows Eady dynamics. The presence of the mixed layer only modifies the characteristics of
the instability slightly. At submesoscales, on the other hand, the thermocline-only model
has surface QG dynamics, as opposed to the mixed layer dynamics of the full model.

6.3.3 Mixed layer only

Turning our attention to the submesoscale instability, we note that the submesoscale
instability peaks around the deformation radius of the mixed layer N, h/f. Based on the
discussion in the model formulation (Section 6.2) and the vertical structure of this insta-
bility (Fig. 6.6b), we anticipate that this instability arises from the interaction between
anomalies at the surface and at the interface between mixed layer and thermocline.

In a first attempt to isolate the submesoscale instability, we disregard the possibility
that surface and interface anomalies induce flow in the thermocline and assume a rigid
bottom at the base of the mixed layer. This reduces the full model to an Eady model
for the mixed layer, which is the limit of infinite thermocline stratification. This Eady
model reasonably approximates the location and magnitude of the peak growth rate with
A =39N h/f =8 km and o = 0.31 fA/Ny, = 0.13 day™!. The Eady model captures the
short-wave cutoff of the full model, but misses the long-wave cutoff. This suggests that the
fastest-growing mode approximately follows Eady dynamics as if the thermocline acted
like a rigid bottom, but also that larger-scale modes are significantly modified by reaching
into the thermocline.

All features of the submesoscale instability are captured if flow in the thermocline is
allowed. To still isolate the submesoscale instability, we consider again the layered model
but let the thermocline be infinitely deep. That eliminates bottom edge waves, so no meso-
scale instability occurs. Eady (1949) considered the upside-down atmospheric analogue
to this system, relaxing the assumption that a rigid lid is placed at the tropopause.
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Our system with no bottom again reduces to two variables; the inversion matrix is

coth p csch piy,
L= fky _CE;T: cothpm 1 (6.24)
Nm " N. N
and the mean flow is represented by
U= diag(o,—Amh), (6.25)
[ =diag(f>Am/Ng, —f*An/Np + f2 AN ). (6.26)

In the case A = A, = Ay, the solution to the eigenvalue problem (6.19) is

Ah(1 a)+i_1\_l_z[(l—a2)(ym—tanh;4m) 1 B

il | nbpmra g (627)

where a = N,/N; (Eady, 1949; Blumen, 1979). This converges to the classic Eady solution
if @ < 1 and a < pp,, which is equivalent to N; > Ny, and ky, > f/N;h. This shows that
large thermocline stratification acts like a rigid bottom, but only for scales that are not too
large, as alluded to above. Modes of large horizontal scale penetrate into the thermocline
and their dynamics are altered.

The growth rates and phase speeds of this reduced model very nearly match the
growth rates and phase speeds of the full model at scales smaller than about 100 km
(Fig. 6.5¢ and 6.5f). This model now captures the long-wave cutoff of the submesoscale
instability. At large scales, where p,, < a and pp, << 1 or equivalently ky << f/N;h and
ky, < f/Nph, the dynamics split into modes that are barotropic and baroclinic in the
mixed layer. The barotropic mode behaves like a surface edge wave, which has a phase
speed —fA/Niky and does not sense the mixed layer (Fig. 6.5f). The baroclinic mode is
baroclinic in the mixed layer and remains shallow for large scales—its critical level is the
base of the mixed layer and its phase speed is —~Ah. The vastly different phase speeds of
these two modes prevent phase-locking, so no instability occurs at large scales. This sta-
bilization is analogous to that by the g-effect (Phillips, 1954; Lindzen, 1994; Vallis, 2006).
Note that no tilt in the interface is required for this long-wave cutoff (cf. Boccaletti et al.,
2007). For the unstable modes, the reduced model with no bottom also captures the deep-
ening of the critical level as the scale gets larger, —~Ah(1 + f/Nikph)/2, which is due to the
increasing penetration of the unstable mode into the thermocline.

The location of the long-wave cutoff in this constant-shear case depends on the ra-
tio Np/N;. In the more general case Ay, # Ay, it also depends on the ratio A,/A;. No
long-wave cutoff occurs if A; = 0, as found by Rivest et al. (1992), who considered the
atmospheric case with no shear in the stratosphere. There is also no long-wave cutoff if
N,,/N; — 0, which is the Eady limit. The instability itself requires a reversal of the PV
gradient, so the condition for instability is Ap,/N2 > A;/N?Z. This condition is typically
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satisfied in the ocean, because the thermocline stratification is much larger than the mixed
layer stratification and horizontal buoyancy gradients are typically of the same order in
the mixed layer as in the thermocline, if not larger.

6.3.4 Summary

We are now in a position to understand all branches in the phase speed diagram of
the full model. Branch ‘a’ is a mode that is baroclinic in the mixed layer and does not
penetrate much into the thermocline. It does not sense the bottom. Branch ‘by’ is the
unstable branch corresponding to the Eady-like thermocline instability; branch ‘b,’ is the
conjugate decaying branch. Branch ‘c’ is a mode that is nearly barotropic in the mixed
layer and behaves like a surface edge wave in the thermocline. It does not interact much
with the bottom. Branch ‘d’ is a bottom edge wave that is independent of the surface and
interface. Branch ‘e;’ is the unstable branch corresponding to the mixed layer instability;
branch ’e,’ is the conjugate decaying branch. The instability is significantly modified by
the modes’ penetration into the thermocline, but the size and growth rate of the most
unstable mode still scale with the mixed layer deformation radius and the Eady growth
rate. Branches ‘f” and ‘g’ are edge waves propagating on the surface and the interface that
do not interact with any of the other edge waves.

6.4 Nonlinear dynamics

We now turn to the nonlinear dynamics that arise when perturbations are amplified
by the instabilities and grow to finite amplitude. We solve numerically the full nonlinear
equations

0  d6 _Jdp o2 on
E‘FU&‘F'-—&?'FI(‘(IJ,G)——TV 6-vV-"o, (628)
where the Jacobian operator is understood to act element-wise:
J(,6) = (0, 00). J(11,61).] (12, 67))". (6.29)

These are the evolution equations for perturbations from the prescribed mean zonal flow,
which appears in form of the diagonal matrices U and I'. We consider flows that are dou-
bly periodic in the perturbations, so no modification of the prescribed mean can occur.
We introduce hypoviscosity with coefficient 7, which provides a drag to remove energy
from large scales, and hyperviscosity with coefficient v and order n, which helps ensure
numerical stability and absorbs enstrophy at small scales. Hypoviscosity is a convenient
but somewhat unphysical choice. We introduce it to halt the inverse cascade and allow for
mesoscale equilibration. Hypoviscosity appears in the dynamical equations for the con-
served quantities at the surface, interface, and bottom, but it can be thought of as acting

122



throughout the layers. If applied to buoyancy and momentum, it does not affect PV and
PV conservation within the layers remains trivial. Linear drag, which may appear as an
obvious choice, cannot prevent an inverse cascade to the domain scale without signifi-
cantly damping the instabilities.

We integrate these equations on a 500 km x 500 km domain using a fully dealiased
pseudo-spectral code with a resolution 512 x512. The time derivatives are discretized us-
ing a forth-order Runge-Kutta scheme. The hypoviscosity coefficient is r = 10716 m=2 s71;
the hyperviscosity is of order n = 10 and the coefficient is v = 2.5 x 1046 m?? s~1. All cal-
culations are initialized with white noise of small amplitude in 6;.

Before considering the combined effect of mesoscale and mixed layer instabilities, we
first consider them separately. We start with the thermocline-only model, which allows
only the mesoscale thermocline instability while submesoscale flows follow surface QG
dynamics. We subsequently contrast this case with the mixed-layer-only model, which
allows only the submesoscale mixed layer instability. We finally consider the full model,
in which both instabilities occur.

6.4.1 Thermocline only

We start by studying surface QG turbulence generated by mesoscale eddies, one of the
proposed mechanisms to energize submesoscale flows. Surface QG flows cannot them-
selves extract energy from the mean flow, so they must be forced at the mesoscale. In-
stead of prescribing external forcing (e.g. Pierrehumbert et al., 1994; Scott, 2006), we use
the thermocline-only Eady model to generate mesoscale eddies that in turn generate the
submesoscale flows. As we saw in the linear stability analysis, the dynamics of surface
buoyancy anomalies in this model decouple from the bottom at scales smaller than the
thermocline deformation radius, so flows very nearly follow surface QG dynamics at the
submesoscales, i.e. the scales smaller than the thermocline deformation radius. The meso-
scale instability is an obviously crude representation of the real mesoscale instability, with
no interior PV gradients and the presence of an artificial rigid interface at the base of the
thermocline. But the instability does generate mesoscale eddies of roughly the right scale,
which is sufficient to drive the submesoscale surface QG flows (cf. Roullet et al., 2012).

Since the dissipative terms are weak in the linear regime, the instability grows until it
reaches finite amplitude, when the nonlinear terms become important. Secondary insta-
bilities set in and the flow quickly evolves into a fully turbulent regime. The perturbations
grow in scale until they reach a scale where hypoviscosity is significant. Thereby, the flow
comes into statistical equilibrium, which is the time period considered in what follows.

A snapshot from the equilibrated state exhibits a patchy surface buoyancy field with
strong buoyancy gradients (Fig. 6.7b). The largest eddies are about 200 km in scale. The
strongest coherent vortices have a scale of about 50 km. Smaller-scale vortices are present,
but weaker the smaller the scale. They result from a roll-up instability that features
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Figure 6.7: Snapshots of surface buoyancy (mean plus anomalies) from the equilibrated states of the (a) the
full model, (b) the thermocline-only model, and (c) the mixed-layer-only model. The color scale extends from
white (more buoyant) through blue to black (less buoyant) and extends between +fAa.
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prominently in the evolution of the flow (Held et al., 1995).

As typical for turbulent flows, a continuum of scales is energized. This is quantified by
the kinetic and potential energy spectra in statistical equilibrium, (Ky ;) and (B ;), which
are defined by
L |bP

_ Y2 _
Kk,1_§(|u| +191?), kl =577

(6.30)
The angle brackets denote an average in time, performed over the statistical equilibrium,
and u and v denote the leading-order zonal and meridional geostrophic velocity compo-
nents. Isotropic spectra (K}, ) and (F, ) are computed by averaging (K ;) and (F,;) over
circles of constant ky, in wavenumber space—the statistics are very nearly isotropic.

The surface spectra of both kinetic and potential energy peak at a wavelength of about
200 km and fall off roughly like (Kj ) ~ (P, )~ ky,~3/3 (Fig. 6.8), as predicted by surface
QG turbulence theory for scales smaller than the scales at which mesoscale instabilities
inject energy into the system (Blumen, 1978). Since small-scale modes decay more rapidly
in the vertical than large-scale modes, the spectra are steeper in the interior (e.g. Scott,
2006). At 100 m depth, the mesoscale energy levels are similar to those at the surface, but
submesoscales energy levels are much lower.

A useful diagnostic of turbulent dynamics is the spectral energy budget (e.g. Larichev
and Held, 1995; Roullet et al., 2012). While the dynamics are completely determined by
the advection of conserved quantities at the surface and bottom, we first consider the
energy budget over the entire depth range. We will take into account the reduced nature
of these models below, where we present a vertically integrated energy budget for the
mixed-layer-only case.

The equations for the spectral perturbation potential and kinetic energies are

apk,l fA Ak Ak 1 * -2 2n
—at_ :Re[mv B—w b- mé j(w,b)]—(rkh +th )Pk’] (631)

9Kl _ pe [_f%(mp) +uh + :,ﬁ*i(lp,vznp)} —(rkn ™% + vk ") K (6.32)

where the asterisks denote complex conjugates and Re denotes taking the real part. The
Fourier transforms in the square bracket are all understood to be evaluated at the wave-
numbers k and . The first term on the right-hand side of the potential energy equation
represents the extraction of potential energy from the mean flow. The second term repre-
sents the conversion from potential to kinetic energy. This term appears as a source term
in the kinetic energy budget. The third term in the potential energy budget represents
spectral transfer by triadic interactions. The sum of this term over all wavenumbers van-
ishes. An equivalent spectral transfer term appears in the kinetic energy budget (third
term). Kinetic energy can also be distributed vertically by pressure fluxes, represented
by the first term in the kinetic energy budget. The vertical integral of this term vanishes.
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Figure 6.8: Wavenumber spectra of kinetic and potential energy from the thermocline-only simulation. (a) Ki-
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The viscosity terms act as sinks for both potential and kinetic energy—hypoviscosity act-
ing at large scales, hyperviscosity at small scales. We present these budgets averaged az-
imuthally in wavenumber space and over time.

The extraction of potential energy from the mean is dominated by the largest, most
energetic eddies (Fig. 6.9a). The extraction is independent of depth, because g = 0 and
therefore

o:Reﬁ*q:Rei(i”B) (6.33)

dz \ N? ’ )

where it was used that the term involving advection of relative vorticity vanishes. Poten-
tial energy is transferred downscale by triadic interactions and deposited near the defor-
mation radius as well as in wedges near the surface and the bottom that reach to much
smaller scales (Fig. 6.9b). Where potential energy is deposited by scale interactions, it is
converted into kinetic energy (Fig. 6.9c). Near the mesoscale deformation radius, this con-
version is due to the mesoscale instability that produces vertical buoyancy fluxes. In the
wedges near the surface and bottom, the conversion is due to frontogenesis and secondary
instabilities present in the surface QG cascades, which occur independently at the surface
and the bottom (Roullet et al., 2012). The kinetic energy thus created is transferred back
to large scales (Fig. 6.9d). The bulk of the energy is dissipated through hypoviscosity at
the scales of the largest, most energetic eddies (Fig. 6.9¢). The energy dissipation through
hyperviscosity is small, which reflects the fundamental property of geostrophic turbu-
lence that energy is trapped at large scales and viscous energy dissipation vanishes in the
limit of infinite resolution and zero (hyper-)viscosity (Kraichnan, 1967; Charney, 1971).

6.4.2 Mixed layer only

We now turn our attention to the nonlinear dynamics of the submesoscale mixed-
layer instability and compare its turbulent dynamics to the surface QG turbulence of
the thermocline-only case. We study the case with an infinitely deep thermocline, which
allows an accurate representation of the submesoscale instability, while eliminating the
thermocline instability (Fig. 6.5¢,f).

The submesoscale instability grows to finite amplitude and the flow becomes turbu-
lent. There is a turbulent spin-up phase, in which the eddies, which are initially of the
size of the instability, grow larger until they reach a statistical equilibrium with hypo-
viscosity. The flow is host of numerous coherent vorticies embedded in a filamentary sea
with strong buoyancy gradients (Fig. 6.7c). A snapshot of surface buoyancy appears quite
different from the thermocline-only case, but this visual difference is due mostly to the
smaller size of the most energetic eddies.

The energy spectra reflect the nearly frontal structure at the surface (Fig. 6.10). The
kinetic energy spectra fall off slightly more steeply than (K, ) ~ ky,~%3 in the scale range
of the linear instability and like (K, ) ~ ky,~%/3 at scales smaller than the linear short-wave
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Figure 6.9: Spectral energy budget for the thermocline-only simulation. The terms are (a) potential energy extraction from the mean, (b) spec-
tral potential energy flux divergence, (c) potential to kinetic energy conversion, (d) kinetic energy flux divergence, including spectral flux
and pressure flux, (e) hypoviscosity on both kinetic and potential energy, and (f) hyperviscosity on both kinetic and potential energy. All
terms are multiplied by the wavenumber to compensate for logarithmic shrinking.
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cutoff, both at the surface and at the base of the mixed layer at 100 m depth (Fig. 6.10a).
The mixed layer instabilities energize the entire depth of the mixed layer. This is in sharp
contrast to the thermocline-only simulation, in which surface QG turbulence energizes a
thin wedge close to the surface only.

The equilibrated flow in the mixed-layer-only case is much more energetic than in
the thermocline-only case and more energetic than is realistic. While the equilibration by
hypoviscosity is unrealistic, we will see that the enhanced energy levels are due to more
efficient extraction of mean potential energy in the weakly stratified mixed layer, which is
a dynamical property of the system that does not depend on how the flow is equilibrated.
We will discuss possible reasons for these unrealistically high energy levels in Section 6.5.

Below the base of the mixed layer, the potential energy spectra are the same as the
kinetic energy spectra (Fig. 6.10c). In the mixed layer, the potential energy spectra are
significantly flatter than the kinetic energy spectra. This is in contrast to observations
that show rough equipartition between kinetic and potential energy (Chapters 2 and 5).
We currently do not understand the reason for this difference.

The vertical structure of energy shows that the mixed layer instabilities also energize
the thermocline below (Fig. 6.10b,d). At the instability scale, the flow does not reach much
into the thermocline. But as the horizontal scale of the flow increases, so does the vertical
scale. The flow exhibits the familiar property of geostrophic turbulence and barotropizes
as it increases its horizontal scale (Charney, 1971; Smith and Vallis, 2001).

The energy transfer into the thermocline is best examined through the spectral en-
ergy budget (Fig. 6.11). Potential energy is extracted at the scale of the largest, most en-
ergetic eddies, but the extraction is confined to the mixed layer (Fig. 6.11a). Potential
energy is transferred from the extraction scale to the scale of the mixed layer instability
(Fig. 6.11b). The mixed layer instability converts potential energy into kinetic energy in
the mixed layer, at the instability scale (Fig. 6.11c). The kinetic energy created by the in-
stability undergoes an inverse cascade, in which energy is not only transferred to large
horizontal scales, but also vertically into the thermocline (Fig. 6.11d). The deposition of
kinetic energy at the scale of the largest eddies is well distributed across the mixed layer
and upper thermocline. The vertical distribution of the energy sink through hypoviscos-
ity confirms that the flow extends below the mixed layer at the scale of the largest eddies,
where hypoviscosity acts (Fig. 6.11e). Hyperviscosity acts only at the smallest resolved
scales (Fig. 6.11f). While small, it does affect the other terms in the budget. We do not
discuss its effects any further, because they are expected to disappear if the resolution is
increased and the hyperviscosity coefficient decreased.

These energy pathways are reminiscent of the phenomenology of two-layer baroclinic
turbulence. The turbulent dynamics of a two-layer system can be understood in terms of a
dual cascade (Rhines, 1977; Salmon, 1978). Baroclinic energy is extracted from the mean
at the scale of the largest, most energetic eddies. The barotropic flow dominates at these
scales and transfers the baroclinic energy downscale. The baroclinic mode behaves like
a passive tracer at these scales. Around the deformation radius, the instability converts
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baroclinic energy into barotropic energy. The barotropic energy then enters an inverse
cascade, which is arrested at some scale by drag or hypoviscosity. The forward cascade of
baroclinic energy is compensated by the inverse cascade of barotropic energy, such that
no spectral transfer of total energy occurs. This is consistent with the phenomenology
that all sources and sinks of total energy occur at the scale of the largest, most energetic
eddies—no energy is dissipated at small scales.

Can the turbulent dynamics induced by mixed layer instabilities be understood in
similar terms? To pursue the analogy, we must first introduce a modal decomposition
of the eddy energy. In our system, the vertically integrated total energy can be written
entirely in terms of the quantities at the surface and interface:

Bei=—59'0= 29", (6.34)

where the conjugate transpose is denoted with a dagger. Since L is real and symmetric, it
can be diagonalized through a unitary matrix S,

L=S'Ds, (6.35)

where D is diagonal and consists of the real eigenvalues of L, D;; = A;. The energy can now
be written as

Eqj=-> (54» ZM (6.36)

This defines the modes (S¢ ); that are orthogonal with respect to the energy norm, i.e. the
energy can be partitioned mto contributions E ; from these modes. The structure of the
modes depends on wavenumber, because L and therefore S does.

For the mixed-layer-only case, with L given by (6.24), the eigenvalues of L are

cothpy 1 csch? pp, 1

Aoq = fky LU RS + (6.37)

Nn 2N N2 4N?
and we obtain the eigenvectors as the columns of S,
1 1
1 2 %
[1+ cosh ;4m+ﬂ“k—A—Q smhym) ] [l+(cosh ;zm+N—}“k:—‘ sinh ym) ]
S= cosh p, +% coshym-rN}“;“ : (6.38)

T T
2 2
[1+(cosh}4m+N"‘: sinh,um) ]2 [1+(coshym+%"-}($sinhym) ]7

For large scales, ky, < f/Nih or pp, < N,/N;, this reduces to

fhkn 212
w2 6.39
0 2Nt 1 Nr%h ( )
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and simply

s=%(i _11) (6.40)

Equation (6.40) indicates that at large scales the first mode is barotropic in the mixed

layer. It behaves like a surface QG mode penetrating into the thermocline. The stream-
function is proportional to ky, times the conserved quantity (Held et al., 1995),

4 fkh
S =_20(50),. .
( lxb)() 2Nt( )0 (6 41)

The second mode at large scales is baroclinic in the mixed layer. The relation between the
streamfunction and the conserved quantity is

(St = -2L_(s0) (6.42)
ONZRY ‘
which is independent of ky,, as expected for a baroclinic mode. These are the same modes
as those found in the linear stability analysis for large scales (Fig. 6.5f).

This description of the orthogonal modes as barotropic and baroclinic mixed layer
modes only applies at large scales. At smaller scales, the modes have a more complicated
vertical structure (Fig. 6.12). At scales smaller than the mixed layer deformation radius,
they morph into modes that are decoupled and localized in the vertical at the surface and
at the interface. But for the cascade dynamics to be discussed, the mode structure at large
scales is what is most important.

We can now consider the energy budget of these modes. We start from the vertically
integrated spectral energy budget, written in terms of the conserved quantities and cor-
responding streamfunctions at the surface and interface:

0Ey . 106
_at_ = —RKe E. (643)
Using the unitary matrix S, we can rewrite this as
dEj VI B N B
5 - —Re(Sy) 5;(56) =—-Re ;(S¢)j§(36)] (6.44)
and thus split the energy budget into its modal components:
aE,{ : d
—=- *=(S6);. 6.45

The terms on the right-hand side of this budget can be obtained by substituting in the
spectral form of the evolution equation (6.28). To separate out the advective interactions
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of the modes with themselves and with each other, we further expand the nonlinear terms
in (6.28), using the distributive property of the Jacobian operator, into

J(p,0)=J(°, 8% + (8" +](yp', 6% +](y', 8" (6.46)

Here we split the vectors holding the streamfunction and the conserved quantities at the
surface and interface into their modal components,

¢ =s'p;sp, 6/ =s'p;sd,  p=) ¢, 6= Y e, (6.47)
j 7

where P; are the projections onto the respective modes,

0
Po=(y o) Pi=(o 1) (6.48)

The first term in (6.46) represents the advection of the barotropic mode by the barotropic
mode, to use the naming convention introduced above. The second term represents the
advection of the baroclinic mode by the barotropic mode, and so on.

In terms of the orthogonal modes, the energy budget is very similar to that of a baro-
clinic two-layer system (Fig. 6.13, cf. Larichev and Held, 1995). The extraction of potential

134



(a) barotropic budget (b) baroclinic budget

= 20 ————— - :

' - adv.TT

NE 15 b — adv.TC ] N 4

e — adv.CT

= 10 F — adv.CC . o "

-

o

g st 1 t :

=]

5

o otk J s |

=

o

g 5| 1 k !

<

X

5 10} - S .

£ .

E —— PE extraction

2 -15} hypoviscosity - B ]

% —— hyperviscosity

z 20 Cicial e 1 o e PR | — 1 N
1073 1072 107! 100 1073 1072 1071 10°

inverse wavelength [km™!] inverse wavelength [km™!|

Figure 6.13: Modal energy budget for the mixed-layer-only case. The advective terms correspond to the con-
tributions from the four terms in (6.46). The energy tendencies are multiplied by wavenumber to compensate
for logarithmic shrinking.

energy from the mean flow is concentrated at the scale of the largest, most energetic ed-
dies and creates mostly baroclinic energy (Fig. 6.13b). The dominant sink is by hypodiffu-
sion, which also acts on the largest, most energetic eddies. Barotropic energy dominates at
these scales, so hypodiffusion takes out mostly barotropic energy (Fig. 6.13a). The trans-
fer of energy from the baroclinic mode to the barotropic mode occurs through a dual
cascade in the submesoscale range. The baroclinic and barotropic energy components are
cascaded in opposite directions so as to yield a vanishing spectral transfer of total energy.
Baroclinic energy is transferred down to the instability scale, achieved by the advection
of the baroclinic mode by the barotropic mode (Fig. 6.13b). The energy deposited around
the instability scale is transferred to the barotropic mode by interactions between the two
modes, which represents baroclinic instability (Fig. 6.13b). This energy enters the baro-
tropic budget rather less localized in wavenumber space (Fig. 6.13a). An upscale spectral
transfer of barotropic energy closes the budget, taking energy from the instability scale
to the scale of the largest, most energetic eddies, where hypodiffusion acts (Fig. 6.13a).
Energy loss by hyperdiffusion again enters the budget, but is neglected in this discussion,
because it is an artifact of finite resolution.

This model thus exhibits a dual cascade analogous to the classic two-layer system.
Baroclinic energy is transferred downscale through advection by the barotropic mode,
baroclinic instability converts baroclinic into barotropic energy, and barotropic energy is
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transferred back upscale in an inverse cascade. The difference is that the barotropic mode
at large scales behaves like a surface QG mode, instead of a truly barotropic or two-
dimensional mode. The inverse cascade is therefore expected to yield a (Ej, ) ~ ky~! sur-
face energy spectrum (Blumen, 1978), which we find to emerge if the inertial range is wide
enough (not shown). More importantly, the surface-QG-like behavior implies that in the
inverse cascade, energy is transferred to successively larger vertical scales. This provides
a pathway for mixed layer instabilities to energize the thermocline below.

6.4.3 Full model

We now consider the case with both mesoscale and submesoscale instabilities present.
This full model allows us to address how mesoscale thermocline instabilities modify the
energy cycle induced by submesoscale mixed layer instabilities. Furthermore, we pursue
a one-to-one comparison between surface-QG dynamics and the dynamics modified by
mixed layer instabilities, with a focus on vertical energy distribution and vertical veloci-
ties.

The linear growth rate of the mixed layer instability is much larger than that of the
thermocline instability (Fig. 6.5a), so during the initial transient of the nonlinear simu-
lations the mixed layer instability grows to finite amplitude first. The evolution in the
mixed layer is very similar to that of the mixed-layer-only case: the eddies grow in size
until they come into statistical equilibrium with hypoviscosity.

The equilibrated state of the full model is also very similar to that of the mixed-layer-
only case in the mixed layer and upper thermocline (Fig. 6.14). The energy levels and
spectra at the surface and the base of the mixed layer are very similar. Near the bot-
tom, a wedge in wavenumber—depth space is energized in the full model, just like in the
thermocline-only case. This is due to surface QG turbulence at the bottom level.

The energy budget is similar to the mixed-layer-only case (Fig. 6.15). The main energy
pathway is again extraction of potential energy in the mixed layer, transfer to the mixed
layer instability scale, conversion to kinetic energy, transfer back to large scales and into
the thermocline, and dissipation by hypoviscosity. There is additional energy extraction
in the thermocline, but that is weak compared to the extraction in the mixed layer. The
dominant dynamics are therefore those described for the mixed-layer-only case. Inter-
action with the bottom level is possible, but of secondary importance in the parameter
regime of relevance.

A different picture emerges when the horizontal buoyancy gradient and the associated
geostrophic shear in the mixed layer is (unrealistically) reduced. We choose the mixed
layer shear such that the growth rates of the two instabilities are comparable, which from
Eady scaling occurs if Ap,/Ny = A/N; and we set Ay, = 2.5x107° s71. The horizontal
scales of the instabilities and the overall structure of the dispersion curves are the same
as those in Fig. 6.5a,d.
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Figure 6.15: Spectral energy budget for the full model simulation. The terms are (a) potential energy extraction from the mean, (b) spectral
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This system with reduced mixed layer shear equilibrates to much lower energy levels
than the constant shear case. The energy levels are comparable to the thermocline-only
case and thus allow a one-to-one comparison of the dynamics with and without a mixed
layer. The vertical structure of energy in this case with a mixed layer is quite different
from the thermocline-only case, because the energy pathway enabled by the mixed layer
instability is still present—mixed layer instabilities are—on average—not suppressed by
the mesoscale strain field (cf. Bishop, 1993a,b; Spall, 1997; McWilliams et al., 2009). The
mixed layer instability, while not significantly increasing the mesoscale energy levels,
does energize the mixed layer at the submesoscales.

This difference between mixed layer dynamics and surface QG turbulence is also re-
flected in vertical velocities that are produced by the instabilities (Fig. 6.16). While the
available potential energies are the same and the resulting surface energy levels compara-
ble between this reduced mixed layer shear case and the thermocline-only case, there are
much larger vertical velocities in the presence of a mixed layer. These enhanced vertical
velocities extend significantly below the base of the mixed layer. The largest vertical ve-
locities are located near fronts in the filamentary sea (Fig. 6.17). Coherent vortices, while
associated with the large buoyancy gradients, induce relatively weak vertical motion. The
large vertical velocities appear instead to be associated with the filamentary structure
generated by mixed layer instabilities.

The enhancement of vertical velocities in the presence of mixed layer instabilities can
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be understood by considering the omega equation (Hoskins et al., 1978):

2w
292 2
N<Vw+f Fes =-2V.Q, (6.49)
where 3 3
u u
Q= (E -Vb,@-Vb). (6.50)

The vertical velocities can be written as a convolution of the Green’s function of (6.49)
with the forcing term on the right of (6.49). While the forcing term is not changing much
between the cases with and without the mixed layer, the Green’s functions do. The re-
duced stratification in the mixed layer enhances the response to the forcing term there
(Thomas et al., 2008). The enhancement of vertical velocities in our simulation with mixed
layer can thus be attributed to the reduced stratification. Such a reduction of stratifica-
tion is always associated with a mixed layer instability, however, so the enhanced vertical
velocities are inextricably linked to mixed layer instabilities.

The forcing term on the right of (6.49) is of the same order in our two cases, because
by design the mean states have the same available potential energy and similar submeso-
scale energy levels are produced. It should be kept in mind, however, that the forcing term
does likely increase in the real ocean when mixed layers become deep and mixed layer in-
stabilities energize the submesoscale range. The more energetic submesoscale turbulence
in the wintertime mixed layer is expected to be associated with stronger submesoscale
strains than are present in summer (Chapter 5). In the wintertime mixed layer, vertical
velocities are then enhanced by both a decreased stratification and an increased forcing
term on the right of (6.49). Mixed layer instabilities in the real ocean thus most likely

drive an even more dramatic increase in vertical velocities in winier than is present in our
simulations with and without mixed layer.

The root mean square vertical velocities (Fig. 6.16) are similar in structure to those
found in primitive equation models (Capet et al., 2008a). A careful comparison is neces-
sary to establish whether the QG dynamics described here reproduce the magnitude of
the vertical velocities or whether non-QG effects significantly enhance or reduce them (cf.
Mahadevan and Tandon, 2006). Such a comparison is beyond the scope of this chapter.

The interface between mixed layer and thermocline is located at z = —h + 1, where
the interface displacement # is determined by requiring the total buoyancy field to be
continuous at the interface,

N2n+b(-h*) = N2+ b(-h"), (6.51)

where the total buoyancy was linearized around z = —h, consistent with QG scaling. The
interface is material in the sense that

an _
EH(IP,W)—W- (6.52)
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Figure 6.17: Concurrent surface buoyancy and vertical velocity snapshots from the full model simulation
with reduced mixed layer shear: (a) surface buoyancy equivalent to Fig. 6.7 and (b) vertical velocity at 47 m,
the depth of the maximum root mean square vertical velocity.

To leading order, there is therefore no exchange of fluid between mixed layer and thermo-
cline. If non-QG effects are taken into account, however, thermocline waters can be folded
into the mixed layer (Garner et al., 1992), where atmospherically forced small-scale tur-
bulence can transform them into mixed layer waters. It thus seems likely that mixed layer
instabilities enhance the exchange between mixed layer and thermocline, but future work
will have to investigate what sets the rate of exchange.

6.5 Comparison to observations

A prominent feature of observed (Chapter 5) and modeled (Mensa et al., 201 3; Sasaki
et al., 2014) submesoscale flows is their seasonal modulation: they are much more ener-
getic in winter than in summer. This is consistent with an energization of the submeso-
scale by baroclinic mixed layer instabilities. Given that these instabilities grow on time
scales of order 1 day, they can quickly release large amounts of available potential en-
ergy stored in lateral buoyancy gradients in deep winter mixed layers and energize the
submesoscale range. Mixed layer instabilities are instead weak in summer, when mixed
layers are shallow and little potential energy is available for release. Mesoscale-driven
surface frontogenesis, on the other hand, is not expected to drive a seasonal cycle in sub-
mesoscale turbulence, because the mesoscale eddies that generate submesoscale filaments
through frontogenesis are about as strong in winter as they are in summer (or even slightly
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stronger in summer, Qiu, 1999; Qiu and Chen, 2004; Sasaki et al., 2014).

Submesoscale flows observed in the wintertime Gulf Stream region (Chapter 5) are
energetic throughout the deep mixed layer and decay rapidly below. The energy spec-
tra roll off roughly like k=2 in the mixed layer and transition to roughly k=3 below. This
spectral and vertical distribution of energy resembles that produced by our simple model
of baroclinic mixed layer instabilities, which similarly has spectra that roll off roughly
like k=2 in the mixed layer and more steeply in the thermocline (Fig. 6.14). The equili-
brated turbulent flow produced by baroclinic mixed layer instabilities in this model is
thus qualitatively consistent with the energetic wintertime submesoscale flows observed
in the Gulf Stream region. In summer, on the other hand, submesoscale flows in the Gulf
Stream region are weak. The spectral roll-off is a rapid k=3, even close to the surface. This
lack of submesoscale energy is expected from the lack of energy input from baroclinic
mixed layer instabilities.

There is so far no observational evidence for submesoscale flows that are governed
by mesoscale-driven surface frontogenesis as described by surface QG turbulence. The
spectral slope of surface kinetic energy may be consistent with the predictions of sur-
face QG theory (e.g. Le Traon et al., 2008), but the subsurface structure is not. The ob-
servations from the Gulf Stream region (Chapter 5) show that the spectral and vertical
distribution of submesoscale energy is different from that produced by surface QG tur-
bulence (Fig. 6.8), in both summer and winter. In winter, submesoscale flows are observed
to be energetic throughout the mixed layer—not just in a thin surface layer as predicted
by surface QG turbulence. In summer, when baroclinic mixed layer instabilities are not
active and mesoscale-driven surface frontogenesis could dominate, submesoscale flows
are observed to be weak—there is no surface-trapped enhancement as predicted by sur-
face QG turbulence. This suggests that these weak summertime submesoscale flows are
instead dominated by deep modes generated by mesoscale thermocline instabilities. Ob-
servations from Drake Passage also show no signature of mesoscale-driven surface fronto-
genesis (Rocha et al., 2015). Whether it dominates the energization of submesoscale flows
elsewhere remains an open question. It may be expected to dominate outside the major
current systems, where thermocline instabilities depend on surface buoyancy gradients
and can more effectively drive a surface QG cascade (Charney, 1947; Tulloch et al., 2011;
Roullet et al., 2012), but observations are lacking. Balanced submesoscale flows can also
be masked by internal waves, especially where mesoscale eddies—and consequently any
balanced submesoscale flows—are weak (Richman et al., 2012; Rocha et al., 2015; Chap-
ters 2 and 3).

Spectra that are observed to fall off like k3 in the seasonal thermocline in summer
and in the permanent thermocline throughout the year (Chapter 5) cannot be reproduced
by the model formulated in this study. These steep spectra are likely the result of deep
Phillips-type instabilities (Phillips, 1954) and the potential enstrophy cascade of interior
quasi-geostrophic turbulence (Charney, 1971). Such a cascade is not present in our model,
which collapses the interior PV gradients into delta sheets at the interface between mixed
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layer and thermocline and at the rigid bottom at the base of the thermocline. Our model
does capture, however, the steepening of energy spectra below the winter mixed layer—it
only lacks the appropriate thermocline dynamics to yield k=3 spectra.

The cascade dynamics of our simple QG representation of baroclinic mixed layer in-
stabilities show that the mesoscale can effectively be energized by baroclinic mixed layer
instabilities. This would suggest that not only submesoscale but also mesoscale eddies
are more energetic in winter than in summer. Altimetry observations (Qiu, 1999; Qiu and
Chen, 2004) and realistic model simulations (Sasaki et al., 2014), however, suggest that
there is not a large modulation of mesoscale energy levels—mesoscale eddies are even
slightly stronger in summer than in winter. This lack of wintertime energization of the
mesoscale may result from a coupling with unbalanced motions that is not captured by
QG dynamics.

The QG model makes the baroclinic mixed layer instabilities very effective in ener-
gizing the entire turbulent flow, because there is no forward energy cascade resulting
in small-scale energy dissipation. If non-QG effects were allowed, a fraction of the en-
ergy extracted from the mean in the mixed layer would be dissipated at small scales
(Capet et al., 2008c). This energy leak to small scales is likely as Rossby and Froude num-
bers become order 1 at scales of order 1 km. The possibility of an energy leak to small
scales was demonstrated by Molemaker et al. (2010), who studied an Eady instability
with Ro = Fr = 0.5, using the full Boussinesq equations. While much of the energy ex-
tracted from the mean is still trapped at large scales, as predicted by QG dynamics, some
is lost to dissipation at small scales. A small leak of energy in the instability may make
a big difference in the cascade dynamics, because that energy is not transferred back to
mesoscales, where it would further enhance the extraction of potential energy from the
mean. Such an effect could be parameterized in our QG model, but is beyond the scope of
this study.

An additional sink occurs if the balanced flow interacts with ageostrophic instabilities
in the mixed layer. In the presence of geostrophic shear, convective motions forced by
the atmosphere are the result of symmetric rather than gravitational instabilities and are
slantwise rather than upright (e.g. Emanuel, 1994; Haine and Marshall, 1998; Thomas
and Lee, 2005). Symmetric instabilities can extract kinetic energy from the geostrophic
shear, so they can drain energy from the balanced flow and increase dissipation (Taylor
and Ferrari, 2010; Thomas et al., 2013). This is another way to render the inverse cascade
less effective.

Additional sinks for energy in balanced flows in the mixed layer can be the interac-
tion with externally forced near-inertial waves (e.g. Whitt and Thomas, 2015; Xie and
Vanneste, 2015) and the interaction with surface gravity waves (McWilliams and Fox-
Kemper, 2013; Hamlington et al., 2014). Both may drain enough energy out of the bal-
anced flow to prevent an effective inverse cascade of submesoscale kinetic energy to
mesoscales.

QG dynamics further do not allow for a feedback of eddies on the mean stratification
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of the mixed layer (e.g. Fox-Kemper et al., 2008), so that no restratification can occur. In
the real ocean, the restratification through baroclinic mixed layer instabilities is opposed
by convective and mechanical mixing that is driven by atmospheric forcing. The fixed
mean stratification in the QG model assumes that this forced vertical mixing is in bal-
ance with restratification. It is unclear whether and how vertical mixing alters the energy
budget of the balanced flow in the mixed layer. It is also unclear what the effect of an
unsteady atmospheric forcing is, which upsets the balance between vertical mixing and
restratification.

Another possible explanation for the lack of a wintertime energization of the meso-
scale by baroclinic mixed layer instabilities is that it takes a few months for the kinetic en-
ergy injected by submesoscale mixed layer instabilities to arrive at the mesoscale (Sasaki
et al., 2014). This could also explain the (weak) summer maximum in mesoscale energy
(Qiu, 1999; Qiu and Chen, 2004). This time dependence is not addressed in our simple
model of baroclinic mixed layer instabilities, in which we prescribe perpetual winter con-
ditions. If the time scale of turbulent equilibration is not much shorter than the seasonal
time scale, it is likely that submesoscale—and possibly mesoscale—flows are not in statis-
tical equilibrium. It remains to be investigated how a seasonally modulated mixed layer
modifies the inverse cascade and the energization of the mesoscale by baroclinic mixed
layer instabilities.

Realistic high-resolution simulations of the type employed by Shcherbina et al. (2013),
Sasaki et al. (2014), and Gula et al. (2015) may be able to address these caveats and bridge
the gap between observations and the idealized QG dynamics described here. These prim-
itive equation and Boussinesq simulations can provide insights into how non-QG effects
modify the submesoscale dynamics induced by mixed layer instabilities. An exploration
of non-QG effects in more idealized setups may also prove useful. Primitive equation and
Boussinesq simulations can also address how non-QG effects modify mesoscale-driven
surface frontogenesis and allow an estimate of the importance of corrections to surface
QG turbulence (cf. Hakim et al., 2002; Capet et al., 2008b; Klein et al., 2008; Roullet et
al., 2012; Badin, 2012), providing another stepping stone for understanding observations.

6.6 Conclusions

The simple model formulated in this chapter sharpens our understanding of how
baroclinic mixed layer instabilities can energize submesoscale turbulence and how this
mechanism differs from mesoscale-driven surface frontogenesis. Our analysis suggests
that the presence of a mixed layer has a profound effect on submesoscale turbulence. Lat-
eral buoyancy gradients, combined with the low stratification in the mixed layer, provide
a large amount of available potential energy that can be extracted by baroclinic instabil-
ities in the mixed layer. The extraction of available potential energy from the large-scale
mean is dominated by mesoscale eddies, but potential energy is subsequently transferred
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downscale to the deformation radius of the mixed layer, where baroclinic instability con-
verts it into kinetic energy. In the QG dynamics considered here, the energy lost to small
scales is negligible. The entire energy extracted from the mean in the mixed layer is con-
verted to kinetic energy around the deformation radius of the mixed layer and subse-
quently transferred back to larger scales in an inverse cascade that also energizes the
thermocline below. Through this process, baroclinic mixed layer instabilities can energize
the submesoscale range and even the mesoscale eddy field.

These turbulent dynamics follow a dual cascade similar to that present in two-layer
QG flow (Rhines, 1977; Salmon, 1978; Larichev and Held, 1995) and in idealized contin-
uously stratified QG flows (Smith and Vallis, 2002)—but with mixed layer modes. The
energy in the baroclinic mode, which is baroclinic in the mixed layer and does not reach
much into the thermocline, is transferred downscale through advection by the barotropic
mode, which is barotropic in the mixed layer and decays surface-QG-like in the thermo-
cline. Around the deformation radius of the mixed layer, baroclinic instability transforms
baroclinic into barotropic energy, which then enters an inverse cascade.

The dynamics resulting from baroclinic mixed layer instabilities substantially dif-
fer from mesoscale-driven surface frontogenesis, as described by surface QG turbulence
forced by a mesoscale eddy field, which is often invoked to explain energetic subme-
soscales. Surface QG turbulence can only energize a thin surface layer. Mixed layer in-
stabilities, instead, energize the entire depth of the mixed layer. Vertical velocities are
drastically enhanced in the presence of baroclinic mixed layer instabilities compared to
surface QG flows of similar energy levels.

The enhancement of submesoscale energy throughout the mixed layer and the decay
below its base, as generated by baroclinic mixed layer instabilities, are consistent with
wintertime observations from the Gulf Stream region (Chapter 5). These observations as
well as models (Mensa et al., 2013; Sasaki et al., 2014) also show that submesoscale flows
are most energetic in winter, when baroclinic mixed layer instabilities are active. This
evidence points to the importance of baroclinic mixed layer instabilities in energizing the
submesoscale.

It remains to be investigated how deviations from QG dynamics affect submesoscale
flows when a mixed layer is present. The restratification by mixed layer instabilities,
the formation of buoyancy discontinuities, ageostrophic instabilities, and forced mixed
layer turbulence all have the potential to modify the leading-order balanced dynamics
described here. For example, it remains unclear how much of the submesoscale kinetic
energy generated by baroclinic mixed layer instabilities is cascaded to mesoscales, how
vertical velocities are modified by non-QG effects, and how the enhancement of vertical
velocities by mixed layer instabilities translates into an exchange of fluid between mixed
layer and thermocline.

It is hoped that the model and dynamics discussed here in an oceanographic context
are of interest in a broader geophysical fluid dynamics context. Atmospheres often display
layers of different stratification, which likely induce similar dynamics. These have partly
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been explored for the terrestrial atmosphere and it seems likely that similar dynamics
also occur in the atmospheres of other planets.

6.A Multi-layer model formulation

A QG system of n layers of constant PV, of thickness hj and stratification Nj, consists
of n+ 1 conserved quantities that are advected by the geostrophic flow at their respective
levels. Compared to the two-layer model considered in the main text, additional interface
quantities analogous to 6, are present. The linear operator in the inversion relation (6.12)
has tridiagonal structure:

__cothyg csch pg
csch ;)40 coth pg 0 coth iy cschp,
Ny N TN, N
L=fky , (6.53)
cschp, ,  cothy, , cothy, csch y,,
" "Csch PP _ coth 1,

n n

where p; = Njkph;/f. It may be more efficient to solve the inversion relation numerically
instead of calculating the inverse of this matrix, which will generally be full.

One can also include a PV gradient due to differential rotation. This can be done using
a trick described by Lindzen (1994): instead of using linear shear and constant stratifica-
tion in the layers, one can use parabolic shear or a modified stratification profile, which
allows cancellation of the contribution from the -effect and retaining constant PV within
the layers. The PV gradient due to g is then included in the PV sheets at the interfaces.

6.B  Model formulation with buoyancy jump

If there is a buoyancy jump g’ at the interface, the matching conditions must be mod-
ified. To ensure a continuous pressure at the interface at z= —h +#, we require

’

W(=h") = p(=h") = —%n- (6.54)

Here,  is the perturbation of the interface between the constant-PV layers. The buoyancy
equations (6.5) and (6.6) can be combined with the kinematic condition

d
w= 3L+ I() (6.55)
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applied at z = -h" and z = —h", to give

d0 20
“a?l +J(11,6;) =0, a—f +J(12,6,) =0, (6.56)
where
b(-h* b(-h~
0,=f (NZ : +fn, O=f (Nz ! +fn, Pr=9(h"),  r=y9(-h). (6.57)
m t

Together with the conservation of surface and bottom buoyancy,

b(~H)

’ 6.58
N (6.58)

b(0
90:4#’ 0;=f

and the inversion relation obtained by solving (6.13) with the matching conditions above,
the model is complete. It now consists of four conserved quantities.
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CHAPTER 7

BArocLINIC MIXED LAYER INSTABILITIES IN THE
PrRESENCE OF CONVECTION



7.1 Motivation

Atmospheric cooling and surface winds frequently mix the surface layer of the ocean.
The resulting mixed layer mediates the transfer of heat and momentum between the at-
mosphere and ocean and thereby affects both the atmospheric climate and the oceanic
general circulation. The evolution of the ocean mixed layer has traditionally been un-
derstood column by column: atmospheric cooling and wind forcing leads to mixing and
deepening of the mixed layer into the thermocline below. It is becoming increasingly clear,
however, that lateral exchanges contribute crucially to shaping the mixed layer.

Baroclinic instability in the mixed layer, one such agent of lateral exchange, is thought
to be one of the main agents to restore stratification in the mixed layer after the atmo-
spheric forcing ceases (e.g. Spall, 1995; Haine and Marshall, 1998; Boccaletti et al., 2007;
Fox-Kemper et al., 2008). This restratification modifies the surface properties and thereby
feeds back on the surface fluxes of heat and momentum. Baroclinic eddies can also achieve
exchanges between the mixed layer and the thermocline below—a process that may be im-
portant in subducting heat and atmospheric gases like carbon into the thermocline as well
as bringing nutrients up into the mixed layer, where they can be used for photosynthesis
(e.g. Thomas et al., 2008).

Baroclinic instabilities in the mixed layer have recently been suggested to drive a sea-
sonal cycle in submesoscale turbulence (Mensa et al., 2013; Sasaki et al., 2014; Chapter 5).
In winter, strong baroclinic instabilities in deep mixed layers are thought to create strong
buoyancy gradients at horizontal scales of order 10 km. This suggests that baroclinic in-
stabilities can tap into the large reservoir of available potential energy in the deep winter
mixed layer, despite the presence of forced convection that keeps the mixed layer deep
and unstratified. In summer, in contrast, variability at horizontal scales of order 10 km
is weak. One possible explanation for this absence of submesoscale energy is that baro-
clinic instabilities are damped out by convection that has short time scales in shallow
summer mixed layers. Another possibility is that baroclinic instabilities do develop, but
the small amount of potential energy that can be released is not sufficient to energize the
submesoscale range.

This motivates our attempt to understand under what conditions baroclinic instabili-
ties develop. In particular, we aim to investigate under what conditions convection arrests
the growth of baroclinic disturbances and when instead baroclinic instability develop and
manage to restratify the mixed layer against the concomitant action of convective mixing.
Mahadevan et al. (2010) argued that restratification occurs when vertical buoyancy fluxes
due to baroclinic eddies are larger than the fluxes induced by the surface forcing, but their
simulations had too coarse a resolution to explicitly represent convection.

Using a numerical model that allows both convective overturns and baroclinic insta-
bilities, we here confirm that restratification occurs when baroclinic fluxes are larger than
those induced by surface fluxes. When the fluxes generated by convection are larger, how-
ever, we find that baroclinic instabilities still develop. Baroclinic eddies, while too weak
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to restratify, organize the convective turbulence and modify the bulk properties of the
mixed layer.

7.2 Approach

To study baroclinic instabilities in the presence of convection, we depart from previ-
ous studies of baroclinic mixed layer instabilities that considered the transient spin down
of a mixed layer front. In such simulations, the front slumps under the effect of baroclinic
eddies and the mixed layer quickly restratifies (e.g. Haine and Marshall, 1998; Boccaletti
et al., 2007). There is a succession from upright or slantwise convection to baroclinic ed-
dies as the stratification and hence the Richardson number increases, which is expected
from linear stability analysis (Stone, 1966b). Convection and baroclinic eddies do not
coexist in these simulations, because the restratification by baroclinic eddies shuts off
convection.

Mahadevan et al. (2010) attempted to achieve an equilibrium between the destabiliz-
ing effect of surface forcing and the restratifying effect of baroclinic eddies by blowing a
wind down a mixed layer front. The Ekman transport of such a down-front wind pushes
dense over light water, destabilizing the surface layers (Thomas and Lee, 2005). The desta-
bilizing effect of this forcing evolves with the flow, however, because the Ekman buoyancy
flux depends on the orientation of the front—which under the influence of baroclinic in-
stability starts to meander. The simulations described in Mahadevan et al. (2010) were
thus necessarily transient; an equilibrium was not achieved, because the increasing mis-
alignment of front and wind stress reduced the effective buoyancy forcing. In the setup
described below, we instead use direct buoyancy forcing, which allows us to control the
forcing strength and achieve a statistical equilibrium. We can thus study the competi-
tion between convection and baroclinic instability in a more controlled environment and
reveal that baroclinic instability develops even in the presence of strong convection.

In Chapter 6, we took an extreme approach and studied the evolution of baroclinic
instabilities in the ocean mixed layer using a quasi-geostrophic model. Under quasi-
geostrophic scaling, the restratification by baroclinic eddies is neglected and the mixed
layer stratification remains fixed. This implicitly assumes an equilibrium between the re-
stratification by baroclinic eddies and the destabilizing effects of surface forcing. One of
the goals here is to understand under what conditions such an equilibrium can exist and
whether or not baroclinic eddies can evolve unaffected by convective flows, being influ-
enced only through the mean stratification.

We study a setup that is designed to provide a simple example of coexisting baroclinic
and convective flows in a statistical equilibrium. We impose a fixed meridional buoyancy
gradient in thermal wind balance with a zonal shear (e.g. Taylor and Ferrari, 2010), which
provides baroclinicity for the instability. In addition, we apply a destabilizing buoyancy
flux at the surface and bottom of the domain. For simplicity, there is no representation of
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the thermocline, so any evolution of the mixed layer depth is neglected. The restratifica-
tion by baroclinic eddies for our mixed layer with a rigid bottom, however, is expected to
be similar to the case with a thermocline, because instead of folding thermocline water
with high potential vorticity (PV) into the mixed layer, such high-PV waters are gener-
ated at the bottom boundary (Garner et al., 1992). The artificial buoyancy forcing at the
bottom is necessary to allow the system to reach equilibrium. In the real ocean, surface-
forced convection can deepen the mixed layer into the thermocline and an equilibrium
is never reached. It seems worthwhile to study the equilibrium first, however, before the
more realistic but complicated transient problem is addressed.

In this setup, we study the flow under different forcing conditions. The key parameter
determining the strength of the forcing is € = F/f A2H?, where F is the buoyancy forc-
ing, f the Coriolis parameter, A the background shear, and H the depth. We vary this
parameter over three orders of magnitude. Over this range, we cover the transition from
a weakly forced regime, in which baroclinic instability restratifies the mixed layer and
shuts off convection, to a very strongly forced regime, in which convection is essentially
upright.

7.3 Setup

We study the full non-hydrostatic Boussinesq equations between two horizontal solid
plates at z = —~H and z = 0. We solve for the perturbations that develop on top of an
imposed background flow with zonal shear A and meridional buoyancy gradient —fA
(Taylor and Ferrari, 2010). The perturbations satisfy periodic boundary conditions in the
horizontal coordinates x and y in a domain of zonal extent L, and meridional extent L,.
The dynamics are given by the perturbation equations:

u,+Azux+Aw+u-Vu—fv=—¢X+KV2u, (7.1)
v,+szx+u-Vv+fu:—¢y+KV2v, (7.2)
wy+ Azwy +u-Vw =b - ¢, + kV2w, (7.3)

by + Azby — fAv +u-Vb =«V?b, (7.4)
V-u=0, (7.5)

where u, v, and w are the zonal, meridional, and vertical velocities, ¢ is the density-

normalized pressure, b is buoyancy, x is the viscosity/diffusivity (unity Prandtl number),

and ¢ is time. At the boundaries at z = -H and z = 0, we prescribe the buoyancy flux F,
—-xb, =F, (7.6)

and impose no-normal-flow and free-slip conditions: u, =0, v, =0, and w = 0.

152



This setup constitutes an energetically consistent system, in which the only energy
source is the potential energy supplied by the buoyancy forcing (plus small sources due
to diffusion and viscosity) and the only sink is viscous dissipation. The potential energy
equation is

(=2b); = FH — f A{zv) — (w’b’) + k[b(0) - b(—H)]. (7.7)

Angle brackets denote a vertical integral over depth of the domain, the overline denotes
a horizontal average over the domain, and primes denote deviations from this horizontal
average. Potential energy is forced by the buoyancy flux at the boundaries (first term on
the right). It can be converted to mean kinetic energy by gravitational slumping (second
term on the right) and to eddy kinetic energy by buoyancy production (third term on the
right). Downward diffusion of buoyancy also increases the potential energy (fourth term
on the right), but this term is generally small for the values of ¥ we use.

To derive the mean kinetic energy budget, we first form the momentum equations of
the horizontal mean velocities. These are free to evolve as they are forced by momentum
flux convergences:

(Az+ )+ (WW), — fV = KU, (7.8)
T+ (VW) + fl = KT, (7.9)

The horizontal mean vertical velocity vanishes, as required by continuity. The mean ki-
netic energy budget then reads

LAz +1)? +7%) = fA@ED) + (A + T )Ju'w’) + (T,v'w’)
— k(A +7,)? + T2y + kA[AH + u(0) - %(-H)]. (7.10)

Gravitational slumping appears as a source of mean kinetic energy (first term on the
right). Shear production (second and third terms on the right) converts mean to eddy ki-
netic energy. Dissipation of mean kinetic energy (fourth term on the right) is generally
small, as is the input of kinetic energy by the surface and bottom stress implied by pre-
scribing a background shear that does not vanish at the boundaries (fifth term on the
right). Finally, the eddy kinetic energy budget reads

L + v + w2y, = (W) — (A + T)ww’) — (Tr'w) - k((Vu'2 + Vo' 2+ [Vw'2)  (7.11)

Buoyancy production (first term on the right) and shear production (second and third
terms on the right) appear as sources here. The dissipation term (fourth term on the right)
generally dominates the dissipation of energy.

Unlike an analogous quasi-geostrophic system (e.g. Bretherton and Karweit, 1975;
Salmon, 1980; Haidvogel and Held, 1980; Larichev and Held, 1995), which we used in
Chapter 6 to study baroclinic mixed layer instabilities, this Boussinesq system can ex-
haust the potential energy available for release by baroclinic instability. While the hori-
zontal buoyancy gradient is fixed, the stratification is free to evolve. Under the effect of
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baroclinic eddies, the stratification increases until no unstable baroclinic mode fits into
the finite domain. The potential energy available for release can thus be exhausted and has
to be supplied by buoyancy forcing. In quasi-geostrophic dynamics, on the other hand,
one cannot impose a buoyancy flux at the boundaries. The stratification is instead held
fixed, as required by quasi-geostrophic scaling, which emulates the supply of potential
energy by boundary forcing. The fixed stratification, together with the fixed horizontal
buoyancy gradient, however, provides an infinite reservoir of potential energy available
for release by baroclinic eddies.

It should be noted that our setup is different from that studied by Molemaker et al.
(2010). They removed the horizontal mean momentum flux divergences in (7.1-7.3) and
introduced an evolution equation for the horizontal buoyancy gradient. The setup de-
scribed above is well suited for our purposes, because it has a straightforward energy
budget and no direct comparison to quasi-geostrophic dynamics (though not impossible)
is attempted.

The adiabatic and frictionless form of equations (7.1-7.5) conserves the Ertel PV of
the full flow:

q=[fz+Vx(Azx+u)]-(-fAy+Vb) (7.12)
= (wy = )by + (A + u,—we)(—fA+ by) + (f + vy —1y)b, (7.13)

where x, y, and z are the Cartesian unit vectors. In our interpretation of simulation re-
sults, we will make use of two fundamental properties of PV dynamics. First, baroclinic
instabilities increase the bulk PV by injecting positive PV at the boundaries and folding
it into the interior of the fluid (Nakamura and Held, 1989). Analogously, baroclinic in-
stability in the real ocean lifts high-PV water from the thermocline into the mixed layer
(Garner et al., 1992). Second, convection occurs when g < 0 and rapidly restores PV to the
marginally stable state g = 0 (Hoskins, 1974; Emanuel, 1994; Haine and Marshall, 1998).
In the presence of baroclinic shear, this convection is slantwise and the result of sym-
metric rather than gravitational instabilities. Slantwise convection can produce positive
buoyancy stratification (b, > 0) by homogenizing buoyancy along tilted absolute momen-
tum surfaces, but it cannot increase the bulk PV above zero. The telltale signs of such
slantwise convective adjustment, regions of positive stratification and near-zero PV, were
recently observed at strong ocean fronts (D’Asaro et al., 2011) and have long been known
to occur in midlatitude atmospheric fronts (Emanuel, 1988).

We here want to emphasize the difference between convecting and restratifying states,
rather than between upright and slantwise convection. We diagnose restratification using
PV: when baroclinic instabilities are strong enough, they increase the PV to g > 0, which
shuts off convection—including the slantwise kind. Convecting states, on the other hand,
have a PV close to zero. We will see, however, that a 4 = 0 state does not mean that no
baroclinic modes are present. It only means that they are too weak to overcome the de-
struction of PV by the buoyancy forcing.
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The system of equations (7.1-7.5) is solved numerically using the MITgcm (Marshall
et al., 1997), modified to include the additional terms arising from the interaction of
the perturbations with the background flow. All simulations have a depth H = 100 m,
a grid resolution Ax = Ay = Az=2m, and k = 1073 m s~2. We choose harmonic viscos-
ity/diffusivity over a Smagorinsky (1963) closure, because it is easier to close the energy
budget and it remains unclear whether a Smagorinsky scheme is appropriate for flows
with strong baroclinic fronts. We do not expect the subgrid closure to affect the results
discussed in the following.

To reveal the parameter dependence of our setup, we nondimensionalize the system
(7.1-7.5) using the following scales:

t~f1,  xy~AH/f, z~H, u,v~AH,  w~fH, (7.14)
b~A?H,  ¢~A*H (7.15)

This follows Stone (1971)—except for the scale of buoyancy and pressure, for which Stone
had the imposed stratification as an available scale. The nondimensional system reads

up+zuy+w+u-Vu—v =-¢p, +Du, (7.16)
vi+2zve+u-Vv+u =—¢,+Dv, (7.17)
8% (wy + zwy + u-Vw) = b — ¢, + 6°Dw, (7.18)
b;+zby—v+u-Vb=Db, (7.19)
V-u=0. (7.20)

We abbreviate the viscosity/diffusion operator by DA = y[éz(Axx+AW)+Azz]. The bound-
ary conditions are —yb, = ¢, u; =0, v, = 0, and w = 0 at z = —1 and z = 0. The nondi-
mensional parameters of the problem are the ratio of the forcing to the scaling for the
baroclinic flux proposed by Fox-Kemper et al. (2008), ¢ = F/fA*H?, and Stone’s (1971)
non-hydrostatic parameter, 6 = f/A. Further parameters measure the strength of viscos-
ity/diffusion, y = x/f H?, which is assumed to be unimportant for the bulk behavior as
long as it is sufficiently small, and the nondimensional domain size, A, = fL,/AH and
Ay = fLy,/AH. The nondimensional potential energy budget reads

(~2b); = £~ (z0) — (w'b’) + y[b(0) ~ b(~1)], (7.21)
the mean kinetic energy budget

H(z+7)? +9%), = (20) + (1 + W) uw'w’) + (T,0'w')
(1 +7,)? + 7))+ y[1 +7(0)-T(-1)], (7.22)

and the eddy kinetic energy budget

L2+ 072 + 6w, = (w'b') — (1 + W)ww’y - (D, v'w’)

— y(02(ug® + uy?) + w2 + 62(vi2 +v;2)+v;2+52[52 21 w2 )+ wi2)). (7.23)
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The nondimensional form of PV is
q = (0%wy — vy)by + (1 + 1y — 8% wy ) (—1 +by) + (1 + vy — )b (7.24)

Note that a state with no stratification and no perturbation to the background flow has a
background PV of g = —1.

The scales chosen above are appropriate when rotation and baroclinicity play an im-
portant role in the dynamics. In the limit of strong forcing (¢ — co), however, the dynam-
ics revert to the classic problem of non-rotating upright convection between two plates
(e.g. Emanuel, 1994). In this limit, more appropriate scales can be formed by the forcing F
and depth H (e.g. Marshall and Schott, 1999):

t~(HYE)?,  xyz~H,  wvw~(FH)3, (7.25)
b~ (FY/H)'3, ¢~ (FH)?3. (7.26)

This nondimensionalization will prove useful when considering strongly forced simula-
tions.

7.4 Experiments

We focus on a series of experiments with 6 = 1, for two reasons. First, linear stability
analysis suggests that with this parameter, the baroclinic instability is already close to the
hydrostatic limit & — 0 (Fig. 7.1, Stone, 1971) that is of particular interest for strong ocean
fronts, where shears can greatly exceed f (e.g. D’Asaro et al., 2011). Second, this parame-
ter choice is practical, because the most unstable baroclinic mode then has an aspect ratio
close to unity (Stone, 1966b), which allows us to conveniently resolve the baroclinic mode
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as well as upright convection. The increasing aspect ratio of the baroclinic instability as
0 — 0 makes the concurrent simulation of baroclinic and convective motions increasingly
challenging.

We recapitulate the linear properties of the system by performing a linear stability
analysis for the baroclinic axis (no meridional variations) following Stone (1971). We con-
sider a mean state with stratification b, = 1, such that g = 0, instead of a basic state with
zero stratification. This should be taken as representative of the weakly stratified state
near which strong convection will keep the system. The growth rates given in Fig. 7.1
show a low-wavenumber geostrophic mode and a high-wavenumber ageostrophic mode
(Stone, 1970; Nakamura, 1988; Molemaker et al., 2005). We focus on the geostrophic
mode, because it represents the balanced dynamics whose interaction with convection
we seek to investigate. This mode is most unstable at a zonal wavenumber k = 1.13 and
has a short-wave cutoff at k = 1.68. Because of the finite domain, we only resolve a dis-
crete set of wavenumbers (Fig. 7.1). The domain size A, = 10 is chosen such that roughly
two wavelengths of the most unstable mode fit into the domain. For comparison, we also
perform simulations in narrow domains of zonal extent A, = 2, in which no baroclinic
instability can develop (cf. Taylor and Ferrari, 2010). Symmetric instabilities, which oc-
cur for g < 0, only require across-shear variations, so they are well represented in both
domains.

We perform both unforced (¢ = 0) and forced simulations with the forcing parameter ¢
varied over three orders of magnitude. All forced simulations are performed in both a
narrow and a wide domain, to isolate the effect of the baroclinic mode. The simulation
parameters are listed in Table 7.1.

7.4.1 Unforced simulation

We start with an unforced simulation (¢ = 0) to estimate the (dimensionless) buoyancy
flux B = (w’b’) generated by baroclinic instability in the absence of convection. The expec-
tation is, following Mahadevan et al. (2010), that restratification occurs for weak forcing
£ < B and not for strong forcing ¢ > B.

We determine the flux B empirically instead of using the Fox-Kemper et al. (2008)
scaling, because that scaling does not capture a dependence of the flux on the eddy scale
(see Chapter 8). As we will see, the eddy scale in our setup is set by the size of the domain.
The dependence of the flux B on the eddy scale then means that B depends on the size
of the domain. What sets the eddy size in the real ocean is a separate question, which we
circumvent by determining B empirically for the domain size used.

We initialize the simulation with a uniform stratification b, = 1 and add small ran-
dom perturbation to u, v, and b. This state is marginally stable to symmetric instabil-
ity, so the development is dominated by the baroclinic mode (Fig. 7.1). The evolution,
once the system has reached finite amplitude and nonlinear terms have become impor-
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Table 7.1: Parameter values for the numerical simulations. We list both nondimensional parameters and the dimen-

sional parameters used in the MITgcm.

o € Ax Ay F [m? s3] f s A[s™H H[m] Ly[m] Ly[m] At[s]
1.0 0 10 10 0 1.00x10™% 1.00x10™* 100 1000 1000 10
0.01 10 10 107° 2.15x107% 2.15x10°% 100 1000 1000 5
2 10 107° 2.15x107% 2.15x10™* 100 200 1000 5
0.1 10 10 10~ 1.00x10™% 1.00x10™* 100 1000 1000 10
2 10 107? 1.00x10™% 1.00x10"* 100 200 1000 10
1 10 10 107 4.64x107° 4.64x10™° 100 1000 1000 20
2 10 10°° 4.64x10° 4.64x10°° 100 200 1000 20
10 10 10 107° 2.15x10° 2.15x10°° 100 1000 1000 20
2 10 107°° 2.15x107 2.15x107° 100 200 1000 20
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(a) t=45 (b) t=60

Figure 7.2: Snapshots of b"—y at z = 0 for unforced simulation at different stages of the baroclinic instability

159



(a) potential energy

- 0'10 T 1 I 1
g
o 0.05} B
E - __A A =N
2 0.00 e Jmcglf,
s
% —0.05 | N ﬁ-\ |
o
5] _0_10 1 1 1 1
(b) mean kinetic ener
.. 0.0 ] ; . :
Q
g 005} .
E Ja
£ o0 S s /_\‘\‘Q/"V Can S
%‘D -0.05 | -
g -0.10 1 L ] 1
(c) eddy kinetic energy
- 010 1 I L] 1
18]
=
z 0.05 } MX el
S 0.00 /ﬁjg \%%
-
2 -0.05 | g
[}
g -0.10 : ! . .
0 20 40 60 80 100 120

time

Figure 7.3: Time evolution of terms in the (a) potential, (b) mean kinetic, and (c) eddy kinetic energy budget
for the unforced simulation (& = 0): buoyancy production (—), gravitational slumping (—), shear produc-
tion (—), diffusion/dissipation (—), and tendency (—)

tant, is illustrated with surface buoyancy snapshots in Fig. 7.2. In accordance with the
linear stability analysis, the mode that reaches finite amplitude first has a zonal wave-
length of 5 (Fig. 7.2a). This first wave perturbation then grows in size, spanning the
whole domain size at wavelength 10 (Fig. 7.2b,c), both due to the linear growth of the
wavelength-10 mode and nonlinear energy transfer from the wavelength-5 mode. The
domain-filling mode reaches finite amplitude, breaks, and rolls up into a domain-filling
vortex (Fig. 7.2¢,d). These baroclinic perturbations drive a vertical buoyancy flux that re-
stratifies the system. The restratification shifts the short-wave cutoff of the instability to
larger scales and eventually renders the configuration stable to all modes that fit into the
domain. When this occurs, the domain-filling vortex starts decaying.

This evolution can also be traced in the energy budget shown in Fig. 7.3. We show all
term in (7.21-7.23), but here focus on the buoyancy production (w’b’) that dominates the
generation of eddy kinetic energy. This term has three distinct peaks at t = 44, t = 62,
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and t = 76. The first peak in buoyancy production is associated with the wavelength-5
mode (Fig. 7.2a) and the third peak is associated with the wavelength-10 mode (Fig. 7.2¢).
The second peak has both modes contributing and represents the transition from the
smaller to the larger mode (Fig. 7.2b). The third peak is largest and reaches B = 0.08.
After this peak, the buoyancy production drops, as the restratification has rendered the
configuration stable.

7.4.2 Weak forcing

We now turn to forced simulations and start with a weak forcing ¢ = 0.01, which is
much smaller than the B = 0.08 estimated from the unforced simulation. The simulation
is initialized as before with the g = 0 state with b, = 1 and no flow anomalies. Convection
quickly sets in, but the baroclinic instability develops and restratifies the system. The
flow reaches a statistical equilibrium around t = 100, characterized by a domain-filling
baroclinic vortex (Fig. 7.4a) and strong stratification greatly exceeding the initial b, =1
(Fig. 7.5a). The equilibrium is achieved by a balance between the destabilization by the
forcing and the restratification by the baroclinic mode. Only in the center of the cyclonic
vortex, where the stratification is weakest, there is evidence of convection. The convective
plumes reaching the surface can be discerned in the surface buoyancy field, which is
otherwise smooth (Fig. 7.4a).

In the transient development, the peak buoyancy production of about 0.04 is larger
than the imposed forcing (Fig. 7.6). This large buoyancy production draws on the poten-
tial energy of the initial state, but cannot be sustained by the forcing. The system restrat-
ifies, which stabilizes the baroclinic modes and leads to a decay in buoyancy production.
The baroclinic instability is not shut off entirely like in the unforced simulation, how-
ever, because the destabilizing forcing keeps the system slightly unstable to baroclinic
instability. In statistical equilibrium the buoyancy production thus settles to a value of
about 0.01, corresponding to the forcing &. The energy cycle of this equilibrated state is
straightforward: potential energy is created by the forcing, potential energy is converted
to eddy kinetic energy by buoyancy production, and eddy kinetic energy is dissipated by
viscosity. The mean kinetic energy plays no significant role in the energetics.

To further characterize the statistical equilibrium, we show the vertical profiles of
the horizontal mean PV averaged in time over the equilibrated state (Fig. 7.7a). PV has
increased from the initial g = 0 and is significantly positive over the bulk of the domain.
It is negative only near the boundaries, where the boundary conditions force it to be g =
—(1 +&/y) = —23 with our choice of y =4.64 x 107%.

This equilibrium state is very different from that achieved in a narrow domain (cf. Tay-
lor and Ferrari, 2010). In a domain of width A, = 2, no baroclinic instability can develop,
because no unstable mode fits into the domain (Fig. 7.1). The imposed buoyancy flux is
carried by slantwise convection, rather than by a baroclinic vortex. The system adjusts to
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Figure 7.4: Snapshots of b’ —p at z= 0 and ¢ = 150 (in the equilibrated stage) for different forcing strengths
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Figure 7.5: Horizontally averaged buoyancy profiles for wide (—) and narrow (—) domains and for dif-

ferent forcing strengths as indicated in the titles. The lower buoyancy axis is given in the standard nondi-
mensionalization (7.14-7.15), the upper in the alternative nondimensionalization (7.25-7.26). All profiles
are averaged in time over the equilibrated range 100 < f < 200.

a state that is marginally stable to symmetric instability, that is one with § = 0 (Fig. 7.7a).
The stratification is determined by the imposed geostrophic shear and settles at about
b = 1. This is much weaker a stratification than achieved by baroclinic restratification in
the wide domain (Fig. 7.5a).

7.4.3 Moderate forcing

Next, we consider a moderately forced case, in which the forcing ¢ = 0.1 is only slightly
larger than the B = 0.08 estimated from the unforced simulation. Again, convection sets in
very quickly. A baroclinic mode develops and appears after f = 50. The system settles into
a statistical equilibrium that exhibits a coexistence of a domain-filling baroclinic vortex
and smaller-scale convection (Fig. 7.4b).

The interplay between the baroclinic and convective flows leads to an interesting state
that exhibits strong buoyancy stratification but a PV close to zero (Fig. 7.5b, 7.7b). PV is
restored to zero by convection, but the convective flows are strongly modified by fronts
generated by the finite amplitude baroclinic instability. At these fronts, the convection is
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Figure 7.6: Time evolution of terms in the (a) potential, (b) mean kinetic, and (c) eddy kinetic energy budget
for the weakly forced simulation (¢ = 0.01): forcing (—), buoyancy production (—), gravitational slump-
ing (—), shear production (—), diffusion/dissipation (—), and tendency (—)

slantwise rather than upright, giving rise to significant buoyancy stratification.

The buoyancy stratification is stronger than the b, = 1 expected from slantwise con-
vection operating on the background shear (Fig. 7.5b). In fact, pure convective flows for
this forcing—as simulated in a narrow domain—lead to an even smaller stratification,
because momentum fluxes eliminate part of the geostrophic shear. This confirms that the
baroclinic vortex significantly modifies the convection.

The horizontal mean PV is close to zero throughout the bulk of the domain, as ex-
pected for slantwise convection (Fig. 7.7b). There is significant cancellation between a
positive b, and the remaining terms in (7.24), showing the influence of the baroclinic
vortex. This cancellation renders the total PV profile very similar to that of the narrow
domain, where the stratification is much weaker. This similarity in g suggests that the
flows in both the wide and narrow domains are equally convecting and restoring to a
convectively neutral state 7 = 0. The baroclinic mode does not manage to restratify in the
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Figure 7.7: Horizontally averaged PV profiles for wide (—) and narrow (—) domains and for different
forcing strengths as indicated in the titles. The profiles for the wide domains are split into contributions from
b, (—) and the remaining terms (—). The lower PV axis is given in the standard nondimensionalization

(7.14-7.15), the upper in the alternative nondimensionalization (7.25-7.26). All profiles are averaged in time
over the equilibrated range 100 < t < 200.

sense of increasing the bulk PV above zero and thereby shutting off (slantwise) convec-
tion, but it does provide additional shear that modifies the convection and allows some
buoyancy stratification.

Another piece of evidence for slantwise convection influenced by the baroclinic vortex
comes from the energy budget (Fig. 7.8). The bulk of eddy kinetic energy is generated by
buoyancy production, but there is a significant contribution from shear production. This
is expected for slantwise convection, which can draw on the kinetic energy of the mean
flow (Haine and Marshall, 1998; Thomas et al., 2013). The mean kinetic energy is supplied
by gravitational slumping that attempts to restore geostrophic balance, out of which the
mean flow is pushed by the momentum fluxes.

7.4.4 Strong forcing

As the forcing is increased to ¢ = 1, much larger than B = 0.08, convection is expected
to dominate the flow. We find, however, that the strong convective flows are still modified
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Figure 7.8: Time evolution of terms in the (a) potential, (b) mean kinetic, and (c) eddy kinetic energy bud-
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detectably by baroclinic flows (Fig. 7.4c). Baroclinic instabilities develop on top of the
strong convection, increase the shear at fronts, and render the convection more slantwise.

The buoyancy stratification shows this effect of the baroclinic instability very clearly
(Fig. 7.5¢). The stratification that results in this interplay of the baroclinic flow with con-
vection is increased above the weak stratification resulting from pure convection in the
narrow domain. As expected from ¢ > B, the baroclinic instability is not able to achieve
true restratification, in the sense of increasing the mean PV to above zero (Fig. 7.7¢). In
fact, the PV profiles for the wide and narrow domains are indistinguishable—both are
restored to zero by strong convection.

The eddy kinetic energy production is now strongly dominated by buoyancy produc-
tion, but a significant contributing from shear production is still detectable (Fig. 7.9).
Slantwise convection, while weak, thus still manifests itself in the energy budget.
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7.4.5 Very strong forcing

At a very strong forcing of ¢ = 10, the flow is finally in the limit of no rotation and
no shear and dominated by strong upright convection (Fig. 7.4d). The effect of the baro-
clinic instability is undetectable and the characteristics of the flow in the wide domain
indistinguishable from that in the narrow domain.

The buoyancy profile is now unstratified over the bulk of the domain (Fig. 7.5d). The
profiles are indistinguishable between the wide and narrow domains. The profiles are
also very similar to that found in the narrow domain with ¢ = 1 if the comparison in this
strongly convective limit is done in the alternative nondimensionalization (7.25-7.26)
given in the upper buoyancy axis (Fig. 7.5c). The PV profiles are also indistinguishable
between the narrow and wide domains as well as with the narrow domain with ¢ =1
(Fig. 7.7¢c,d).
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The energy budget is now a straightforward conversion of potential energy into eddy
kinetic energy by buoyancy production, balanced by dissipation of eddy kinetic energy,
as expected for pure upright convection (Fig. 7.10). There is no significant contribution
from shear production.

7.5 Discussion

Our simulations suggest that baroclinic instabilities are remarkably resilient to the
presence of convection. When the forcing is weak, the instability’s buoyancy flux is larger
than the imposed flux and restratification occurs. Positive PV is injected at the boundaries
and the bulk PV of the fluid is increased above zero, shutting off convection. If the forcing
is stronger, exceeding the buoyancy flux that can be generated by the baroclinic instabil-
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ity, the instability does not increase the bulk PV to above zero and convection persists.
The convection is modified by the baroclinic instability, however, as shears are intensi-
fied along fronts, where convection becomes more slantwise. For very strong forcing, this
effect is small and convection becomes indistinguishable from the limit of upright con-
vection. This limit appears to be approached gradually, with no qualitative transition at
which the baroclinic mode is shut off.

These results were obtained for a background flow with moderate shear, 6 = f/A = 1.
We expect the results to carry over to the hydrostatic limit 6 — 0. As shown by Stone
(1971) and in Fig. 7.1, the linear dynamics are similar for 6 = 1 and 6 = 0. In the presence
of convection, we expect the baroclinic instability to survive in the 6 — 0 regime just as
well as in the 6 = 1 case analyzed here. The increasing scale separation between the in-
stability and upright convection as 6 — 0, which makes the concurrent simulation in this
limit so challenging, suggests that strong energy transfer between the processes becomes
more difficult. Future work should test this speculation.

Non-hydrostatic effects become important in the linear dynamics for 6 > 1 (Stone,
1971). We do not consider this limit, because baroclinic instability unlikely plays any sig-
nificant role in the dynamics when 0 > 1 occurs in the ocean. The potential energy avail-
able for release by baroclinic eddies is small and the dynamics are more likely dominated
by upright or rotating convection (e.g. Julien et al., 1996; Marshall and Schott, 1999).

In order to parameterize the restratification due to baroclinic mixed layer instabilities
in coarse-resolution ocean models, it is necessary to understand under what atmospheric
forcing conditions such restratification occurs. Our analysis shows that the magnitude of
the baroclinic flux compared to the forcing distinguishes between convecting and restrat-
ifying conditions. As shown in Chapter 8, however, the baroclinic flux depends on the
eddy scale, for which we have no good prediction. Understanding this dependence is cru-
cial for the parameterization effort, because it impacts both whether or not restratification
occurs and how strong it is when it does occurs.

The finding that baroclinic instabilities can develop even in the presence of strong
convection can help us narrow down the mechanism responsible for the seasonal cycle
of submesoscale turbulence. The persistence of baroclinic instabilities may explain how
they can develop and produce energetic submesoscale flows at order 10 km in winter, de-
spite the strong atmospheric forcing. The coexistence of baroclinic and convective flows
in moderate to strong forcing conditions is consistent with the presence of baroclinic in-
stabilities and the lack of restratification of deep winter mixed layers. That baroclinic
instabilities can grow in the presence of convection also means, however, that they are
unlikely to be damped out in summer, even if mixing time scales are short in shallow
mixed layers.

The lack of energization of order 10 km flows in summer must then be explained by
a lack of energy transfer to these scales from the small instability scale. A possible sce-
nario is that the small amount of potential energy available for release in shallow sum-
mer mixed layers is insufficient to significantly energize order 10 km flows. Somewhat
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counter-intuitively, baroclinic instabilities may be more successful in growing and restrat-
ifying the mixed layer in summer than in winter—but they quickly exhaust the energy
fueling their growth. The energy input from summertime atmospheric forcing is weak,
leaving the energy throughput too feeble for the instability to transfer significant energy
into order 10 km flows. In winter, in contrast, strong atmospheric forcing produces copi-
ous amounts of potential energy available for release by baroclinic instabilities, leading
to the strong submesoscale turbulence observed. This scenario should be made quantita-
tive and its consistency tested in a setup that allows for the evolution of the mixed layer
depth.

170



171



172



CHAPTER 8

ScALING OF THE BArocLINIC EpDY FLux IN BROAD
AND NARROW FRONTS



8.1 The Fox-Kemper et al. (2008) scaling

Baroclinic instabilities in the ocean mixed layer are important in restoring stratifica-
tion after atmospherically forced mixing events (e.g. Haine and Marshall, 1998; Boccaletti
et al., 2007). Baroclinic mixed layer eddies are also thought to effect important exchanges
of heat, carbon, nutrients, and other tracers between the surface and interior ocean (e.g.
Capet et al., 2008a; Lévy et al., 2010, 2012; Mahadevan, 2014).

Mixed layer baroclinic instabilities slide dense waters under light waters, a process
that flattens mean isopycnals. The increase in stratification is achieved by a positive eddy
buoyancy flux w’b’, where w’ and b’ are the vertical velocity and buoyancy anomalies
associated with the instability. The overline is an appropriately defined spatial average
and will denote a domain average in what follows.

Since baroclinic mixed layer instabilities occur on small horizontal scales of order
0.1-10 km, they are not typically resolved by current global ocean models. The eddies’
effects on stratification and transport must be parameterized. Fox-Kemper et al. (2008)
proposed a scaling for the eddy buoyancy flux, which can be used to mimic the slumping
of baroclinic mixed layer fronts in coarse ocean models. They advance physical arguments
that lead to

w'b’ ~ fA?H?, (8.1)

where f is the Coriolis parameter, A is the geostrophic shear associated with the lateral
buoyancy gradient of the mixed layer front, and H is the mixed layer depth. A parame-
terization based on this scaling was implemented in global ocean models and shown to
improve upper-ocean properties (Fox-Kemper et al., 2011; Gent et al., 2011).

Fox-Kemper et al. (2008) tested this scaling in a suite of spin-down experiments. Their
mixed layer front is initially broader than the baroclinic eddies generated by the instabil-
ity. The eddies grow in scale, reach the frontal scale, and eventually broaden the front.
This transition from a broad frontal zone to a front that has the same scale as the eddies
complicates the analysis. Considering the broad- and narrow-front regimes separately, we
here uncover a dependence of the baroclinic flux w’b’ on the characteristics of the eddies
themselves, a dependence that is not captured by the scaling (8.1).

8.2 Broad front

In a frontal zone that is much broader than the eddies generated by the baroclinic
instability, there is no horizontal eddy flux divergence, so the mean lateral buoyancy gra-
dient remains unchanged. The parameters in the scaling (8.1) therefore remain fixed and
the baroclinic flux is predicted to be constant.

This prediction is tested in a set of doubly-periodic simulations, in which the lateral
buoyancy gradient is imposed and remains fixed (e.g. Taylor and Ferrari, 2010). The im-
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posed background meridional buoyancy gradient is —f A and the associated geostrophic
zonal shear A. The Boussinesq equations for perturbations from this background flow are

up+Azuy + Aw+u-Vu - fv=-¢,+Du (8.2)
v+ Azvg+u-Vo+ fu=—¢,+Dv (8.3)
wi+Azwy+u-Vw=b-¢,+Dw (8.4)

by +Azby— fAv+u-Vb=Db (8.5)
Vou=0 (8.6)

where u, v, and w are the zonal, meridional, and vertical velocities, ¢ is the density-
normalized pressure, and DA =k, VEA +x,A,, defines the diffusion operator. The bound-
ary conditions are no normal flow (w = 0), no stress on the perturbations (1, = v, = 0), and
no buoyancy flux (b, = 0) at z = 0 and z = —H. For simplicity, we replace the strongly strat-
ified thermocline by a solid bottom boundary. As long as the thermocline stratification is
strong enough, this is a good approximation (cf. Garner et al., 1992). All perturbations
are doubly periodic on a square domain of zonal and meridional extent L.

The meridional buoyancy gradient —f A is constant, so the scaling (8.1) involves only
prescribed parameters. Using the MITgem (Marshall et al., 1997), we perform a suite of
experiments with a fixed set of these parameters—we only vary the domain size. The
scaling (8.1) predicts no dependence on the domain size, as long as the instability is well-
resolved.

We choose f = A = 1074571, H = 40 m, and initialize the flow with b, = A2 and zero
perturbation velocities. This state is stable to symmetric instability, so the most unstable
mode is baroclinic (Stone, 1966b). A numerical linear stability analysis yields a wave-
length of 220 m for the most unstable mode (Stone, 1970, 1971). The instability is kicked
off by small random initial perturbations in b of magnitude 10~ m s~2. The horizontal
and vertical viscosities/diffusivities are x;, = 1073 m?s~! and x, = 2x10% m? s~1. The
domain sizes and time steps are L = 200 m with At = 100 s, L = 400 m with At = 50 s,
L =800 m with At =255s,and L = 1600 m with At =12.5s. The grid spacing is Ax = Ay =
Az=2m.

In all simulations, the instability develops first at the scale of the most unstable mode.
Larger eddies are subsequently energized until they reach the size of the domain (Fig. 8.1).
This increase in eddy scale is quantified by diagnosing the dominant wavelength A:

o [ [ knS(k,1)dkdl
o[]Sk lydkdl

(8.7)

where k and [ are the zonal and meridional wavenumbers, S is the buoyancy spectrum,
and the integration is over the entire wavenumber space. The dominant eddy scale in-
creases and then saturates at a scale that depends on the domain size (Fig. 8.2a). The
increase in eddy scale is expected for a number of reasons: larger-scale modes reach finite
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(a) t=0.37x10%s (b) t=0.57 x10%s

(c) t=0.77x10%s (d) t=0.97 x10%s

Figure 8.1: Snapshots of surface buoyancy b — fAy showing the evolution of the broad front in the 1600-m
domain. The color scale ranges between +f AL from white through blue to black.
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amplitude later as they have smaller growth rates, smaller-scale modes become stable as
restratification occurs and the cutoff scale for the instability increases, and larger eddies
can be energized through a nonlinear transfer of energy across scales.

In all simulations, the flux eventually reduces to zero. This is due to the increased
stratification that shuts off baroclinic instability by pushing the short-wave cutoff beyond
the domain scale and no unstable mode fits into the domain anymore. The domain size
thus imposes a limit on the size of the baroclinic eddies.

Irrespective of the process that energizes larger eddies in the growth phase, the scal-
ing (8.1) predicts the baroclinic flux to remain constant once the eddies have reached
finite amplitude. Specifically, the Fox-Kemper et al. (2008) parameterization predicts

Wb = 0.06fA’H?u(z) = 0.04f A’H?, (8.8)

given the vertical structure

2z \? 5 (22 \
pt(z)_{l (E+1)H1+E(-ﬁ+l)]. (8.9)
The overline denotes a volume average over the domain.

The simulations are inconsistent with this prediction. While (8.8) captures the mag-
nitude of the baroclinic flux initially, there is a significant increase beyond this value as
the eddies grow in scale—if their growth is not limited by the domain size (Fig. 8.2b).
The increase of the flux is intermittent and occurs in bursts associated with the growth at
discrete low wavenumbers, but a clear pattern stands out: growth of the eddy scale is fol-
lowed by an increase in baroclinic flux. The maximum flux is achieved when eddies have
reached the domain scale. As a consequence, there is an increase in maximum baroclinic
flux as the domain size is increased. The increase above the prediction (8.8) is largest for
the largest domain.

The increase in eddy scale goes hand in hand with an increase in eddy velocities
(Fig. 8.2c). The root mean square meridional eddy velocity increases beyond the maxi-
mum velocity of the mean flow AH, which violates the assumption v ~ AH made in the
derivation of (8.1). This was also noted by Bachman and Fox-Kemper (2013), who showed
that the baroclinic flux can be better captured if the eddy velocity scale is known.

A baroclinic flux that increases in time leads to accelerating restratification, which is
clearly visible in the largest domain (Fig. 8.2d). This acceleration is not captured by the
scaling (8.1) and the Fox-Kemper et al. (2008) parameterization, which predicts a linear
increase in stratification:

by =—-0.06fA’H?u,(z) = 0.6 fA2. (8.10)

The disparity in the restratification rate is largest when eddies have grown largest. For
even larger domain sizes, the stratification rate would surpass the prediction (8.10) even
more dramatically.
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The domain size dependence is artificial, but it reveals a dependence of the eddy
flux on eddy characteristics. The situation in the real ocean is more complicated, because
mixed layer eddies grow in the presence of a turbulent mesoscale eddy field. What sets
the relevant eddy scale and kinetic energy in this case is an open question.

Fox-Kemper and Ferrari (2008) test the Fox-Kemper et al. (2008) parameterization by
employing it in a two-dimensional simulation. They compare the parameterized evolu-
tion to a full three-dimensional setup with explicit baroclinic eddies. They show reason-
able correspondence for the time interval considered, over most of which the eddies are
smaller than the frontal zone. But there are discrepancies that can be traced back to the
increase of the baroclinic flux with eddy scale. The full simulation exhibits an increase in
the overturning stream function not captured by the parameterized version, though con-
siderable time variability may obscure this increase in snapshots (Fig. 3 in Fox-Kemper
and Ferrari, 2008). This causes accelerating restratification in the full simulation, whereas
the parameterized version exhibits constant restratification (Fig. 5 in Fox-Kemper and
Ferrari, 2008). The acceleration is not as dramatic as in our largest simulation, because
the eddies soon reach the size of the frontal zone, at which point restratification is slowed
down. This allows the linear fit (8.8) to work reasonably, but it is clear that it would have
failed more dramatically if the front had been broader (cf. Fig. 8.2d).

8.3 Narrow front

The simulations presented in Fox-Kemper et al. (2008) pass from the broad-front to
the narrow-front regime as the eddies grow in scale and reach the width of the frontal
zone. The goal of this section is to test whether there are dynamical differences between
these two regimes or whether there is an increase in baroclinic flux beyond the scal-
ing (8.1) in the narrow front regime as well.

We perform an experiment with a front that is initialized to be narrower than the
instability scale. We use the same doubly-periodic setup as above, but choose an initial
buoyancy perturbation that cancels out the background buoyancy gradient —fA in the
bulk of the domain and confines buoyancy variations to a narrow front of width Lg:

Ab 2
17:N2(z+%)+f/\y——2—tanh—i}fi (8.11)
The buoyancy jump across the front is Ab = fAL, such that the buoyancy anomalies at
y = +L/2 very nearly vanish (L < L) and periodicity is ensured (Fig. 8.3). The initial zonal
flow perturbation is in thermal wind balance:

Ab 2y
=- — sech? =2, .
Uy, A+fosec L (8.12)

Both the lateral buoyancy gradient and the zonal flow are very weak outside the frontal
zone. This setup behaves like one with walls at y = £L/2 as long as there is no flow there.
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The initial frontal width is chosen to be L = H = 40 m. The domain size is L = 3200 m.
We choose Ab such that the initial shear in the front is A¢ = Ab/fL¢ = f =107* 57!, giving
Ab =4x10"7 ms2and A = Ab/fL = 1.25x107® s7!. The initial stratification is chosen
such that the maximum Richardson number in the front is unity: N = 104 s~!. The hor-
izontal and vertical viscosities/diffusivities are x;, = 107* m?s~! and x, = 1075 m? s71.
The time step is Af = 100 s and the grid spacing is again Ax = Ay = Az =2 m.

The initial instability occurs at a wavelength of about 150 m (Fig. 8.4). Barotropic
instabilities are possible, but the phenomenology of the flow suggests that dominant in-
stability is baroclinic in nature. The eddies subsequently increase in scale as they flatten
the front. The eddies increase the frontal scale L¢, which is of the same order as the eddy
scale (cf. Manucharyan and Timmermans, 2013). We stop the simulation when the eddies
fill the domain and the periodicity of the setup would affect the further development of
the front. The analysis is restricted to the period in which the eddies widen the front into
undisturbed fluid.

We diagnose the domain-average baroclinic flux w’b’. The flux increases as the insta-
bility grows and then remains roughly constant (Fig. 8.5a). As explained in the following,
this again implies that the flux increases beyond what is predicted by the scaling (8.1) as
the eddies grow in size.

The scaling (8.1) predicts

Wb ~ fAZH?, (8.13)

where the overline with a superscript ‘f’ denotes a volume average restricted to the frontal
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(a) t=0.75%x10%s (b) t=150%100s

(c) t=3.00x10°%s (d) t=6.00x10%s

Figure 8.4: Snapshots of surface buoyancy b — fAy showing the evolution of the initially narrow front. The
color scale ranges between =fAL from white through blue to black.
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zone of width L, which increases as the flow evolves. The scaling employs the evolving
meridional buoyancy gradient averaged vertically and over the frontal zone —fAy. Since
the buoyancy difference Ab across the front remains fixed, the buoyancy gradient in the
frontal zone

Flkpr T (8.14)

decreases as the front broadens (Fig. 8.5b). The baroclinic flux is confined to the frontal
zone, so the domain-average flux is roughly

L
= o (8.15)

w'b’ ~
Together with the scaling (8.13), this yields the prediction

Ab?H?
fLiL

w’'b’

(8.16)

The domain-average baroclinic flux is thus predicted to decrease like L;l as the front
broadens. In our simulation, the frontal width increases by over an order of magnitude
from the initial instability scale to the domain scale (Fig. 8.5b). The diagnosed baroclinic
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flux, remaining roughly constant (Fig. 8.5a), thus increasingly exceeds this prediction as
the eddies grow larger and the front wider. This increase of the baroclinic flux beyond the
prediction (8.1) is qualitatively consistent with that found in the broad-front regime.!

8.4 Concluding remarks

Our analysis suggests that the baroclinic flux w’b’ increases with the eddy scale or
equivalently with the eddy kinetic energy, which is not captured by the scaling (8.1). The
simulations show an increase of the baroclinic flux beyond the scaling, but what exactly
the additional dependence is and how it can be understood physically should be studied
in more detail in the future.

The dependence of the buoyancy flux on eddy characteristics implies that a parame-
terization of mixed layer baroclinic instabilities requires an additional input besides the
mixed layer depth and the lateral buoyancy gradient. What sets the relevant eddy charac-
teristics and how they can be determined from large-scale quantities remain open ques-
tions. It is likely that nonlinear dynamics are essential (cf. Larichev and Held, 1995; Fox-
Kemper et al., 2008). Furthermore, future work will need to investigate whether and how
the evolution and restratification is affected by the presence of the thermocline, which is
expected to become increasingly important as mixed layer eddies grow larger (cf. Chap-
ter 6; Ramachandran et al., 2014).

Including the restratification by mixed layer baroclinic instabilities in global ocean
models has already improved upper-ocean properties. It can be hoped that developing
an understanding for the additional dependence on eddy characteristics will improve the
parameterization of baroclinic restratification and help further decrease biases in global
ocean models.

IThe slight decrease of w’b’ exhibited by Fig. 8.5a is, if statistically significant, much smaller than the
decrease by over an order of magnitude predicted by (8.16).
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CHAPTER 9

CoNcLUSIONS AND OQUTLOOK



Submesoscale turbulence has recently come into focus as an important component
of upper-ocean dynamics. This dissertation contributes to deciphering what process gen-
erates surface fronts and what dynamics determine the characteristics of submesoscale
flows.

Observations suggest that energetic submesoscale flows arise from baroclinic mixed
layer instabilities, which release large amounts of available potential energy in winter,
when mixed layers are deep. The observed spectral and vertical distribution of energy
in the near-surface layers of the wintertime western North Atlantic is consistent with
a simple quasi-geostrophic model of submesoscale turbulence energized by baroclinic
mixed layer instabilities. Outside the winter mixed layer, i.e. in the seasonal thermocline
in summer and the main thermocline throughout the year, submesoscale turbulence is
observed to be weak: the energy of balanced flows falls off quickly with wavenumber,
consistent with interior quasi-geostrophic turbulence.

In winter, atmospheric forcing destabilizes the upper ocean, generating deep mixed
layers. In conjunction with lateral buoyancy gradients, this provides copious amounts of
potential energy available for release by baroclinic instabilities. These instabilities can
develop even in the presence of strong convection. The restratification associated with
the release of potential energy is countered by convective motions that keep the mixed
layer unstratified. The baroclinic mixed layer instabilities create fronts at the surface as
well as the base of the mixed layer and through turbulent scale interactions energize the
submesoscale range. The nonlinear dynamics follow expectations from geostrophic tur-
bulence theory: kinetic energy generated by the instabilities is transferred preferentially
to large scales. In equilibrium, the dynamics can be described as a dual cascade of bar-
otropic and baroclinic mixed layer modes, but it remains unclear what determines the
submesoscale energy levels in such an equilibrium.

It is possible that submesoscale turbulence never reaches an equilibrium and must
be viewed in the context of the seasonal cycle of the atmospheric forcing. It has recently
been suggested that the kinetic energy produced by baroclinic mixed layer instabilities
is a significant source for mesoscale eddies (Sasaki et al., 2014). In this scenario, the sub-
mesoscale energy input induces a mesoscale seasonal cycle, which is shifted in phase from
the submesoscale cycle because it takes a few months for energy to percolate from the sub-
mesoscale instability to order 100 km scales. If this is the case, the submesoscale energy
levels are determined by the transient energization by baroclinic mixed layer instabili-
ties in winter, but the submesoscale energy budget is linked inseparably to the mesoscale
equilibration problem. An extension of the analysis presented in this dissertation is re-
quired in order to understand mesoscale and submesoscale dynamics that evolve and
interact on annual time scales.

A transient view of submesoscale dynamics is necessary at least for the summer, as
suggested by the weakness of submesoscale flows then. If the mixed layer depth were
fixed in time, baroclinic instabilities would release infinite amounts of potential energy,
because they can grow even in the presence of fast convection. The instabilities would
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eventually energize the submesoscale range also in summer, despite the mixed layer’s
shallowness. In reality, the instabilities instead exhaust their energy source by restratify-
ing the mixed layer and submesoscale flows remain weak. This scenario should be cast in
more quantitative terms, but it suggests taking a closer look at the energy budget of sub-
mesoscale flows and linking their energization to the supply of energy by surface forcing.

A related question is what sets the length and energy scales of the baroclinic eddies
dominating mixed layer restratification. The rate of restratification depends on these eddy
characteristics, so the parameterization of baroclinic mixed layer instabilities in coarse-
resolution ocean models should take them into account. It seems likely that nonlinear
dynamics play an important role in setting these characteristics, and a comprehensive
energy budget of submesoscale flows may provide an avenue to progress in this regard as
well.

The energization of submesoscale flows by baroclinic mixed layer instabilities is quite
different in character from mesoscale-driven surface frontogenesis, as described by sur-
face quasi-geostrophic dynamics. These dynamics have previously been proposed to be
an important energization mechanism, but their fingerprints are not found in the obser-
vations analyzed here. Surface quasi-geostrophic dynamics do not predict the seasonal
cycle found in the western North Atlantic and the observed distribution of energy across
scales and depth does not match what is predicted.

It may be expected that mesoscale-driven surface frontogenesis is more relevant for
regions that have interior potential vorticity gradients weaker than those in the west-
ern North Atlantic. Surface buoyancy gradients then play a more important role in the
dynamics. A problem faced in such regions, however, is that if mesoscale eddies are rel-
atively weak, inertia—gravity waves can dominate and mask balanced flows in the sub-
mesoscale range, as in the East Pacific observations analyzed here. The balanced flows,
even though they are less energetic than inertia—gravity waves, may still be important in
the transfer of tracers between the surface and interior ocean. In such situations one may
be able to learn about balanced submesoscale flows from the distribution of tracers stirred
by these motions. Our understanding of the stirring by balanced flows, inertia—gravity
waves, and combinations thereof, however, appears to be incomplete. It remains unex-
plained why there is much less submesoscale salinity and temperature variance along
isopycnals than expected from stirring by balanced flows alone (Cole and Rudnick, 2012).

A global view of submesoscale flows is anticipated to emerge from the upcoming Sur-
face Water and Ocean Topography (SWOT) mission. The wide swath altimeter is expected
to measure sea surface height to much higher accuracy than the nadir-looking altimeters
currently employed. The use of geostrophic balance to infer surface currents, however,
must be justified much more carefully in the submesoscale range. A major challenge will
be to distinguish between sea surface height anomalies associated with balanced flows
and those induced by inertia—gravity waves. The repeat cycle will be too long to iden-
tify inertia—gravity waves based on their high frequencies. The method we developed to
distinguish between geostrophic flows and inertia—gravity waves in one-dimensional ob-
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servations of currents is not applicable to altimetry data, because only sea surface height
is measured, rather than two flow components. But progress may be possible by taking
advantage of the two-dimensional sea surface height field measured by SWOT as well as
the sea surface temperature distribution concurrently measured by other satellites.

The focus of this dissertation is on the local dynamics of submesoscale turbulence.
While many questions remain, the impact of submesoscale flows on the global ocean cir-
culation is even less clear. Modeling studies are beginning to probe in this direction, but
the mechanisms of interaction between submesoscales and the gyres, the Antarctic Cir-
cumpolar Current, and the meridional overturning circulation are largely unexplored.
There is ample room for future inquiry and surprises are inevitably waiting.
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