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Abstract

This Thesis contains a theoretical study of the disordered boson
system. The most important property of pure interacting boson

system at low temperature is superfluidity. In order to understand

various phenomena in the real world where some amount of disorder

is always present, it is natural to study the effect of the randomness

on superfluidity. This problem has the well-known difficulty that,

unlike the corresponding electron system, the self-interaction can

not be treated as a perturbation. This is because without the self-

interaction the whole system will collapse and becomes a state far

different from the physical systems which we intend to study. In

this Thesis both microscopic and phenomenological approaches are

used to study this long-standing problem.

In chapter one I give a general account of the experimental situ-

ations and theoretical bases. In chapter two I will report the results

on the Bogoliubov theory of liquid helium including weak external

random potential. It is shown that superfluidity could be destroyed

when the total liquid density is too small. It demonstrates that

disorder can in fact change the qualitative nature of the system.

In chapter three I will study the corresponding two dimensional

system with a new method. It turns out that our method has a

direct application to the interesting problems of fractional quantum

Hall effect. Numerical results on the strongly disordered superfluid

will also be discussed. Chapter four is a model to explain one of

the most striking experiments regarding disordered helium: the su-

perfluid transition on porous media. Almost all the experimental

observations can be understood within this model.

Thesis supervisors: Professor Hung Cheng
Professor of Mathematics

Professor Kerson Huang

Professor of Physics
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Chapter One

Introduction

1.1 Physical Properties of Liquid Helium

Liquid helium is usually referred to as a kind of "quantum liquid", due to the fact

that very few of its thermodynamical and fluid-dynamical properties can be understood in

terms of classical physics. This is perhaps the reason it has received enormous theoretical

and experimental study since its discovery. Despite the great amount of efforts already

been made, the physics of liquid helium is far from being completely understood. For

example, nobody knows how to derive the A-transition critical index from a microscopic

model. In this section I will discuss some experiments on the properties of liquid helium

that bear relevance to the theoretical studys in the following chapters.

Helium has two isotopes, 'He and 'He. The low temperature phase diagrams of these

two species are quite different. In particular, 'He becomes the so-called superfluid when

the temperature is lower than 2.17 K while 3He remains a normal fluid until about 3 x 10-3

K. One should not be surprised by this difference as 4He is a boson while 3 He is a fermion.

In the following I will consider 4He only. The problem of 3 He is a totally different subject.

Without explicit reference the term helium will simply mean 4He.

The boiling point of helium 4.21 K is the lowest of all substances. If the temperature

is further lowered, it experiences a phase transition at about 2.17 K. This transition is

usually referred to as A-transition and the transition temperature is called TA. Above TA
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the liquid behaves like a normal viscous fluid. Below T\ many surprising new properties

show up. They are in general referred to as the properties of a superfluid. Accompanied

with the normal fluid-superfluid transition is a sharp singularity of the specific heat at TA.

The temperature dependence of specific heat is shown in figure 1.1 [1] . The shape of the

curve resembles the Greek letter A, hence the name of the transition. The singularity is

believed to be logrithmic. The transition is very "pure" in the sense that the singularity

does not get rounded up even in extremely narrow temperature range. Under normal

pressure it is believed that the system remains a liquid down to absolute zero temperature.

One of the best way to demonstrate the superfluid property is the Andronikashvili's

experiment which is schematically shown in figure 1.2 . When the pile of discs rotates,

only a portion of the fluid is dragged along. The spacing of the discs is so small that above

TA all the fluid is dragged along. So in a superfluid a fraction of the fluid is inert to the

external dragging force. In other words, they are not viscous at all. This lack of viscosity

can be further illustrated by the experiments related to the superleak (figure 1.3). In a

channel with diameter as narrow as about 100 nm liquid helium can flow through when

there is a temperature difference at the two ends. A viscous normal fluid can never leak

through such a narrow channel.

The above two examples include only one side of the meanings of superfluidity. Super-

fluidity has a two-fold meaning. It could mean the inertia of the fluid to external dragging

force, or it could mean the existence of a persistent superflow.

2
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Fig. 1.1

Sepecific heat of liquid 4 helium. Broken line shows the specific heat of idel bose gas having the same

density as 4 He. See P.4 of Ref.1
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Fig. 1.2

Andronikashivili's experiment
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A

Fig. 1.3

Two vessels connected by a superleak. A temperature difference between the two is accompanied by

a presuure head. See P.9 of Ref.1

In the experiment of Reppy and Depatie [2] an initial current of liquid helium is set

up in a torus when the temperature is above TA. After the whole thing is cooled down

below TA, the liquid inside can flow around the torus indefinitely. No angular velocity

decay is detected over a twelve-hour period. The theoretical version of this persistent

superflow is that the flowing state is in fact a Hamiltonian eigenstate. It is obviously not

the ground state since it carries a lot of energy. However, the transition to the ground state

is prohibited by the energy barrier. In other words, it is a metastable state. These two

pictures of superfluidity are actually equivalent to each other. This point will be explained

later after the mathematical definition of the superfluid is formulated.

The phase diagram of 4 He can be found in many text books [3]. The purpose of this
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thesis is not to explain the physics of the various phases. Instead, it is a theoretical study

of how the liquid behaves in the presence of disorder, or impurities, especially in the low

temperature region.

1.2 Mathematical Definition of a Superfluid

Since superfluidity is primarily a experimental phenomenon. I will take an operational

definition which bear a close relation to what happens in the real experiments. Consider

an infinitely long pipe filled with helium, both the pipe and the liquid are brought to

complete rest at t(time)= -oo. Let's then accelerate the wall infinitely slowly. After an

infinite amount of time the velocity of the wall at t = 0 becomes v. Normal fluid density

pn is defined to be the fraction of the fluid that is moved along with the wall after this

process. In other words, the momentum density < g > at t = 0 and p are related by

< g >=pn (1)

The superfluid density p, is simply the difference between the total density p and the

normal fluid density.

pa P - pn (2)

See figure 1.4

One may ask a nature question: How does the wall interact with the fluid in parctice?

Of course the answer depends on the kind of wall we are using. However it will be shown

later that the detailed form of the interaction has no effect on the results. So the value of

the superfluid density will not change with the choice of the wall.
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t = minus infinity
velocity=O

hard wall

t = zero

liquid helium

wall velocity a v

fluid momentum density =
normal density x v

Fig. 1.4

The operational definition of ps. At t = -o the whole thing is brought to complete rest. The

wall is accelerated adaibatically from rest to velocity v. The fraction of fluid that is dragged along is the

normal fluid part.
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It should be noticed that even though there is an apparent reference to the wall in the

definition, superfluid density p, is an internal property of the liquid and could be expressed

without the wall also. This is actually what I will do in the following.

Let's consider a more general case now. Instead of a moving wall, we can turn on a

external force field V(x, t) infinitely slowly. The effect of the external field is described by

the interaction Hamiltonian

H1 = -Jdx (x) -(x,t)

where ' is the momentum density. Moving wall just corresponds to some particular choice

of '. I will come back to this connection after considering the response of the liquid to a

general i(x, t). The linear response is given by the Kubo formula:

< gi(x, t) >= 1-0ds Ida 3Y Xi (x, t; y, S)Vj (y, s) (3)

with

xij(x, t; y, s) =i(t - s) < [gi(x, t), gj(y, s)] >

The behavior of the momentum density correlation function is central to the definition of

superfluidity.

Since the space-time is homogeneous, Xij(X, t; y, s) is of the form Xij(x - y, t - s). The

Fourier transform of Xij(x - y, t - s) is xij(k, w). If we turn on the external field infinite

slowly, the time dependence of V can be taken to be

V(x, t) = V(x)e', -oo < t < 0
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where e is an infinitesimal quantity. We are interested in the values of the physical quan-

tities at t = 0 after this long process. For this purpose let's define the static response

function Xij(x)

xij(x) J xij(x, t)eidt
10-

The Fourier transform of it is

j~jj k) 0dw X(k, w)
_-00 27r w + ic

At t = 0 we have

< gi(k) >= ij(k)v,-(k)

where i(k) is the Fourier transform of V(x). Since j ,(k) is a second rank tensor, it has to

be of the form

ij(k) = k2 A(k) + 6?) B(k) (4)

where A and B are functions of the magnitude of k only. In terms of A and B, the linear

response relation becomes

< gi(k) >= A(k) k2 k' + B(k)vi(k) (5)

It's time for us to come back to the moving wall now. The interaction between the wall

and the liquid must happen in a short but finite range along the wall surface. The strength

of the dragging force is a sharply peaked function around the contact face. Deep inside

the liquid there should be no force at all. Since the the wall is translationally invariant,

the force changes only in the normal direction of the surface. As for the direction, it's

clear that the field is always in the moving direction, which is perpendicular to the normal
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direction. So 6(k) is nonvanishing only when k is in the normal direction, however 6(k)

itself is always perpendicular to it. In other words

k - V(k) = 0

Thus we conclude that the dragging force is always transverse. So the first part of eq.(1.5)

will never contribute and we get gi(k) = B(k)vi(k).

Now we have related the final momentum density distribution with the applied ex-

ternal field. The next question is how to relate the force field V(k) with the final velocity

17 which appear in the very beginning of the definition of ps. In order to accomplish this

let's consider a classical, or normal fluid first. It can be shown that for a classical fluid we

have [3]:

Ij(k) = 6Pp , (classical fluid)

where p is the total mass density. As a result, a force field 6(k) is applied to a classical

fluid the final momentum distribution is gi(k) = pv,(k), in particular

g(O) = pv (O) (6a)

However, independently we know that if V is the dragging force, the final density should

satisfy

gi(O) = pv (6b)

since the whole thing will move along the wall eventually for a classical fluid. Comparing

eq.(1.6a) and eq.(1.6b) we conclude that

vO(O) = v

9



In general, the same force field will result in the final momemtum

gi (O) = B(O)v

So, by definition,

B(O) = pn (7)

Furthermore, from one of the exact sum-rules we know [3]

A(O) + B(O) = p , (f - sum - rule) (8)

Combine the above two equations we have

Ps p - pn = A(O)

The liner response function is in fact

ij(k) = p9 k2 + PnSU1 (9)

Now we have reached a expression of the superfluid density free of the reference to

any walls. It is expressed in terms of the equilibrium thermal average of certain operators.

In contrast to thermodynamical quantities like energy and specific heat, it is an dynamical

coefficient that determines how the system responds to certain external disturbances. In

order to measure it we must apply some kind of external force to drive the system slightly

out of equillibrium.

The mathematical definition of p, is not a completely settled problem [4]. Different

definitions appear in the literature. For example, in the famous paper by Nelson and

Kosterlitz [5] on the universal jump of liquid helium thin film, they use a definition of p, in

10



terms of the correlation function of the phase of the field operator. In that particular case,

this two definitions just happen to agree with each other within the range of the validity

of their theory.

A rigorous proof of the equivalence among the definitions does not seem to be possible.

While not being able to do this I believe the definition presented above is the one most

related to the experiments. In fact, in most cases, it is the quantity we measure in the

experiments.

It is clear now that we can reconcile the two independent concepts of superfluidity

mentioned the previous section, i.e. inertia to external force and existence of persistent

current. When an adiabatical force is applied to the system the initial and final states

should be eigenstates of the initial and final Hamiltonian respectively. Call the reference

frame where the wall is at rest initially Li and the frame moving with the wall finally L2.

When t = 0 the state of the liquid in Li is called JH1 >. The momentum density of JH1 >

is pv. The corresponding state seen in L2 is called JH2 >. JH2 > should be an eigenstate

of the Hamiltonian in L2, which is simply the one with a fixed wall. What is the momentum

density of 1H2 > seen in L2? By Galelien transformation it is pv - pnv = pv # 0. Thus

we find the state JH2 > with a persistent current. It is an eigenstate of Hamiltonian with

fixed wall but carries a finite amount of momentum.

So far the super and normal fluid density are properties of the whole bulk by definition.

However, in the so called hydrodynamical region they can be treated as functions of space

and time. The equations that govern their evolution is called two-fluid hydrodynamical

equations. It is called two-fluid because in the lowest order approximation we can assume
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that there is no interaction between the super and normal components. In order to make

such treatment sensible there must exist a length scale which is small enough such that

the parameters like temperature and external fields are essentially constants within this

scale but large enough such that the system is in local thermodynamical equillibrium and

pa, p, can be defined locally.

12



1.3 Bogoliubov Theory of Liquid Helium

The most, perhaps only, successful microscopic first-principle model of liquid helium is

first proposed by Bogoliubov [6] then Huang and Yang [7]. The detailed derivation can be

found in many good references [8]. I won't bother to rederive them here. However I will

discuss the assumptions made in this model and the some of the important results they

got.

One of the facts that make liquid helium such an interesting quantum fluid is that 4 He

atom is a boson. If there is no self-interaction, at zero temperature all the particles will

stay in one single state: the ground state of the one-particle spectrum. In the homogeneous

case it is the zero-momentum state. For the interacting system it's not sensible to talk

about one-particle eigenstate, however the expectation value of the occupation number No

of one-particle zero-momentum state should still be a macroscopical quantity. It means in

the thermodynamical limit No is proportional to V, the system volume. This phenomenon

is called bose condensation. no =NO/V is called the condensate density.

A nonvanishing no can be also seen as a result of spontaneous symmetry breaking (

SSB ) in the interacting case. The microscopic Hamiltonian H of this interacting boson

many-body system is

H = J I t(x) P(x)ddX - p f t(x) T(x)ddx

2m

+~ t it(x)WJi(y)v(x - y)lP(x)4(y)ddxddy (10)

with

[4(r), tit(r') =(r - r')

13
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y is the chemical potential, m is the helium atom mass. V(x) is the short-ranged hard

core self-interaction between helium atoms and can be replaced by a delta function vo6(x)

[7]. vo is equal to 4ra/m, where a is the hard sphere diameter. The Hamiltonian becomes

H =1 1 Tt _Tdx X _ y td dX + vo 1 9d3X

Let's concentrate on the ground state of H for the moment. If T is a c-number instead of an

operator then this answer is easy. The T that minimizes the energy is simply up/vo times

a pure phase factor. The phase 9 can be anything between 0 and 27r. Obviously, a phase

factor change in T leaves the Hamitonian unchanged. We say H has an U(1) symmetry.

However the ground state does not possess this symmetry since under the transformation

-0 e-

In general, we call the situation that the symmetry of the Hamiltonian is not shared by

the ground state SSP. In the quantum level, we expect the same thing to happen. That is

< T > : 0

The value of < IF > is in general different from the corresponding classical value due to the

so called radiative correction. However, as long as < 4' > is not zero, the symmetry broken.

What is the symmetry now? The generator of the symmetry group it now f d 3 q4 tI = N.

H is invariant under the transformation group generated by N:

H - e-iON HeiGN = H

This is obvious since H and N commute with each other. The fact < 'I > is not zero

implies that the ground state, or vacuum, is not invariant under the transformation. This

14



can be easily seen since

e-iON ieiON _ -iO

If the vacuum 10 > is invariant under the transformation, when sandwitched between < 01

and 10 > the above equation gives

< TI >=< T' > o

This contradicts with the assumption that < I' > is nonzero.

One might be curious about what kind of nature of the vacuum causes the SSB. The

answer is that the bose condensation makes the spontaneous symmetry breaking possible.

If we take the base of the many-body Hilbert space to be the direct products of the one-

particle momentum eigenstates, then the vacuum 10 > will be a linear combination of states

with different zero-momentum occupation numbers. In other words, they are eigenstates

of at ao with different eigenvalues, where ao is the annihilation operator of zero-momentum

state. All of the eigenstates are macroscopically large. From

ao IN >= VY|N - 1 > , ao IN >= I'N+ 1 IN + 1 >

It is easy to see that if 10 > is composed of states with N's highly concentrated on the

large mean value No then 10 > has the property

a o 10 >~:- a 0 0 >~ - # |'~ 0 > , < 0 1 T 0 >~ - V'n (1

with no = No/V. So the vacuum is almost an eigenstate of the creation and annihilation

operators of the zero-momentum state. This is the basic starting point of the Bogoliubov
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model. Let's define a new Hamiltonian HB obtained from H by replacing all the ao and

at by vN- We have

HBIO >~ H10 > (12)

This is in fact true not only for the ground state but for all the eigenstates with zero-

momentum occupation around No. Thus the low-lying eigenstates of HB should be a good

approximation to the corresponding ones of H. This replacement greatly simplifies the

problem. In fact it turns an intractable one into a tractable one. After throwing away

some higher order terms, HB can be diagonized by the so-called Bogoliubov transformation

which is the technique we will use in the second chapter.

One of the most important predictions of this model is that the dispersion relation of

the elementary excitation w, is linear when the momentum p is small. In fact we have

CP = cp (13)

where c is the sound velocity. It turns out that this linear dispersion relation is crucial

to the fact that liquid helium is a superfluid. One can hardly find a more brilliant way

to demonstrate this than the classical argument by Landau [9]. He showed that when

the velocity of moving wall is less than some critical value, it's impossible to cause any

excitation to the fluid. The only assumptions he used in the argument are the linear

spectrum and the Galelien invariance.

In fact, most of the low-temperature properties of liquid helium can be well explained

by the Bogoliubov model. However it begins to break down when one needs to consider

states far away from the vacuum. For example, it can not explain the roton part of the

spectrum at higher momentums ( Figure 1.5). Furthermore, the A-transition is completely

16



out of the scope of this model. The excitations that govern the physics of A-transition is

believed to be the vortices which are absent in the Bogoliubov model.

In addition to thermal fluctuations like phonons and vortices, another factor to reduce

the superfluid density is the presence of disorder. In fact, in the case of strong disorder

the nature of the super-normal fluid transition could be quite different from the case of

pure helium. The effect of disorder on superfluidity will be the subject of the following

chapters.

16
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Fig. 1.5

The elementary excitation spectrum of liquid helium. In low momentum region there are phonons

while in intermediate momentum region we have rotons which can no be derived from Bogoliubov theory.

17



The above consideration is for three dimensional ( 3D ) systems only. In the cor-

responding 2D system there is no condensate at any finite temperature. Thus all the

prerequisites of the Bogoliubov model become invalid. The interesting thing is that even

though the low temperature theory for 2D system looks more complicated, there is a rather

satisfactory theory of the super-normal fluid transitions [10] for helium thin films, while a

similar theory for the 3D A-transition has not been achieved even in the phenomenological

level. I will present a new approach to the problem of 2D boson system in chapter three,

where the Hamiltonian is diagonized in terms of the density and phase operators. It is, of

course, valid only at the low temperature region as the Bogoliubov model.

1.4 Experimental Situations on Disordered Superfluid

The study of the disordered fermion systems has a rather long history. In addition to

the continuous intensive experimental studies, a lot of theories have also been formulated

[11]. However, much less is known about the corresponding disordered boson system.

One of the reasons is that the electron systems in the natural all experience some degree of

disorder or impurities. In metals or semiconductors the crystal lattice can never be perfect.

As a result, the electrons experience a periodical potential from a perfect lattice plus a

random potential caused by the defects. Those unavoidable defects are generally treated

as a small perturbation. However we can also easily find examples of strong disorder for

fermions, for example, the amorphous semiconductors and random alloys. As a reasonable

first approximation, we can neglect the Coulumb interaction among the electrons and

treat them as free particles moving in an external potential. The most important effect

of disorder is the localization of some of the free electron eigenstates. The spectrum is

18



divided into regions of extended states and localized states. They are separated by the so

called mobility edge. When the fermi level passes through the edge, the system transfers

from an insulator to a conductor, or vise versa.

Bearing the situation of fermions in mind, let's look at the boson case. First one would

ask: What are the physical systems of disordered bosons in the natural? I will consider

the 2D and 3D cases separately.

For the 2D case, the helium thin film adsorbed on the substrate surface is the most

obvious example. The surface can never be a perfectly smooth plane. It is at best a

periodic array of atoms. The surface roughness is the measure of the strength of the

disorder. Another more complicated example is the helium film adsorbed on the inner

surface of porous media like Vycor and xerogel. The properties of the porous media will

be discussed later. There has been a great amount of experiments on helium in the porous

media recently [12]. The most interesting thing observed is that there is no superfluidity

when the helium surface density is smaller than some critical value (see figure 1.6), which

is true for both plane substrate and porous media. Intuitively we can understand this

phenomenon in the following way. When we add the first layer of helium atoms they get

trapped by the localization centers, or the potential wells, on the surface caused by the

disorder. They thus form an immobile layer. When we add more atoms to the surface,

the hilly potential landscape is screened out by the presence of the first layer. So the

second layer becomes a superfluid. So do the other layers added after this. Pictorially the

structure of the helium film is shown is figure 1.7.
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Fig. 1.6

Superfluid content ( m,* = mass of superfluid per unit area ) of helium film as a function of m*,

total mass of helium adsorbed per unit area. See P.103 of Ref.1

Superfluid layer

Immobile layer Surface roughness

Fig. 1.7

Schematical structure of helium thin film adsorbed on a surface
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The theoretical formulation of this situation is clearly very complicated. It is neither

purely two dimensional nor purely three dimensional. Chapter three will be devoted to

the development of a microscopic model for helium thin films in the presence of disorder.

Let's now turn to the 3D case. Obviously there is no unavoidable impurity present

in the bulk liquid helium. In fact, it is one of the purest things we can prepare. How-

ever, physicists can always find ways to keep themselves busy by introducing the disorder

artificially. The most conspicuous example of disordered 3D superfluid is perhaps the

helium-filled porous media [13]. Before we go on, it's time to digress a little to discuss the

properties of the porous media.

In general, porous medium is a medium with globally interconnected flow channels.

Those channels are called pores. For Vycor ( shown in figure 1.8 [14] ), the pore diameters

are roughly fixed around 10 nm, the open fraction ( porosity ) is about 30%. Xerogel has

also pore diameters fixed around 10nm, but it differs from Vycor in that the channels are

composed of a lot of dead ends. The structure of xerogel is similar to a percolation cluster

which is highly ramified. The porosity of xerogel is about 60%. The last class of porous

media considered here is Aerogel. Aerogel is a very delicate and dilute material. It has

open fraction varying from 94% to more than 99%. It is believed to be fractal based on the

neutron scattering experiments [15]. The pore sizes span over a very wide range, roughly

from 0 to 100 nm.

Obviously, the effect of the porous media on the helium inside is not weak in general.

In fact, it is more like providing a complicated new boundary condition than an external

random potential as the effect of lattice defects for the electrons. The only exception is
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perhaps aerogel since it is very dilute in space. The general feature of superlfuid in porous

media is shown in the phase diagram in figure 1.9 [14]

Chapter four will be a simulation of the superflow in the porous media. Percolation

is proposed to be the mechanism of the superfluid transition. Some of the experimental

results are explained and interpreted. Chapter two will be a study of 3D bose gas in an

external random potential. How reasonable it is a model for helium in the porous media is

not very clear. However, at least it is a well-defined and general problem and could have

applications on systems other than liquid helium. A brief study of the problem of boson

localization will be at the end of chapter three.

# 4~

4.*

Fig. 1.8

Transmission electron micrograph of-a thin section (about 350 A)
of Vvcor. The micrograph shows that Vvcor consists of a
homogeneous and isotropic distribution of pores (dark areas) and
giass light areas). (Photo from P. Levitz, G. Ehret, J. M. Drake.
Exxon Research and Engineering Company preprint.)

22



,

z

5

a.

TEMPERATURE (T

Fig. 1.9

Phase diagram of helium in Vycor, a porous
medium. At 7= 0 there is a phase transition
to superfluidity at a nonzero value of
coverage, measured here as a fraction of the
helium density needed to fill the pores. This is
in contrast with the behavior of pure, bulk
helium, which is superfluid at r= 0 for all
densities. The superfluid density p, increases
below the critical temperature with a '/
power except when the critical temperature is
on the order of a few tens of millikelvins, in
which case the exponent predicted in the
"Bose glass" theory may apply. Good data
exist for filled pores and for thin films
(coverage near 0.3) only. (Adapted from data
reported in ref. 4.)
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Chapter Two

Hard-Sphere Bos Gas in Random External Potentials *

2.1 Abstract

We consider a dilute hard-sphere Bose gas in random external potentials at low tempera-

tures, in D=3, using the technique of pseudopotentials and the Bogoliubov transformation.

At absolute zero, the random potentials can deplete the Bose condensate, though not com-

pletely. On the other hand, they generate an amount of normal fluid equal to 4/3 the

condensate depletion. This is a localization effect that can destroy superfluidity at abso-

lute zero. General features of the superfluid density in the neighborhood of this transition

point agree qualitatively with experimental results on helium in porous media.

* This chapter is published in Phys. Rev. Lett. 67, 644, 1992
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2.2 Introduction

We report on some results concerning the low-temperature properties of a dilute hard-

sphere Bose gas in random external potentials in 3 dimensions. Such a model is a crude

simulation of superfluid helium in porous media 1. The sponge-like media are here idealized

as random distributions of hard-sphere potentials. To make the problem tractable, we

further assume that the randomness is sufficiently dilute, and the temperature sufficiently

low, that the hard-spheres can be approximated by delta-function pseudopotentials 2. We

also assume that the potentials are distributed with uncorrelated randomness. Thus, the

very large pores that are apparently present in the experimental media are not taken into

account here. The purpose of this study is not to construct a quantitative model for the

experiments, but to illuminate some qualitative features. We are able to show, for example,

that at absolute zero superfluidity can be destroyed by the randomness, through an effect

suggestive of boson localization.

From a theoretical point of view, the interparticle interactions are necessary, to prevent

a total condensation into a single localized orbital in the external potential. Thus, unlike

the much-studied case of fermions, one does not have the luxury of treating the potentials

as perturbations on a free-particle Hamiltonian. Here we do the next best thing, namely,

start with the simplest soluble problem involving interparticle interactions - a dilute

hard-sphere gas at low temperatures2' 3 . This approach differs from previous efforts on this

subject 4 ' 5 , in that ours is a microscopic low-density low-temperature model, rather than a

phenomenological "tight-binding" model. It may illuminate the problem from a different

angle.
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2.3 Hamiltonian and Its Diagonization

We consider a grand ensemble with chemical potential y, with Hamiltonian H given by

(with h = 1)

H -pN = d'x 'Ot _ 2-p + U #O + 1vo Ida 3Xf# y 1
I (1)m

where 7k(x) is the field operator for non-relativistic boson of mass m, N = f d'x Oty is

the number operator, U(x) is the external potential, and vo = 47ra/m, where a is the hard

sphere diameter. The ground state energy is rendered finite by subtracting an appropriate

divergent constant3 .

The external potential U(x) may be pictured as a sum of of randomly located scatter-

ing centers of random strengths, either attractive or repulsive. We assume (U(X)U(y))av C

6 3 (X - y), and characterize the potentials by a single parameter Ro:

1
1(IUk|2)av= Ro (2)

V

where V is the total volume of the system, Uk is the Fourier transform of U(x), and

the subscript av denotes a quenched average over potentials. It has dimension (energy) 2

(length) 3 , and is (average density) x (mean-square strength) of the individual scatterers,

the strength being measured by the spatial integral of the potential. Keeping Ro fixed

while varying the density of the bosons is like varying the coverage of the liquid helium in

a porous medium.

Proceeding in a standard fashion3 , we introduce free-particle annihilation and creation

operators ak and at and assume the single level with k = 0 is macroscopically occupied,

with occupation number No. We refer to no = NO/V as the condensate density. In the
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expansion of H in terms of ak and at, we neglect all off-diagonal terms except those of

the form voatatakak and Ukatak, and their hermitian conjugates. We then replace all

occurrences of ao and a by the c-number VNo. Thus, the only processes considered are

the annihilation of a pair {k, -k} into the condensate through the hard-sphere interaction,

and the scattering of a single particle k into the condensate by the random potentials, and

the corresponding inverse processes. The effective Hamiltonian is

Hefj - pN = V(-pno + 2von + k2 -no+ 2vono)akak
k#0

+ (no) ( Z(Uka + Ukak) + vono Z(aka-k + at at
k#O kO(

+o akak
+ V kla

k#

The last term is important when the condensate becomes depleted. We treat it in a

mean-field fashion by making the replacement

-2

ata] - n'E a ak (4)
k#O0 k*O

where n' is a parameter to be determined later. The small parameters in our perturbation

theory are a and Ro.

The effective Hamiltonian is diagonalized by a Bogoliubov transformation:

t 1/2

ak = Ck - akC-k 1 noUk 1 - ak (5)
fla2 Wk V +ak

where

ak= + - Vx(x+ 2), Wk =vono (x+ 2)

k2 vo(no + n') - (6)

2mnovo vono
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We set A = 0, to insure that the quasi-particle spectrum Wk has no energy gap, in con-

formity with general theorems6 . This condition determines n'. The diagonalized quench-

averaged Hamiltonian has the form

Heff - N V(-pno + Eo) + ZWkciCk

k~o (7)

27ranj + 128 (no a3 )1/21 2 - N 3/2 a"/2R(
m 15 /V . Vr

The first term recovers well-known results3 .

The grand partition function Q = Tr exp[-/(H - pN)] is a sum over No, but we

keep only the largest term. Thus, p and No are determined by the two conditions 7

a In Q
=-0

ano V
1 (8)

n = no + - (atak)
k#0

where n is the particle density. and () denotes grand ensemble average.

conditions we can obtain n' and no as functions of n and the temperature.

The average number of particles with nonzero momentum represents

the condensate:

1
SI:(atak) = ni + nR
k~0

ZFrom these

a depletion of

8V/ (noa)3/ 2  4 f 00 1 2 (i + 0/2)
n1= (nt2 + ]- 7 T3 /A 3 V 2 + O{exp[t+

nR m2 ,no) 1/2 RnR= I- R 087r3/ 2  a

A= V/2ir,/m, 0 = 20vono

(9)

where ni arises from the hard-sphere interactions3 '7 . It is very small at absolute zero, and

rises quadratically with increasing temperature. The term nR corresponds to condensate
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depletion due to scattering of condensate particles with the random potentials. The frac-

tional depletion is of the order of m2 Ro/vF6 . The factor 1// underscores the fact that

the system would collapse if there were no interparticle interactions. The depletion can

be substantial within the validity of our approximations. On the other hand, there cannot

be total depletion, for no = 0 is not a possible solution at absolute zero, for any finite Ro.

(See below.)

2.3 Superfluid Density at Low Temperatures

The superfluid density n, is obtained by considering the response of the momentum

density to an externally imposed velocity field' 9 . The relevant response function is

RZ(x,t) = ([g'(x,t),gj(0,0)]) / d27rd4 e (k-z--)Rij(k, w) (10)

g(x, t) = (2i)14 t (x, t) 4V(x, t)

where ip(x, t) is a Heisenberg operator. The static susceptibility is given by

'0 dw RJ (k, w) kikJ ki

x(k)= 27-- '. = 2 A(k 2)+(i k2 )B(k2) (11)

The transverse susceptibility B(0) is the normal fluid mass density. The superfluid mass

density is accordingly p, = p - B(0), where p is the total mass density.

Using particle conservation, one can show that A(0) = p, which is a form of the

f-sum-rule. Thus one sometimes writes p, = A(0) - B(0). However, this is not valid

for the present calculation, because particle conservation was violated in replacing ao by

a c-number. We have in effect truncated the Hilbert space, leaving out the subspace

spanned by single-particle states of zero momentum. Thus, computations involving the

time evolution of zero-momentum particle-states would be falsified. On the other hand,
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the nonzero momentum sector should be unaffected, (as long as second-order effects of the

zero-momentum states are unimportant.) In the present context, this means that we can

trust a calculation of B(O) but not A(O). Accordingly, we calculate the superfluid density

through p - B(O), and not A(O) - B(O)' 0 .

The calculation of B(O) is quite tedious. The details can be found in the appendix.

The superfluid density n, = p,/m is found to be

4
n, = n- n2 - -nR3

1 dP 2 On 8 [0 t dl exp[-tv/t2+9] (12)
32 - (2r) = -0

P3m (2r)3  3VWA3 Jo{1 - exp[-t\/t2 + 0]

where n, = [exp(Owp) - 1]-1 is the average number of phonons. There is an elementary

derivation of n2 based on Gallilean invariance in the absence of random potentials 1 ; but

we know of no intuitive way to obtain the term 4nR/3. The factor 4/3 indicates that the

random potentials generate more normal fluid than they took from the condensate. This

makes it possible to destroy superfluidity at absolute zero. To see this, note that from

nR= n - no - n1 and n, = n - !nR, we have

1
n,=-[4(no + n1 ) - n] (13)

3

which vanishes when the condensate is roughly 3/4 depleted by the random potentials. This

result means that part of the condensate, which is made up of zero-momentum particles,

belongs to the normal fluid, i.e., they are dragged along by the random potentials. This

indicates localization, or formation of bound states of macroscopic extensions.

We can obtain no at low temperatures (T - 0) from (8) by iteration. Using this

result, we then calculate n, as a function of n and T. Neglecting a term of order \ na3 for
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simplicity, we have

no _204 1 T 2 +K1 (5) (T 4
n cosh \ Ti v/ a T1  (14)

n . 1 -2 +4 T 2 K 2() T
- (4e 24 

-) "-etanh(_T
n 3 3 T1 / /na T

where
mn 2R0sinh 4 = R

167r3 / 2 V-

T1 = 3 /2r-5/4M1n3/4a1/4

3 e4 o 
(15)

1280 V/'3

K2(1)+=1 tanh 9
167r9/2 20V/

At T = 0, no never vanishes. On the other hand, n,=0 at = in 4/2, which corresponds

to a critical density n, given by nea3 = (m 2 aRo) 2 /367r 3 . This value lies within the regions

of validity of our approximation.

Fig.2.1 shows a 3D plot of n, as given by (14), for certain values of a and Ro. The

surface has a nose shape, which describes a kind of "reentrant" behavior. Generally, n,

rises quadratically with T, goes through a maximum, and then vanishes linearly at a critical

temperature, which is roughly given by T, oc an/m, except near the tip of the "nose". The

critical index is thus the same as that for the ideal Bose gas. This is in agreement with

experimental results on liquid helium in porous media. But the non-monotonic behavior

of n, has not been detected so far.

It may seem curious that n, initially increases with T. We have to remember, however,

that n, is strongly suppress by the random potentials at T = 0. As T starts to increase, the

suppression is lessened, because less normal fluid is generated by the random potentials,

due to the fact that no decreases.
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Fig. 2.1

Superfluid density as function of temperature and density, in the neighborhood of the superfluid

transition point at absolute zero.
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Going back to (8), we can study the thermodynamic behavior near no = 0, i.e., the

Bose-Einstein transition point of the ideal gas. In this region our model is similar to a

soluble one1 2 , in which Wk is replaced by k2 /2m. The isotherms are of the van der Waals

type, exhibiting first-order phase transitions, with a very narrow transition region, of

order x/vn . The presence of random potentials does not change the qualitative behavior.

Because scattering between quasi-particles has been neglect, however, the model cannot

be taken seriously in this domain.

In regard to low-temperature phase transitions, our theory is of the mean-field type,

because all fluctuations in the condensate have been ignored. In this approximation, the

condensate cannot react to the destruction of superfluidity. For this reason, no specific

heat singularities appear at the transition point, and the condensate remains structureless

in the region n < nc, the so-called "Bose glass" phase. These inadequacies can be remedied

only by improving on the Bogoliubov transformation, which we are attempting to do.
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Appendix: Calculation of Normal Fluid Part

By definition

R'(x, t) = 1 < [g,(x, t),g3 (0, 0)] >=
Ak 3 &V ei(k-3-wt) Rii(k, w)(27r)4

We write down the expression for RZ(x,t) first then calculate R2 )(k,w) using the

inverse Fourier transform :

R" (k,w) = I
Expand the momentum density oprator in terms of a's and at's, we got

g9 (x,t) = e-i(p-q)'x(p + q) a(t)aq(t)

pjq

So if we define

Iz)(x, t) =< [g(x,t),gi(O, 0)] >

4V2 S e- i(p--z "(p +q)'(p' +q') i < [a t(t) aq(t), a t,aq, >, ,
pjq

P ,qI

RtJ(k,w) can be easily obtained from I by

R3-(k,w) J d3xdt e- i(k-wt)

1I1( 
)2I 3 xt

Furthermore , the liner response function X" can be calculated by

xi (k) J
dw Rj(kw)

W -If
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(A4)
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There is an iE in the denumerator because we assume the external potential is propo-

tional to e"t. It means the external potential is turned on adiabaticaly from t = -oo to

t = 0.

Define another quantity Wpq,pq =< [a4 (t)aq(t), a4 ,aq,] > which is the ensemble

average in (A3).

Because the hamiltonian is diagonized by a Bogoliubov transformation. We can find

out the time dependence of all operators. It's easy to see ,and will be calculated explicitly

later, that all the commutators invloved in the expansion of W defined above are c-numbers

so we can factor them out of the ensemble average < ... >.

We got

Wqp1 , =< a (t)aq > [aq(t ),a,]+ < at(tat, > [aq(t),a, ]

+ < at(t)aql > [aOq(t),at,]+ < at,aq(t) > [at(t),aq] (A5)

From (7), we know ck(t) = e-iWhtck and use the relation (5) we can calculate W at

anytime t.

Substitute everthing in we get the expresion

WPqpq, = b(p - q')b(q - p')(ypV, - y*V*)

+b(p + p')6 (q + q')(xpT + x*Tp) (A6)

where Tp = upvp(eiwPt - e-iwvt) and VP = u e-iwpt - v eiwpt for p > 0 zero for p = 0.
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And

xP = -UpVp (npeiu"'t + (1 + np)e-iwpt] + hP

Y =U 2 n e"'Pt + v2(1 + np)e~iwpt + h

Finally, u, v, n and h are defined as follows:

1 a 1
UP Vfln -<CIeP >=eIw

up 1--ai p = - a , ne < 3cW>

h - z = Up+1
Vnov2 (I + zP) 2 I P

If we substitue (A6) into (A3) , we got Izi(k, t) equal to

Z [(2p + k)'(2p + k)j (YpVp+k - xpTp+k) - (2p -
p

k) ( 2p - k)j (y*V*_k + X*Tpk)j

(A' 7)

Saperate the summation to p = 0 and p > 0 parts. We can write

Iii = I + III

where

I=ot 4 kikl[(Vk - V~k) - (Tk + T-k)]4V

No k
4V - ak)

I'- is the same as Pi except ,is replced by Ee.

Similarly, we break Rij(k,wv) ,X'(k) , A and B in (13) into two parts also. Denote

them by subscript 0 and 1.
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If we substitue everything in , we will find

1
xfNk)=- -

1+
k1-

+ Wk) - 6 (W -

0 du_00w-e

ak 1

ak )Wk

R'j(kw)

( mNo
V ) kiki

k2

So we find

A0(k2) mNo, B0(k2) = 0

Now consider 1 and x'. From (A7) , we can write x3 in the form

1
xz1(k) -

27r J I-00
eiwl'jI(k, t) dt

dw J0
W - ilE f_0

4V >
p>0

[(2p+ k)'(2p + k)jf1(p, k) - (2p - k)"(2p - k)jf2 (p, k)]

After tedious but straight forward calculation , we find

f1(p, k) = I + Wp 2+kV 2 - Upup+kVpVp+k + np(upvp+k -Up+kop)2
L40p+k + Wp p

+ [ V V 2+k - UpUp+kVpVp+k + np (upup+k - VpVp+k )2
Wp+k - Wp P

+ h (Up+k +Vp+k )2

(A9)

(A10)

Call the first line fli the second line fl2 and the third f3 for later convenience.

A It turns out that f 2 (p, k) = f 1(-p, k). If we make the change of variable p -4 -p in

the second term in the summation in (A9), we will find
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No
= -kk
2V

(A8)

(1 - ak) 2,r[b(w



S= 1Z (2p+ k)(2p+ k) f1(pk) (Al1)
p>O

Because there turns out to be no ambiguity coming from the ie in the denumerator,

we negnect them in the following calculations. It's easy to see f -4 0 as k - 0. So we

can neglect it since eventually we have to take that limit. Substitute (AlO) into (All), we

have

xi (k) = x'(k) + x'(k) + x (k)

where

x (k) = J--Z(2p + k)?(2p + k)j h (up k + )Vp+k)02V Wp+k

.() (2p + k)(2p + k)i
(k) = (- (V V~ -UpUp+kopop+k1

22 P UWp+k - Wp

=13(kz (2p + k) 2(2p + k)Jn(UUpk - VpVp+k)2

2V Wp+k - Wp

If we make a change of variable p H-4 -p - k in xi ,the integrand flips sign. It means

X1 is exactly zero.

In the same way x'j is equal to

J (2p + k)'(2p + k )j np -p+k (Upup+k - Vpop+k )2 (A12)
4V Wp+k -Wp

It's now the right time to take the limit k - 0. First

lim x11(k) 1 : 4hp
kiO 2Vp> wp
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= 2 EP 2m 4m= p2 hp = 3 V hpp>0  p

4
= -mnRO

3

So we have

4
A1(O) = B1l(O) = 4 nR

Next we consider X'1:

lix(k)= lim (2p +
kM 4X13

p>0
k) t (2p + k)j(upup+k - vpvp+k) n np+k

WP+k -WP.

4V 3p>0

3 0 d3p 2n(w)

(2 7r)3 &w

Note that n(x) = 1-, n'(x) = dn(x)

Because of the 6Z) in front of the whole expression, we have

A1 3 (0) =B13(0) = - 1 P2n(wp)
3 (2-r)3

B1 3 (0) is nothing but the normal fluid density derived using Galelian invarience thirty

years ago.1

For the conveniece of low temperatire expansion , we cast B13 (0) into the followinf

form:

1B1
B, 3(O ) _=

131
3 2ir 2 J0 00

J Pn 0p

0 p - - dp0d

0
P p

4 )dp
OW
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where A = 4mnovo.

is exactly the density of

1 m ** 3 6p + 9Ap2 +4A 2

- l nP dp (A15)
3 7r2 0 (2p2 + A)2 V72+ A

For the ideal gas case, A -+ 0. So B1 3(0) - 7' fo p2 , dp which

particles not in the condensate for free particles.
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Chapter Three

Two Dimensional Interacting Boson System

3.1 How 2D System Differs From a 3D One

In this chpater we expand the microscopic Hamiltonian of self-interacting boson sys-

tem in terms of the density and phase operators which are canonical conjugates to each

other. When terms higher than the second order are neglected, the Hamiltonian can be

diagonized in a fashion just like the harmonic oscillators. This method is applied to two

physical systems: superfluid helium and fractional quantum Hall effect (FQHE). We shall

first derive the expression of superfluid density for 2D system where canonical treatment

has been lacking. We then reproduce the 3D results obtained by the Bogoliubov transfor-

mation. Finally, we shall show that the basic phenomenologies of fractional quantum Hall

effect at exact filling numbers can be derived without the introduction of the Chern-Simons

term [1].

The microscopic model for the low temperature properties of the three dimensional

self-interacting boson system has been well established [2]. However, unlike the correspond-

ing 3D system no similar microscopic quantum theory for 2D system has been achieved. In

3D system there is a bose condensate caused by the spontaneous symmetry breaking when

the temperature is low enough. Thus we can diagonize the microscopic Hamiltonian by

expanding the field operator around its mean value and keep the deviation up to the sec-

ond order. The meaning of this procedure is that at low temperature only the immediate
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neighborhood of some particular vacuum contributes to the statistical ensemble. All the

other vacua related by global gauge transformations are not accessible by thermal flutua-

tions. In 2D case the above argument does not go through because bose condensate dose

not exist at any finite temperature. In other words, the mean value of the field operator

is zero and all the vacua have to be taken into account.

In order to obtain the low energy eigenstates, we propose a new way to diagonize

the Hamiltonian by expanding the density, instead of the field, operator around its mean

value which is always finite. This method is valid for an arbitrary dimension as long as

the density fluctuation is small. The existence of the condensate is not required. External

potential can be easily included in this scheme since it is linearly coupled to the density

operator.

As a model for the superfluid helium, we are interested in how the superfluid density p,

depends on the temperature and the strength of the external random potential, if present.

We will derive the explicit formula of p, for both 2D and 3D cases. Another important

quantity is the condensate density no, which is the square of the expectation value of the

field operator. no is nonzero as long as there is a spontaneous symmetry breaking. As

mentioned above, in 2D system phase fluctuation is so strong that no vanishes in arbitrary

finite temperature. Within the present model we are able to see how the condensate

disappears when we reduce the thickness of a 3D slab. This also provides a criterion to

determine when we can treat the slab as a 3D system and when a 2D one.

In addition to superfluid helium, it turns out that our method has a direct application

to the problem of fractional quantum Hall effect [3]. We follow the work of Zhang, Hansson
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and Kivelson [1] to map the 2D fermion problem to a 2D equivelant boson problem. It

will be shown that the boson Hamiltonian can be diagonized in a rather similar fashion

as the superfluid without introducing the auxilary Chern-Simons term[1]. The spectrum

of the elementary excitation and the Hall conductivity will be calculated. Both of them

agree with the well-known results.

3.2 Low Energy Eigenstates

The Hamiltonian H in terms of the quantum field operator %P is

H = Vlpt(x)V 4 (x)ddx - p J t(x)4T(x)ddx

2m
+~ J I(x)4 It(y)v(x - y)lI(x){(y)ddxddy (1)

Instead of TI(x) and TIi(x) , we choose hermitean operators p and P as the basic operators

%( = ,P(~d1X I jt(X) = e-i-(X) Vp(x) (2)

If we impose the commutation relation between 4 and p such that the original commutation

relation [4P(r), iP t(r')] = 6(r - r') is reproduced, then we get an equivalent Hamiltonian in

terms of (P and p with exactly the same spectrum. It turns out that the correct choice is

[ (r), p(r')] = -i(r - r') (3)

This means that the "phase" operator 4 is the canonical conjugate of the "density" opera-

tor p. Assuming that the fluctuation of p(x) around its mean value po is small, we expand

lp(x) in the form

2po
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Let n be the particle density, we have n =< p >~ po. Substituting this into H, we get

(V77) 2 + po( V@)2] ddx -- p

where v0 = f v(x)ddx.

+vopo ddx + VO 2ddx

An infinite constant is neglected. Choosing po such that terms

linear in q vanish, we have

P0 = P
V0

Now we can write the Hamiltonian in the simple form

(V 7 )2 + po(V7) 2

A4po
+ A172] ddx

where A = mvo. It's clear now that this Hamiltonian can be diagonized in the momentum

representation. Let

1k
1(r) = 7 :eq

k

Since q , 1 are hermitean we have the relations qk

\XZikrr)e P-k
VVk

= q k, Pk = pt k They satisfy the

commutation relation

[pk,qk'] = -ibk,k'

In terms of Pk and qk, H becomes

H = -1- 12mk 4 p + qkq-k + pok2 PkP-k

Let's further define

ak E )k -I
2 - P-k)
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H ~ 1
2m 4po Jd x

H =
2m

(4)

(5)



and express Pk, qk in terms of ak -

1 +at)

Pk = (ak - a k)

The commutation relation between ak and at is

[ak,ak,] =

Substitute eq.(6) into H and choose ak such that the off-diagonal terms in H vanishes.

We get

= [
PO k2

(k2
4 p0

+A)] (7)

The Hamiltonian becomes

H =Z(Wkatak
k

where

Wk -f pok
m 4 po

This is nothing but the Bogoliubov spectrum. It is straightforward to show that the total

momentum operator P is #a ak. So the creation operator at indeed increases the total

momentum by k.

Now we include the external potential term

U(x)p(x)ddx =

= ( Uk(ak +
k

I U(x)rI(x)ddx

atk)

48

+ A) (8)

I

(R)



Call the Hamiltonian without random potential Ho, we have

H:= Ho + Uk(ak+atk 1

H can be easily diagonized by the replacements

Uk
bk- ak + 'k ,U (9)

WkV 2 0ak

and

H = wkbtbk
k

The commutation relation between b and bk is obviously the same as the one for a and

ak. In the following we will first calculate the superfluid density from the momentum

density correlation function, then consider the phase fluctuations.
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3.3 Superfluid Density and Phase Fluctuation

Let's now calculate the momentum correlation functions and the superfluid density.

The momentum density operator (x) is equal to -,i [P t(x) - (x)It (x)] . In

terms of the density and phase operators we have

(x) = pov ,(X) + (rq(x)Vt(x) + Vt(X)r(x))

Call the first term 'a and the second term 9ib. The response function R""(x, t) and its

Fourier transform is defined by

d kd
R2 3(x, t) =< [g'(x, t), g'(0, 0)] >= J(7r)d+ ek(kwi ~~')Ri(kw)

The susceptibility is equal to

C* dw R'j (k Iw) k0k kii

xi(k) =JR- '. kk-A(k2)+ 6 1 B(k 2 )
_- 0 27r w - le k2 Ij k 2

As stated in the first chapter, B(O) is the normal fluid density and the superfluid density

p, is the difference between the normal fluid density and the total density. As a first

approximation, we consider Pa(x) only. The corresponding susceptibility is

k ki
Xa(k) = mpok2

This clearly demonstrates the presence of superfluidity disregarding the condensate. Now

we include gb(x) and explicit calculation shows that

1-B(O) = ni + n2 ,

1j - d'fP 2 On wp)
1i =d' J (2Wrdja 8

1 1 3 -1 f < U*Uk > dk (10)
n2 = dVm PO ] 2 2 (27d

4 po
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Assuming < UUk >= RoV, as d =3 and d = 2 we have

_1 1 po _ 1 m3

n2 =- m 3 Ro -, ford= 3 ; n2 = -- -, ford=2 (11)
347r a 24i a

where a = vom/47r.

The 3D result is exactly the same as our previous one obtained by the Bogoliubov

transformation in the second chapter. Note that at zero temperature the normal fluid

density does not depend on the total particle density po in 2D system, while it is propor-

tional to the square root of the total density in 3D. In both cases the effect of the random

potential on superfluidity becomes neglegible as the total density becomes large. At T = 0,

the supefluid density n, is equal to n - n 2 , with n the total particle density. The mini-

mal value n, of n that gives a nonzero superfluid density is determined by the equation

nc - n2(nc) = 0. Of course our theory begins to break down before the critical value nc is

reached. However it does provide us a lower bound of n below which the disorder can not

be treated as a small perturbation.

Now let us turn to the problem of condensate density and phase fluctuation. The

phase fluctuation is characterized by the function

< [(x) - j(0)]2 >= [1 - cos(kx)]ak < btbk > +V J[1 - cos(kx)]ak (12)
k k

The correlation function of the field operator can be expressed in terms of the phase

fluctuation by

< 41t(x)q1(0) > ~ e-2 P0

This can be easily proved by the equivalent path integral method. In the presence of

a condensate the expectation value of the field operator is finite and its autocorrelation
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function above goes to some finite value as the distance |xj goes to infinity. In fact < q/ >

is equal to exp(-' < [<}(oo) - <4(O)]2 >). So a finite phase difference between two remote

points implies the existence of a condensate.

Note also that the random potential has no effect in the phase fluctuation to this order

of approximation. This is easy to see from eq.(6) since the expression for Pk is the same

in terms of ak or bk.

The first term in eq.(12) vanishes as the temperature goes to zero while the second

term does not depend on the temperature. Unfortunately the latter suffers an ultraviolet

divergence. However we believe that "zero-point" phase fluctuation should be finite in

any dimension. The apparent divergence encountered here is due to the fact that our

Hamiltonian is good for eigenstates with low energies only. We can not take all the k's

into account unless a natural cut-off is provided, like what happened in the first term,

where only low energy states contribute automatically. Since we are interested in how the

fluctuation diverges when we approach a 2D system from a 3D bulk continuously, we can

neglect the second term assuming it is always finite. Consider a slab and focus on the first

term

F(L, d) = jE(1 - cos(k . L))oakn(Wk) (13)
k

where L is the length and width of our slab and d the thickness. The discrete momentum

goes over the following values:

2( 7rn 27rm 27rI
L L' d

L is an arbitrary vector of length L lying in the x - y plane. n(z) is equal to 1/(exp(z) - 1).

F(L, d) can be separated into two terms, F1 and F2 . F is the contribution from the I = 1
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modes and F2 from the I > 0 modes. For given temperature T, L is assumed to be large

enough such that the finite size effects in the x and y directions are neglegible. For this

purpose we define a "dimensionless temperature" t to be KBLT/c, where c = d is the

sound velocity and / = 1/KBT. We are interested in the region t >> 1. In this case the

discrete sum over n and m can be replaced by a double integral. So we have

ml [01 10 27rvo ml IL
F1 (L,d) = 27rvo -- n(Owk)(1 - Jo(kL))dk ~ 2 -. ln - I (14)

2y d Jo /C 21 itd 203c

and

200
F2(L, d) = d ka(k)nl(k)[1 - Jo(kL)]dk (15)

where

nj(k) = n (c(47r212 + k2)1/2 , al(k) = a (47r212 + k2)1/2

Jo is the bessel function. If we fix d and let L go to infinity, F diverges logrithmically

and F2 stays finite. Thus the field correlation function decays by a power law, which is

the characteristic feature of a 2D system. Here we take L to be large but finite and let d

decrease from L. This is intended to describe the continuous transition from a bulk helium

to a thin film with finite thickness. The lowest d considered here will be such that only

I = 0 modes contribute significantly to our ensemble and all the others are not accessible

by the thermal excitation. So we vary d in the interval L < d < L. Obviously F1 (L, d)

is appreciable only when d is much smaller than L, while F2 (L, d) stays in some finite

value when d - L and goes to zero exponentially as d << L. As far as the condensate

is concerned, the system is essentially three dimensional if F2 >> F1, two dimensional if

F2 << F1 . The square roots of F1 , F2 and F are depicted schematically in figure 3.1 as

functions of d for fixed L.
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Thickness

Fig. 3.1

Square roots of F, F 1 and F shown as functions of the thickness d. The side length L is fixed.

When d is large the system behavcs like 2 three dimensional while it becomes more like two dimensional

as d decreases. The absolute values of the axis have no particular meaning.
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Let's discuss briefly how to include the vortex excitations in a 2D system. Near the

superfluid transition the density fluctuation for 3D system is large due to the proliferation

of large vortex rings. Therefore our method is not valid in the critical region. In 2D case

we expect the theory to be valid even beyond the superfluid transition point since there

are actually very few dissociated vortices at the transition temperature and the density

remains essentially a constant. Path integral formalism is the natural way to include vortex

excitations. The path integral equivalence to the canonical Hamiltonian is the action[5]

138 1X 1 -( -q2 + O()]+VO 7S[4,d] = jdrdx { z i + U(x)] + V+ (16)S o f a7 27- Apo 2

where po = - is a constant. All the fields here are c-numbers. Define the effective action

S[4] of P by

e- =o JD[ ]es 2?

Due to the term (Vq) 2, a term proportional to (V2) 2 will be generated, which we will

neglect for simplicity. This is at least valid when po is large. After the r-integration, we

have

S[2] = dJ ddx (VD)2 + )2 (17)

where c = is the sound velocity. Again, all terms involving the external potential

U(x) drop off because the periodical boundary condition of 4 on the r = 0 and T =

surfaces. This action correctly gives the linear phonon dispersion relation. Define z = cr,

we have in two dimension

S[4(x, y, z)] = ] dz] dxdy[V4(xyz) 2
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Note that the gradient has three components. D(x, y, z) satifies the periodic boundary

condition 4)(x, y, 0) = 4(x, y, co). Let's decompose the 3D vector V4D as

The first part is the phonon part and the second the is vortex part. 4, is a single valued

function and h is determined by the conditions : 1. V -h = 0. 2. The curl of h is singular

at the vortex lines and zero otherwise. If the vortex lines carry d.c. electric current, h will

be the magnetic field generated by them. So the action becomes

S[41=S[,D]+ j dz dxdy(h) 2

2mc 0 1

/ / )

(18)

c x beta

L

L

Fig. 3.2

The vortex line excitations of a two dimensional quantum system is equivelant to a classical model

of three dimensional system in L x L x co. The vortex rings are omited in the pictures. Note that the

lines start and end up at the same point the the L x L planes.
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There is no crossing term because of the condition satisfied by h. S[<p] can be

easily diagonized in the momemtum representation. The second part is a function of the

configurations of the vortex lines. The circulation of h around the lines should be a multiple

of 27r since <1 is the phase. The configurations can be characterized by 1. the number of

lines N, 2. the starting points ( z = 0 ) of the lines {ri, i = 1 ... N}, 3. the fluctuation

around the straight lines {x(z), y2 (z)}.

This action is equivalent to a 3D classical model in a box of side length L and height

c0. When 3 is low enough such that we can neglect the fluctuations along the z direction,

we recover the KT model with ri's the positions of the vortices ( see ref. 10 of chapter

one ). When the temperature is low, or co is large, we have to consider the vortex ring

excitations in addition to the lines. Also, the lines can not be taken as straight since

fluctuations becomes important. However the KT theory is valid around the transition

temperature as shown below.

We can decompose the fluctuations into Fourier sine series

xj(z) = 4 sin(w, z) , yi(z) = B sin(w,,z)
n n

where wn = 5g. Instead of x'(z) and y?(z) we may take A' and B' as the degrees of

freedom. Vortex rings are neglected here. When the temperature is so high such that the

fluctuations around the r-independent straight lines are small, the action separates into

the vortex interaction part S, (r, ... rN) and the fluctuation part S1 ({A', B'}). The core

energy of the straight lines is included in S,,.

The vortex interaction part is nothing but the Kosterlitz-Thouless free energy. As long

as the condition for this decomposition is valid, the second part only give a temperature
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dependent core size for the KT model which is known to be unimportant. In that case

the KT theory is correct as a microscopic theory. Our aim here is to exam when this

decomposition begins to break down. An obvious criterion is whether the size of the

fluctuation is larger than the height of the vortex lines. If it is true then there is no reason

that we can neglect the vortex rings since they can easily grow out of a strongly distorted

line and the positions ri's of the vortices are not enough to describe the system. The size

of the fluctuation is equal to A - V/< x 2 + y2 >. The index i is omitted here, assuming

the vortex lines are roughly independent. The fluctuation action Sf(An, B") for some

particular line is the increase of the energy due to the change of the total length of it and

equals

Sf = /c E1 Zw (A2 + B2)
n=1

,where Ec is the core energy per unit length. The dimensionless chemical potential of

the vortices in the KT theory ln(y) is equal to -cEc. It is related to the dimensionless

temperature K = p01 /m 2 by ln(y) = - r2K [6]. After straightforward calculation we

find

2 /C c -9c
A = (2) 0.37K1/2

The condition for the KT theory to be valid is A < 3c. In other words

1
- < 7.3
K -

Near the transition point K is roughly one [6], so the KT theory is correct to describe

the helium film phase transition for all the surface densities.
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3.4 Application to Fractional Quantum Hall Effect

Fractional quantum Hall effect is probably the most interesting property of two dimensional

electron gas in a strong perpendicular external magnetic field. The most important physical

2

quantity is the off-diagonal d.c. conductivity OH- OH is equal to v- when the filling

number v is equal to with k a positive integer. Here we set the units such that

c = 1, h = 27r.

One of the most successful microscopic theories is the so-called Chern-Simons-Laudau-

Ginzburg theory [3]. In this theory the original 2D fermion problem is mapped by the

anyon method [7] into a boson problem coupled to a Chern-Simons gauge field. In the

following we will show that the boson Hamiltonian for FQHE can be diagonized without

the introduction of the auxilary Chern-Simons term. The off-diagonal conductivity will be

calculated and is reduced to the well-known value vu2 at the static limit. The effect of

finite temperature and random external potential will also be discussed.

Let's start with the boson second quantized Hamiltonian of FQHE [1].

H = d2r4I(-iV - e.- e) 2 ,p - p d2rt1

+1 J d2rd2r'Ijt(r)It(r')V(r - r')T(r)k(r') (19)

=H0 + H1

As before, we can expand the density operator p around its mean value P. Keep up to the

quadratic terms we have

Ho = J d2 r (Vq)2 + P1 (V4)21 + 1 J d2rd2r'lt(r)V(r - r')7(r')
2m 4P 2
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H1 =+ - e 2 A + -)2Pm 2m

A generates the static perpendicular magnetic field. J is equal to pV9. a is determined

by p through [8]

e*0,ayx )=q#-p(x )
(20)

&"a(x) =0

9 should be ir times some odd integer. 00 is the unit flux hc/e. The left hand side

of the first equation is actually the z component of the curl of a. We can image that a is

obtained by associating a unit flux tube to each boson. When the filling number v is equal

to 1/(2k + 1), we can chose 9 to be r/v. In this case A and the part of a generated by the

constant mean value p have equal magnitutes and opposite signs. So A + a is of the order

of 77, the density fluctuation. In fact, in terms of the Fourier components we have

Ac(k) + a,(k) = 2E qk (21)

and

Ho = 2 ( + mV(k)) qkq-k + pk2pkpk
2m k 4

Again, up to the quadratic terms

H1 = O2 qk q-k
k

Combine Ho and H1 , we get

1 (k 2  -
H = + Ak qkq-k + pk2kpk

2nk 4 /

with

Ak = T/1. + k
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This Hamiltonian can be diagonized in almost the same way as the superfluid. The

only difference is that now Ak is not a constant. The new expressions for ak, Wk and k

can be obtained by replacing the A's in the old expressions by the Ak given above. In

particular, the square of the new spectrum is found to be

2 Pk 2  k 2 +Ak
m2 4P (22)

2 1 1=wc2 + -pk 2 V(k)+
m 4m2

with

mu

This shows that the spectrum has an energy gap, typical for an imcompressible liquid.

In order to study the linear response of this system to an external perturbation, we

turn on a small extra vector potential A, (r, t). The gauge invariant physical electric current

density f is equal to Ji + J2 + J 3 where

J1 =-pV/
m

J2 = - -[A + ]p
m

-. = - e2

m

The interaction Hamiltonian HI due to A1 is

H1 = d2r ( 1 +f2 -A

We can use the Kubo formula to evaluate the linear response function. Since there are

three terms in the electric current and two terms in the interaction Hamiltinian, we get

totally six commutators. However only the following two contribute to the off-diagonal

conductivity :

a , )=i(t) < [J (r,t), J (0,0)] >
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The Fourier transforms of them give the linear response functions. Let's calculate 0""(k, w)

first.

e2 26 iko
Jc(k k, t) =-- e 6 qk (t )

e 2 120 Zikolm e k2\ I1

+ MVe" / q k', t)qi k' + k t )
ki

Similarly,

J (k t 0 =& e ikap k~

+ e I ik' + k)"qk(t)pk1-k(t)

From the above expressions we have

011 (k, t) =i*O(t) < [J2 (kt), JI'(-k, 0)] >

=20- pe" 1 p(-i jk, < [qktt), Pk(0)] >
m e k 2 m

2e29 ik'
+ m2 ye" 3 -i(k" - kj) < [qk(t)qkl+k(t) , qkI(0)pk-kII(0)] >

k' ,k"

The first term is easy to calculate using

< [qk(t), pk(O)1 >= (e Wkt + e-W k).

In order to get the electric conductivity we have to make the temporal Fourier transform

then divide it by iw remembering that E(k,w) = iWA(k,Lu). Similarly we can calculate

7 
<(k, w). It also separates into two parts, one involving only two operators and another

involving four. Combine o 4(k, w) and a' 3 (k, w) and neglect terms involving four opera-
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tors we get the final result

a 1 (k, w) E--(ao(k, w) + "3(k, w))

e3 -220 1 kk _,3kka '
m--2P e-W 2 k2  (23)

2e2 0 - 2  1 a'3

-_W P 2
m Wk ~

As w -+ 0, we have

(k,0)= e (24)
27r

Thus we derived the Hall conductivity from the first principle. Clearly to this order

there is no effect coming from the finite temperature and the random potentials. Explicit

evaluation of the terms involving the porduct of four operators shows that the lowest order

correction from those effects is of the order of k2 . It means they have no effect at k -* 0

limit as it should be. This is consistent with the observation that the expression above for

the Hall conductivity is exact. In other words, it is insensitive against small temperature

variations and small amount of impurities.

This derivation of the Hall conductivity and the excitation spectrum of FQHE is

conceptually simplier than the Chern-Simons-Laudau-Ginzburg theory. In addition, we

are able to cover with ease the case of finite temperaure, while the original Chern-Simons-

Laudau-Ginzburg theory is restricted to zero temperature. The prelimary test of our

method indeed shows that it agrees with the well-known results. One should not be

surprised since these two theories are in fact different ways to approximate the same

Hamiltonian. However the regions of validity could be different. In particular, the role

of vortex excitations and the ability to construct the hierarchical wave functions have not

been clear and demand further study.
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3.5 Strongly Disordered Superfluid

The previous results are valid only when the density < p(x) > is approximately a constant,

which is true when the energy scale of the external potential is small compared with the

self-interactions. As we have seen, a system under such a condition is always a superfluid

at zero temperature, even though the superfluid density is in general smaller than the total

density. In order to study the strongly disordered system we need a different approach to

the problem. It turns out that the path integral method is the most convenient way to

formulate our theory.

For a given external potential U(x) we can use the saddle point approximation to

evaluate the density distribution po(x) =< p(x) > which has strong spatial dependence

when the total particle density is low. Given po(x), we can again expand the density up

to the second order around it and evaluate the Green's functions.

The partition function Z is

Z = D[q]e-S[q-*]

where the action S is

S= dr Jdx* - - p+U(x) + d X dxO *T)2

Let kI(x) = p(x)el*(), the action becomes

S[p,I] = dr ddx -+ [4 2 + P(V4)j + (-/. + U(x))p+ P2
)r 27 4P

(25)
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The saddle point solution is determined by

SS 6S-=0 -=0
Sp 64

From the expression for S, we have

i-P) + (()2] + (U(X)-p)+vop=0

ar 2m [2 
PpPJ+IJ

ap 1- -.
i MV(pvl) =0
Or m

It is clear that the solution {p(x), 1(x)} that minimizes the action satisfies the conditions

1. They have no r dependence. 2. V = 0. So the above equations are reduced to

1 1 (1~.
- -Vp + (U(x) -") + vop = 0 (26)

2 2m p

Obviously the solution of this equation can not change sign due to the 1/p term. This

guarantees the positivity of p. We can write p(x) = po(x) + r(x) where po(x) is the saddle

point solution. Substitute it into the action and keep 7j up to the second order we have

S = S[p = po, =0] + S1[77,1] + higher order terms

The quadratic term Si is equal to

S1 = d[d i 1 [1 (-)2 + po(-()2] + V2l
Sd 7 Or 2m 4po j 2

Remember that po is a function of x. Here we assumed po(x) varies slowly in space

and throw away terms involving Vpo(x). In the following we consider a simple 2D case

only. Assume that U(x) is composed of a set of potential wells located at the lattice

sites of a square lattice with lattice spacing b. The solution po(x) is of course also a

periodic function with the same discrete translational symmetry as U(x). Let's imagine
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a real space renormalization up to length scale b. In other words, for the configurations

{ 'ij(r), ml(r)} on the lattice, with i the site index, we have an effective action which recovers

a homogeneous continuum limit for length scales much larger than b

/= rf dX f941 1 [D +1 v

$,] =)) -d( d+2 -7- + Vi + P _ 2
S L JJr 2m 4p1 2

Here p1, P2 and v, are the renormalized coupling constants. They should not depend on

the position because all the lattice sites are completely equivalent. Higher order terms

generated by course graining are neglected. The explicit calculation of p1,P2 and vi is

obviously extremely difficult, if possible. However the interesting thing is that in the the

strongly disordered case where the particles are strongly localized, we can approximate

P2 by the value of po(x) half-way between the neighboring lattice sites. Furthermore, p1

does not enter the final expression of the superfluid density at zero temperature, which

is in fact simply P2 as we have seen in Section 3.3 . When the total particle density

is small, po(x) inside the potential well is much larger than it outside. Because of the

po(x)[V4(x)] term in the original action, for given choice of the lattice site phase values

{4)}, the only configuration that has a siginificant contribution in the renormalization is

the one that is essentially constant inside the potential well and changes uniformly between

the neighboring sites. So f po(x)[/4(x)]2d2x can be replaced by E n ( ' )2A 2. n.n.

means the nearest neighbors. P is the average value of po(x) outside the potential well.

For length scales much larger than b, we have

1( - 4p)2 (D)2d2x
n.n.

So we find the superfluid density p, = P2 ~ P. For given i in priciple we can solve eq.(26)

and obtain both the total density and the superfluid density.
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b potential wells

Fig. 3.3

This is a simple chioce of U(x). Inside the circles are potetial wells of depth c. Due to symmetry

requirement we only need to know the value of p inside the dashed rectangle. b is the lattice spacing.
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For an irregular U(x), the numerical computation of the solution of eq.(26) could be

very difficult since it is nonlinear. Instead of considering an irregular potential, we choose

U(x) to be as simple as possible. We believe that the natural of the localization does not

depend on the detailed structure of U(x). Our choice of U(x) is a set of circular potential

well of depth c and radius f, located at the sites of a square lattice with lattice spacing b

(figure 3.3 ).

We only need to solve p(x) in the dashed region and impose the periodic boundary

condition that p(x) has to be the same in the opposite sides. p(x) should be maximal at

the site centers and forms a valley along the sides due to the reflection symmetry. We

make a further approximation to replace the b.c. on the square sides to be a b.c. on

a circle of similar size. After this replacement the approximate solution becomes circular

symmetrical and the differential equation of eq.(26) is transformed into an one dimensional

one. The circle of the boundary condition is shown in figure 3.4.

This replacement is valid only when the solution is essentially a constant in an annal

covering the square sides. Our numerical calculation shows that it is indeed the case.

Let r be the distance from the site to a point. p is now a function of r only. Define

U ln(p), the equation for u(r) becomes

I d2+I + U(r)c + voe" = 0 (27)
2 dr2 r dr)

where 0(t) = 0(r - f) - 1 is the step function. The potential U(r) is shown in figure 3.5.

p is used to control the total particle density n. It turns out that n -+ 0 as y

approaches some finite negative value.
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r

Circle A of boundary
conditions

Fig. 3.4

Boundary condition is imposed on the outside circle instead on the dashed rectangle.

Figure 3.6 shows the r-dependence of the solution p(r) for various p's. The total

particle density pt is the average of p(r) inside the dashed line in fig. 3.3. We see that p

varies slowly near the boundary. This justifies our assumption that the boundary condition

can be replaced to be on the circle. Figure 3.7 is a local maginification of fig. 3.6. We find

that for large p, p remains a finite value outside the well. In fact, the difference between
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the density inside and outside becomes less and less obvious as the total particle density

gets larger and larger. On the contrary, for small pi, or small total particle density, the

density outside the well becomes strongly depressed.

I U(r)

-,I

r=f r=1

N
C

r

Fig. 3.5

The external potential U iM the circular approximation. r is the distance to the lattice site.

Figure 3.8 is the plots of the total l)article density pt and the superfluid density p, =

as functions of p. Note that p, approaches zero much faster than pt. Figure 3.9 is a plot

p. as a function of pt. The plot in figure 3.10 is superfluid fraction against the total fluid

density. The interesting thing is that the fraction goes to zero instead of a finite number.

This can be viewed as some kind of localization which gets stronger and stronger as we
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reduce the total density. In the limit pt -+ 0, the fluid becomes completely localized and

the superfluid nature is totally destroyed by the external potential.

c = 100
300

250-
mu=200

200-

150 ------------------------ mu=50

mu=10

50- Mu=-10 -------------------

---- mum -24
mu=- 5 -- ----

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

r ( Distance to the center of potential wall )

Fig. 3.6

Plots of particle density distribution p(r) for various p's

71



50

45 - - -

p35 ----

mu 10
20 -.- ---

15 -..- mu=-l0
mu -24

10 -- ---

mum -24.95-

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

r ( Distance to the center of potential wall )

Fig. 3.7

Local maginification of fig. 3.6. We find that for large ps, p(r) remains finite values outside the well.

On the contrary, for small pu, or small total particle density, the density outside the well becomes strongly

depressed.

In the present model, even though we do see a sign of boson localization, there is no

abrupt phase transition observed. It is also not likely that the next order approximation

will make a qualitative difference and exhibit a transition. We believe that the experimental
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fact that helium thin film has no superfluidity when the total density is below some critical

value dose not necessarily mean that the 2D interacting boson model contains a phase

transition. As stated in the introduction chapter, the liquid helium film is actually neither

purely 2D nor purely 3D. In order to understand its properties, especially the transition,

we should take into acount the different roles of the successive layers in the film. A full

theoretical study of this is out of the scope of this thesis.
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Fig. 3.8

The plots of total particle density pt and the superfluid density ps = p as functions of p. Note that

ps approaches zero much faster than pt.
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Fig. 3.9

Plots p, as a function of pt.
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Fig. 3.10

The superfluid fraction against the total fluid density. The interesting is that the fraction goes to

zero instead of some constant.
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Chapter Four

Superfluid Helium in Disordered Media at Full Pore

The flow of superfluid 4He through sponge-like media at full pore is modeled by the

flow of current through an ohmic network with random resistors. Computer simulations

show that the superfluid critical point is a percolation threshold, with critical exponent 1.7.

The fractal dimension of the percolating cluster is 2.6, which, by Josephson's hyperscaling

relation, implies a specific heat exponent a = -5.4. Existing experiments apparently do

not cover the critical region. Instead, they measure "mean-field" exponents, whose values

for Vycor, aerogel, and xerogel can all be reproduced by choosing appropriate distribution

functions for the resistors.

4.1 Model of Simulation

There have been many experimental studies of superfluid 4 He adsorbed in the sponge-

like media Vycor, aerogel, and xerogel, with porosities ranging from 30% to 96% [1]-[4].

The superfluid density and specific heat have been measured, for wide ranges of coverage,

from a few atomic layers to full pore, and for wide ranges of temperature below the lambda

point of bulk liquid helium. The superfluid transition temperature is found to decrease

with decreasing coverage, extrapolating to zero at a nonzero critical coverage. Thus,

superfluidity disappears below a critical coverage, even at absolute zero. Near the critical

coverage, the superfluid exponent has the ideal-gas value ( = 1. When the coverage is

increased from the critical value, however, different physics takes over at some point, for
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( is observed to cross over to a different value. At full pore, the ( for Vycor, and xerogel

are respectively 0.67 and 0.89 [2]. For aerogel, the values are 0.80 according to [2], and

0.75 according to [4]. For comparison, ( = 0.672 for the bulk liquid. In an earlier work

[5], we demonstrated the disappearance of superfluidity at absolute zero in a dilute hard-

sphere Bose gas in random potentials, due to boson localization, i.e., pinning of the Bose

condensate by the random potentials. In this paper, we consider the full-pore case, and

propose a model that can explain some of the observations in that regime.

We model the flow channels in the sponge-like medium as bonds in a cubic lattice,

with channel radii chosen at random from a given distribution. We have considered two

types of distributions: a Gaussian distribution with adjustable center and width, and a

uniform distribution with adjustable lower and upper cutoffs. In either case, the medium

is characterized by two parameters.

In a long channel of radius r at full pore, the superfluid transition temperature Tc(r)

decreases with r, for large r, according to a power law [6]:

1 - Tc (r/ro)) /, (1)

where q ~ 2, ro ~ 5nm, and T, = 2.172 K is the bulk transition temperature. We use

a simply interpolation formula for all r: Tc(r)/To = 1 - [1 + (r/ro)q]-. The superfluid

density in a channel of radius r at temperature T, denoted by p,(r, T), is of course zero

for temperatures T > Tc(r). For 0.9 < [T/Tc(r)] < 1, we take

p,(r, T) = K1 [1 - T/Tc(r)]', (2)

where ( = 0.67 is the bulk critical exponent, and K1 a constant. Outside of the indicated

interval we use a polynomial form that reduces to 1 - K2T 2 near T = 0, and joins smoothly
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on to the formula above. Our results are not sensitive to how we interpolate. The channel

lengths are effectively infinite. How realistic this assumption is will be discussed later.

The momentum density for superfluid flow is given by j = psv, +p vz where the two

terms refer to the superfluid and normal fluid, respectively. Assuming that all channels

are so small that the normal fluid is pinned, we put vn = 0. Thus, writing v, = VO, where

4 is proportional to the superfluid phase, we have

j = pVo. (3)

This looks like Ohm's law with current density j, electrostatic potential 4, and electrical

conductivity p,. Thus, each bond can be replaced by a resistor, and the superfluid density

of the medium corresponds to the conductivity of the network. Because of the close analogy,

we shall freely use the language of the electrical analog when convenient.

After assigning the bond radii, and with that the electrical resistances, we calculate the

conductivity of the network by solving Kirchoff's equations on a computer, using Gauss-

Seidel iteration with SOR (Simultaneous Over-Relaxation) [7]. We use lattice sizes 10' and

203, with some calculations done on 303 and 503 lattices. In the following, we summarize

the insight gained from the computer simulations, illustrated with plots of quantitative

results, and conclude with some critical remarks.
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4.2 Results

Imagine that a voltage (superfluid phase) difference is established between the top and

bottom plates of the lattice, taken to be equipotentials. At high temperature all channels

are closed, and the network is non-conducting (no superfluid flow.) As the temperature is

lowered, some channels become conducting, but the whole network remain non-conducting

until a percolating cluster of open bonds connects the top to the bottom plate. The

percolation threshold To (which is not the T, of the experiments,) is the true critical point

for the onset of superfluidity. The behavior near this threshold, in a finite lattice, has a

complicated structure. When the temperature is increased, opening up a single bond can

appreciably enlarge the percolating cluster. As a result, the superfluid density exhibits

a series of bumps with discontinuous derivatives. The slope at the beginning of each

bump corresponds approximately to the bulk critical exponent , which is an input to the

calculation. This behavior is illustrated in Fig.4.1a, where the cluster size, as well as the

fraction of open channels, are also shown. When we go to a larger lattice, the bumps in

the superfluid density tend to be smoothed out. The critical exponent (o for an infinite

lattice can be approximately calculated by averaging over these bumps. We obtain in this

fashion (o ~ 1.7, which agrees with numerical results on percolation in 3D [8].

The specific heat at percolation threshold behaves like

C = (A/a)lTo - T|- + B, (4)
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where A and B are constants. Josephson hyperscaling [9] predicts (od = (2-a)(d-2).

Using Co = 1.7 and d = df = 2.6, we obtain for the specific heat exponent a = -5.4, which

makes it difficult to detect the singularity experimentally. Specific heat peaks were observed

in aerogel at full pore in Ref.[3], which also reports slight shifts of To in different samples

of aerogel cut from the same block. The latter can be explained by the dependence of the

percolation threshold on pore distribution. The peaks observed in [3] are probably due to

crossover to a "mean-field" region discussed below, the true critical region being buried in

the sharp rise of the specific heat.

When the temperature is decreased from the percolation region, the system crosses

over to a "mean-field" regime, in which the superfluid density has a different power-law

behavior, with exponent C. This is shown in Fig.4.1b, in a zoom-out from the previous

picture, and the process is continued in Fig.4.2. The mean-field region corresponds to that

studied extensively in experiments, while the crossover region corresponds to the "tails"

in the data that have always been ignored.

The difference between the mean-field and the critical region is revealed by measuring

the fractal dimension df of the percolating cluster in the computer. As shown in Fig.4.3,

df ~ 2.6 at the percolating threshold, which agrees with previous numerical results [11].

With decreasing temperature, df rapidly rises towards 3, when the mean-field region is

established. Almost all sites are then connected to the percolating cluster, (though not

necessarily all bonds are open.) In the mean-field region, a continuum approximation gives

p,(T) = j drP(r)p,(r, T), (5)

where P(r)dr is the probability that the radius of a channel lies between r and r + dr.
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Panel (a) shows the superfluid density from the computer simulation as function of temperature,

very near the percolation threshold. Curve A shows the percolating cluster size, and curve B shows the

fraction of open bonds. Lattice size is 203, with a Gaussian distribution of bond radii. Panel (b) is a

zoom-out from (a), whose temperature range is shown enclosed in curly brackets. The very beginning of

the mean-field region now comes into view. Curve C is the power-law fit that determines ( and Tc.

83

x 10-
Ii

0.81

0.61

0.4

0.2I

Fig. 4.1 (a)

.A

p,-(T)/p,(0)-

- --- ------ - --. .- -

- - - - - - - - -- - - - - - - - -

I

2.16

0.1

.08(

0.06

(b)

p,(T)/p,(0) s

'C

2.162
TO

2.165
F'

2.12

I

0.04

0.02



0.5

0.4

0.3

0.2

0.1

0
1.9 1.95 2

a )

I - I r
2.05

T

0.8-

0.6-

0.4 - p,(T)/p,()

0.2 -

(b)

1.

1.

0.5 1.5 2
T

Panels (a) and (b) continue the zoom-out from Fig.4.1. The temperature interval covered in the

previous region is enclosed in braces. In (a) the mean-region is fully visible, together with the power-law

fit. In (b) the power-law fit becomes indistinct.
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Fig. 4.3

Fractal dimension df of the percolating cluster as function of the fraction of open bonds p. The

latter was given as a function of temperature in curve B of Fig.4.1a. The simulation was done in a 503
lattice.
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We determine ( by introducing an effective transition temperature Tc, plotting the

computed superfluid density against T, - T in a log-log plot, and adjusting T, until a

straight line obtains for a range deem significant. The method involves subjective judge-

ment, but it is precisely that used on the experimental data [10]. Since ( is not associated

with critical phenomena, there is no reason to expect it to have universality. It depends

strongly on the distribution function of the radii. The discrepancy in the aerogel results be-

tween Refs.[2] and [4] might be due to differences in distribution functions. In Fig.4.4a, we

plot ( for a Gaussian distribution as a function of the width of the distribution. Fig.4.4b

shows that for a uniform distribution, as a function of the upper cutoff. The observed

values for Vycor, aerogel, and xerogel can all be reproduced.

Examples of the log-log plots used to determined ( are shown in Fig.4.5, where we

include three choices of the distribution function that can reproduce the experimental data

for Vycor, aerogel, and xerogel, respectively. As for the true critical region, there are not

enough experimental data to make a conclusive judgement. However, if we interpret the

"rounding" of the power law fit observed in experiments as due to the perrcolation we can

make a preliminary comparision. The result is shown in Fig. 4.6. As one can see, at least

the experiment data do not rule out our theoretical prediction of the critical index 1.7.

In the following, we comment on the comparison with experimental data.

Vycor is known to have relatively uniform pore radii, which are small compared to

channel lengths [1] [12]. The assumptions in our model are tailored for this case, and we

can fit both ( and the crossover region rather well. It is not surprising that ( lies close to

the bulk value, while T, does not. In the extreme case where all pores sizes are exactly
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the same, the percolation cluster would be saturated as soon as it occurs, and ( would

have the input bulk value. The transition temperature, however, would be depressed by

the finite pore size.
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Fig. 4.5

Log-log plot of superfluid density against T, - T, where T, has been adjusted to yield the best

straight line. The distribution functions are chosen to reproduce (. The curves have been displaced

vertically relative to one another, for visual comparison of the slopes. The dots are experimental points

read off the graphs in Ref.[2).
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Fig. 4.6

The experimental data in the rounding region are shown with the theoretical prediction of critical

index 1.7. Due to the fluctuation and the scarcity of the data it's very difficlut to make a conclusive

judgements. Howeve, at least they do not conflict with each other apparently.
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Aerogel has fractal structure, and the pores are not paticularly channel-like [13]. Our

best shot is to choose a broad distribution of radii. Not surprisingly, this makes ( different

from the bulk value, but brings T, closer to bulk value, because of the prevalence of large

pores. Although C can be fit by adjusting the width of the distribution, the data shows a

wider mean-field region.

Xerogel is essentially collapsed Aerogel, and has long channels along which the radius

varies, because small offshooting branches have been pinched shut [14]. Again, we can fit

( but not the extend of the mean-field region. A better model for this case might be to

allow the channels to have segments of varying radii.

Further studies are needed to clarify the nature of the critical point, particularly

concerning finite-size scaling, and effects of thermal fluctuations.
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