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1 Introduction

The T-duality symmetries of string theory have implications for the low-energy effective

field theories obtained after compactification on a torus. The full bosonic string theory

compactified on a d-dimensional torus has a discrete O(d, d;Z) duality group [1]. On the

other hand, the low-energy effective field theory for the massless degrees of freedom has

an enhanced O(d, d;R) continuous global symmetry. This symmetry was long-recognized

in the two-derivative approximation to the effective field theory [2–5], where the global

symmetry transformations take a simple form [6].

More nontrivially, using string field theory and the symmetries of S-matrix elements

of massless states it was shown in [4, 5] that the continuous O(d, d;R) global symmetry

survives α′ corrections to the effective field theory. These arguments were recently reviewed

and elaborated to show that the O(d, d;R) symmetry in the low-energy effective field theory

of heterotic strings is also preserved to all orders in α′ [7]. Thus the continuous duality

symmetry is valid for the effective field theory of the full classical string theory. The

arguments prove the existence of the duality symmetry but do not yield the associated

field transformations. When the action is written in generally coordinate invariant form

these dualities acquire α′ corrections, are rather complicated and are not well understood.

The manifest display of global duality symmetries in the presence of α′ corrections is a

natural subject of study in double field theory formulations [8–12] of the low-energy limits

of string theories. Motivated by the recent progress in encoding α′ corrections in double

field theory [13–16] we revisit here some aspects of the continuous T-duality symmetry of

effective field theories.

Given an effective field theory for a metric field, a b-field, and a dilaton, one wants to

know if this theory has a duality symmetry, by which we mean an O(d, d,R) symmetry

– 1 –



J
H
E
P
0
4
(
2
0
1
6
)
1
0
1

arising upon dimensional reduction on a torus T d. If the theory includes higher derivative

corrections and is written in generally coordinate invariant notation, the answer is not easily

found. A test of T-duality to first order in α′ was performed by Meissner [17] using the

generally-covariant effective field theory of bosonic strings and performing a (cosmological)

reduction to one dimension. In the analysis of [17] it seems necessary to bring this action

into a particular Gauss-Bonnet-type form by covariant field redefinitions before reduction.

After reduction one aims to rewrite the action in terms of a generalized metric and a duality

invariant dilaton. This final step requires further field redefinitions that cannot originate

from covariant redefinitions before reduction. The test [17] is a necessary condition for

T-duality but does not prove it. An obvious limitation of this method is that certain linear

combinations of terms that are nonzero in arbitrary dimensions sometimes become zero

upon reduction to one dimension. These combinations may fail to be T-duality covariant,

but no constraint arises from the reduction.

A similar analysis of the T-duality constraints on α′ corrections was recently given by

Godazgar and Godazgar [18], who consider the reduction on an arbitrary d-dimensional

torus but truncate to the scalar degrees of freedom, hence giving a necessary but not

sufficient condition for T-duality. As in the analysis of Meissner, realizing an O(d, d,R)

symmetry seems to lead to a preferred field basis in the original gravity action. It would

be useful to have full control of the field redefinition freedom. (See [19] for related investi-

gations of T-duality and α′ corrections.)

It is the purpose of this paper to extend the discussion of Meissner to make it fully

systematic and to deal in all generality with field redefinitions. Indeed, while the analysis

of [17] begins with a ‘minimal’ form of the O(α′) effective action, the method requires the

use of covariant field redefinitions to recast the action in a form where dimensional reduction

and integration by parts yields terms with no more than first-order time derivatives. This

takes a fair amount of work, and the resulting action is significantly more complicated

than the original, minimal one. Since the existence of T-duality symmetry is independent

of field redefinitions, a complete method should work with the simplest starting point. Here

we will develop such a method. Moreover, we also show that field redefinitions allow for

previously unnoticed simplifications of the duality covariant forms of the reduced action.

In the remainder of this introduction we outline our method and results. The dimen-

sional reduction for the metric and b-field is based on an ansatz of the form

gµν =

(
−n2(t) 0

0 gij(t)

)
, bµν =

(
0 0

0 bij(t)

)
. (1.1)

Here n(t) is the ‘lapse’ function. One can use the diffeomorphism symmetry to set n(t) = 1

but one has to remember the field equation for n(t). This field equation is needed to

perform field redefinitions on the reduced action. After that freedom is taken into account

one may set n(t) = 1, at which point the action becomes a function of matrices L,M ,

defined in terms of the matrices gij and bij :

L ≡ g−1ġ , M ≡ g−1ḃ . (1.2)

– 2 –



J
H
E
P
0
4
(
2
0
1
6
)
1
0
1

The action will also depend on time derivatives of L and M , as well as on the duality-

invariant dilaton Φ and its time derivatives.

In the next step of the procedure one uses the metric and b-field equations of motion to

eliminate via field redefinitions any appearance of L̇ and Ṁ terms from the action. Terms

with higher time derivatives of L or M , if any, would require integration by parts, until

one is able to use the equations of motion. We describe identities that allow one to remove

terms with first derivatives or powers of first derivatives of the dilaton. Terms with two

time derivatives on the dilaton can be eliminated using the dilaton equation to motion

and, using integration by parts, so can terms with more than two time derivatives on the

dilaton. The end result is a simplified reduced action that is just a function of traces of

powers of L and M .

This result must be set equal to the most general duality invariant one-dimensional

action plus terms that correspond to the ‘lapse’ field redefinition. Up to equations of motion

we demonstrate that the duality covariant action can be written in terms of traces of powers

of first time derivatives of the generalized metric. Any term involving time derivatives of

the dilaton can be redefined away. This quickly implies a very simple result: the number of

parameters in the 2k-derivative part of the duality covariant one-dimensional action (k ≥ 2)

is equal to the number p(k) of partitions of k. The most general lapse field redefinition

includes an additional set of parameters. The test shows T-duality is possible if one can

adjust all of those parameters to obtain equality with the simplified reduced action.

We illustrate our method with two examples. In the first we reconsider the O(α′) cor-

rections of bosonic string theory. Up to field redefinitions these corrections are determined

by eight coefficients. We test T-duality and show that the correct T-duality covariant ac-

tion emerges uniquely up to a two-fold ambiguity: there are two linear combinations of

terms that are not constrained because their reduction to one dimension gives zero.1 The

final O(d, d) covariant four-derivative action at order O(α′) can be brought to the form

S(1) =
1

16

∫
dt e−Φ

(
tr Ṡ4 − 1

2

(
tr Ṡ2

)2
)

, S ≡ ηH , (1.3)

where H is the generalized metric taking values in O(d, d) and η is the O(d, d) invariant

metric. This action is equivalent to that given by Meissner in [17] up to duality covariant

field redefinitions that eliminate all terms with dilaton time derivatives.

In the second example we consider the ‘doubled α′ geometry’ of [13]. It has nontrivial

α′ corrections and an exact duality symmetry that does not have α′ corrections. In this

theory it is the general coordinate transformations that receive α′ corrections. Rewritten

in terms of a conventional metric and b-field, however, the duality symmetries will have α′

corrections. Information gathered recently [21] indicates that the O(α′) corrections cubic

in fields are those of a Chern-Simons form based on a torsionless gravitational connection.

We ask here if the simplest form of the action consistent with this information is T-duality

covariant to all orders. We use our method to show that this minimal action fails to be

1For reductions to dimensions D > 1 these combinations are not zero, and so almost surely those linear

combinations are inconsistent with T-duality. If that is the case, the O(α′) action of the bosonic string is

fully determined by continuous duality.
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T-duality covariant to O(α′2). This demonstrates that the double field theory of [13] must

contain additional corrections.

2 Cosmological reduction and field redefinitions

In this section we develop a method to test if a given action is consistent with T-duality.

The first step is to perform the dimensional reduction to one dimension (section 2.1) and

to bring that action into canonical form (section 2.2). We discuss lapse redefinitions while

working in the gauge where the lapse function is set equal to one. We show that, up to

general field redefinitions, the action can be written in terms of L and M , see (1.2). In

particular, there are no time derivatives of L orM , nor dilaton time derivatives. The second

step is to match the reduced action to a one-dimensional duality covariant action, whose

terms we classify up to duality-covariant field redefinitions (section 2.3). The matching

condition is stated in equation (2.45).

2.1 Reduction including lapse function and general field redefinitions

We begin by performing the (cosmological) reduction to one dimension of the standard

two-derivative, low-energy action for the bosonic string:

S =

∫
dDx

√−g e−2φ

(
R+ 4(∂φ)2 − 1

12
H2

)
. (2.1)

Here Hµνρ = 3∂[µbνρ] is the field strength for the b-field. In the reduction we drop the

dependence on all internal coordinates, leaving only the dependence on time t,

xµ = (t, xi) , ∂i = 0 . (2.2)

For the metric, antisymmetric tensor and (scalar) dilaton we have

gµν =

(
−n2(t) 0

0 gij(t)

)
, bµν =

(
0 0

0 bij(t)

)
, φ = φ(t) . (2.3)

Before proceeding with the computation of the reduction, it is useful to examine the

residual diffeomorphisms of the reduction ansatz. Since we have kept the lapse function

n(t), we still have time reparametrization invariance. This diffeomorphism symmetry t →
t− λ(t) acts as

δλn = ∂t(λn) ,

δλgij = λ ġij ,

δλbij = λ ḃij ,

δλφ = λ φ̇ ,

(2.4)

where we use dots or ∂t to denote time derivatives. Note that all fields except for n(t)

transform as scalars under time reparameterizations. The field n(t) transforms as a density.

For any field A that transforms as a scalar,

δλA = λ∂tA , (2.5)
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one can readily verify that the combination n−1∂t is a covariant time derivative and thus

n−1∂tA is also a scalar:

δλ
(
n−1∂tA

)
= λ∂t

(
n−1∂tA

)
. (2.6)

It is also quickly seen that for any such scalar A, the combination nA is a scalar density :

δλ(nA) = ∂t(λnA) . (2.7)

It will we useful for us to define a different dilaton by

e−Φ ≡
√
det(gij) e

−2φ . (2.8)

Since gij and φ transform as scalars, both e−Φ and Φ are scalars:

δλΦ = λ Φ̇ . (2.9)

Let us now begin the calculation of the reduction. If we reduce (2.1) to one dimension,

using the definition of the dilaton Φ,

S =

∫
dt ne−Φ

(
R+ 4(∂φ)2 − 1

12
H2

)
. (2.10)

In order to compute the various terms in the action, we need the Christoffel symbols, whose

non-vanishing components are

Γ0
ij =

1

2n2
ġij , Γj

i0 =
1

2
gjkġik , Γ0

00 =
ṅ

n
. (2.11)

For the lower-index version Γαµν ≡ gαβΓ
β
µν we get

Γ0ij = −Γij0 = −1

2
ġij , Γ000 = −nṅ . (2.12)

The non-vanishing components of the Riemann tensor are then found to be

Rijkl =
1

2n2
ġk[i ġj]l ,

R0i0j = −1

2
n∂t

(
1

n
ġij

)
+

1

4
gklġkiġlj .

(2.13)

After some calculation using the above, the scalar curvature R is determined to be

R =
1

n
∂t

(
gij

1

n
∂tgij

)
+

1

4

(
1

n
gij ġij

)2

+
1

4
gijgkl

1

n
ġil

1

n
ġkj . (2.14)

It is manifest that each term here is a scalar.

It is convenient to define, using matrix notation,

L ≡ g−1ġ , M ≡ g−1ḃ , (2.15)
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so that Li
j = gikġkj and M i

j = gik ḃkj . All our matrices have the row index up and the

column index down. Note that

L ≡ n−1L, and M ≡ n−1M , (2.16)

transform as scalars. In the gauge n = 1, L becomes L and M becomes M . Note also the

simple identities

g−1g̈ = L̇ + L2 , g−1b̈ = Ṁ + LM . (2.17)

Using the above result for the scalar curvature, noting that the dilaton relation (2.8)

gives

φ̇ =
1

2

(
Φ̇ +

1

2
trL

)
, (2.18)

and reducing the kinetic term for the antisymmetric tensor,

− 1

12
H2

µνρ = − 1

n2

1

4
trM2 , (2.19)

we find that the two-derivative action in (2.10) becomes

S =

∫
dt

1

n
e−Φ

(
−Φ̇2 +

1

4
tr(L2 −M2)

)
. (2.20)

The reparameterization invariance is manifest because the action equals

S =

∫
dt n e−Φ

(
−
(

1

n
Φ̇

)2

+
1

4
tr(L2 −M2)

)
, (2.21)

which is written in terms of the covariant time derivatives of dilaton, metric and b-field,

multiplied by the density n. We find that the metric and b-field equations of motion take

the form

L̇ = ∂t
(
n−1L

)
= n−1

(
M2 + Φ̇L

)
,

Ṁ = ∂t
(
n−1M

)
= n−1

(
ML+ Φ̇M

)
,

(2.22)

while the dilaton equation of motion is

d

dt

(
n−1Φ̇

)
=

1

2
n−1

(
Φ̇2 +

1

4
tr(L2 −M2)

)
. (2.23)

The equation of motion for the lapse n is quite simple: it sets the Lagrangian density equal

to zero, which means

− Φ̇2 +
1

4
tr(L2 −M2) = 0 . (2.24)

We can finally bring the action into manifestly O(d, d) covariant form. We first recall

that ηH, where η is the invariant metric and H the generalized metric, takes the form

ηH =

(
bg−1 g − bg−1b

g−1 −g−1b

)
. (2.25)
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From this one may verify by a quick calculation that

tr(ηḢ)2 = 2 tr(M2 − L2) . (2.26)

Comparing with the dimensionally reduced action (2.20), one finds that the latter can be

written as

S =

∫
dt

1

n
e−Φ

(
−Φ̇ 2 − 1

8
tr(ηḢ)2

)
, (2.27)

which is now manifestly O(d, d) invariant. Both Φ and n(t) are inert under O(d, d) trans-

formations.

2.2 Field redefinitions, lapse gauge fixing and canonical form for the action

In order to test if a generally covariant action has T-duality symmetry we reduce to one

dimension. In this reduction we keep the lapse function n(t) as a variable. Since T-duality

in two-derivative actions is understood, the purpose here is to deal with the generally

covariant higher derivative couplings that appear in the effective field theory as terms in a

power series in α′.

Having reduced the full action the next step is to simplify it in a canonical way by

using field redefinitions. The field redefinitions will be viewed as perturbative in α′. Our

rule will be to use metric, b-field and dilaton equations of motion in order to eliminate

all terms with two or more derivatives of these fields. In order to implement these field

redefinitions we can simply view them as allowed substitutions in the higher-derivative

terms. From (2.22) and (2.23) we have the substitutions:

n−1L̇ → n−2
(
M2 + Φ̇L) ,

n−1Ṁ → n−2
(
ML+ Φ̇M) ,

n−1 d

dt

(
n−1Φ̇

)
→ 1

2
n−2

(
Φ̇2 +

1

4
tr(L2 −M2)

)
.

(2.28)

All objects to the left and right of the arrow are scalars. There is one more substitution

possible, based on the lapse field equation (2.24),

Φ̇2 → 1

4
tr(L2 −M2) . (2.29)

After we use all these substitutions we try to see if the resulting action has T-duality. At

this point we can use the gauge n(t) = 1, and thus the test of T-duality amounts to trying

to write the resulting action in terms of H, which encapsulates gij(t) and bij(t), and the

dilaton Φ.

In practice we can simplify a bit our work by letting n = 1 before doing the reduction

to one dimension and before using the field equations for the metric, b-field and dilaton.

After setting n = 1 the replacements corresponding to these field equations become

L̇ → M2 + Φ̇L ,

Ṁ → ML+ Φ̇M ,

Φ̈ → 1

2

(
Φ̇2 +

1

4
tr(L2 −M2)

)
→ 1

4
tr(L2 −M2) ,

(2.30)
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where we used the lapse equation in the last replacement. Since in this way we lose the

n field equation, we must recall that we have the ability to do the lapse-related field

redefinition (2.29). Setting n = 1 before reduction and use of the equations of motion

gives the same result as setting n = 1 after reduction and use of equations of motion.

This is because all terms in the action are time-reparameterization scalars and for them all

appearances of n are in the form n−1∂t. Setting n = 1 then just leaves the time derivatives

that would have been obtained otherwise.

Let us discuss more explicitly the replacement rule. If we vary the metric in the

two-derivative Lagrangian L(2) (S =
∫
e−ΦL) we find an expression of the form

δL(2) = tr

(
−1

2
g−1 δg (L̇− (M2 + Φ̇L))

)
. (2.31)

Now assume that in the full higher-derivative Lagrangian we find a term of the form

L = L(2) + α′ tr(XL̇) + . . . , (2.32)

where the dots represent other terms of order α′ or higher. A trivial rewriting expresses

this as the sum of two terms:

L = L(2) + α′ tr(X(L̇− (M2 + Φ̇L))) + α′ tr(X(M2 + Φ̇L))) + . . . . (2.33)

It now follows from (2.31) that if we redefine the metric with

− 1

2
g−1δg = −α′X , (2.34)

the underlined term above is cancelled, and we are left with a new Lagrangian L′ given by

L′ = L(2) + α′tr(X(M2 + Φ̇L))) + . . . . (2.35)

Comparing with (2.32) we see that the effect of the field redefinition was to implement the

replacement L̇ → M2+ Φ̇L, as claimed. Note also that, in principle, the metric redefinition

should be performed everywhere, not only in the two-derivative action. Nevertheless, since

the redefinition is itself of order α′, the effect of the redefinition on the O(α′) terms will

be order α′2 terms. The analysis in section 3 is only to order α′, so there is no need to

consider such terms. In section 4 the analysis is of order α′2, and we will carefully consider

the field redefinitions that include both a part proportional to α′ and a part proportional

to α′2. This will be facilitated by starting with a duality covariant Lagrangian (4.16) that

does not have O(α′) terms.

Having removed terms with two derivatives on the fields another important set of

identities allows us to remove terms with powers of Φ̇. Assume X = X(L,M) is a function

of L and M only and is of degree k: X(λL, λM) = λkXX(L,M). We can then manipulate

a term of the form Φ̇X in the Lagrangian as follows:

∫
dte−ΦΦ̇X = −

∫
dt ∂t(e

−Φ)X =

∫
dte−Φ Ẋ . (2.36)
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Given that X is of degree kX , if we take the time derivative and use the substitutions

in (2.30) to eliminate the L̇ and Ṁ terms we will find

Ẋ = kX Φ̇X +X ′ , (2.37)

where prime denotes the action of taking a time derivative and letting L̇ → M2 and

Ṁ → ML. As a result we have
∫

dt e−ΦΦ̇X =

∫
dt e−Φ (kX Φ̇X +X ′) , (2.38)

which means that as terms in the Lagrangian we eliminate the Φ̇X term via the equivalence

Φ̇X ≃ 1

(1− kX)
X ′ . (2.39)

Here and in the following we denote by ≃ equalities that hold up to equations of motion

and integrations by parts. The above identity fails for kX = 1, but this case will not be

relevant, as it would correspond to a term with two derivatives and we are interested in

higher-derivative terms. As examples of the use of this identity consider two forms of X,

both of degree three:

Φ̇ tr(L3) ≃ −3

2
tr(M2L2) ,

Φ̇ tr(M2L) ≃ −1

2
tr(MLML+M2L2 +M4) .

(2.40)

By a similar analysis, this time using the dilaton replacement (last line in (2.30)), one can

show that

Φ̇2X ≃ − 1

2kX − 1

(
1

4
tr(L2 −M2)X − 2

kX
X ′′

)
. (2.41)

Here X ′′ = (X ′)′, using the definition of prime given above. Since kX = 0 is not of

interest and kX is an integer, the above formula always gives a well defined equivalence.

As examples we record

Φ̇ 2 tr(L2) ≃ − 1

12
tr(L2 −M2) tr(L2) +

2

3
tr(MLML+M2L2 +M4) ,

Φ̇ 2 tr(L2 −M2) ≃ − 1

12

(
tr(L2 −M2)

)2
.

(2.42)

For arbitrary powers of Φ̇ we can use the following relation, derived by exactly the same

methods:

1

2

(
3− p− 2kX

)
Φ̇pX ≃ p− 1

8
tr(L2 −M2) Φ̇p−2X + Φ̇p−1X ′ . (2.43)

This relates a term with Φ̇p to terms with Φ̇p−1 and Φ̇p−2 and can be used recursively.

Note that (2.39) follows from for p = 1, and (2.41) follows for p = 2, after using the p = 1

result. This equation shows that we can always eliminate the Φ̇ dependence of terms using
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field equations. The prefactor on the left-hand side indicates that for p = 1, kX = 1 or

for p = 3, kX = 0 the relation fails to help eliminate Φ̇pX. But those cases correspond to

terms with two and three derivatives, respectively, and are of no interest to us. The upshot

of this analysis is that, by the use of field redefinitions, the dimensionally reduced action

can be written as a function of L and M with no extra time derivatives and without any

dilaton time derivatives.

As we mentioned while introducing (2.29), we simplify the reduced action using the

lapse equation of motion to replace, for arbitrary Y ,

Φ̇2 Y ≃ 1

4
tr(L2 −M2)Y . (2.44)

We could use (2.41) instead, but this is more complicated and not needed at this stage. In

order to explain this point, let us consider the general ansatz that needs to be solvable in

order for duality invariance to be possible. Schematically, the matching equation reads

(reduction to D = 1) ≃ (general 1D duality-invariant action) +

(
Φ̇2 − 1

4
tr(L2 −M2)

)
X ,

(2.45)

where the last term accounts for lapse redefinitions and X is an arbitrary function of L,M,

and Φ̇. This form makes it manifest that the use of (2.44) is legal in the simplification of

the left-hand side of the matching equation. Indeed, a term Φ̇2 Y on the left-hand side can

be trivially rewritten as

Φ̇2 Y =
1

4
tr(L2 −M2)Y +

(
Φ̇2 − 1

4
tr(L2 −M2)

)
Y , (2.46)

and we can ignore the second term as long asX is general. If the reduction to 1D with all its

simplifications has been carried out, and given that the general 1D duality-invariant action

has no dilaton time derivatives (section 2.3), the only dilaton time derivatives in (2.45)

are in the second term of the right-hand side. At this point the equivalence (2.41) and,

more generally, (2.43), both valid up to field redefinitions, is needed to eliminate such

dependence. This is why we use the symbol ≃ in (2.45).

To illustrate the simplification procedure for the reduction of the action to D = 1,

consider the reduction of Riemann-squared. Using the non-vanishing components of the

Riemann tensor one quickly finds

R2
µνρσ = RijklRijkl + 4(g00)2R0

j
0iR0

i
0j . (2.47)

It follows immediately from the first equation in (2.13) that

RijklRijkl =
1

8
(trL2)2 − 1

8
trL4 . (2.48)

Moreover, a few lines of calculation using the second equation in (2.13) shows that

R0
i
0j = −1

2
n2

(
n−1L̇+

1

2
L2

)i

j . (2.49)
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All in all Riemann-squared gives

R2
µνρσ =

1

8
(trL2)2 − 1

8
trL4 + tr

(
n−1L̇+

1

2
L2

)2

= tr

(
(n−1L̇)2 + n−1L̇L2 +

1

8
L4

)
+

1

8
(trL2)2 .

(2.50)

This is manifestly a scalar and, as expected, the time derivatives always appear accompa-

nied by a factor of n−1. Using the equation of motion for gij and setting n = 1 afterwards

gives manifestly the same result as setting n = 1 first and then using the simpler equations

of motion. Setting first n = 1 we have

R2
µνρσ = tr

(
L̇2 + L̇L2 +

1

8
L4

)
+

1

8
(trL2)2 . (2.51)

Using now the replacement associated to the equation of motion (2.30) we get

RµνρσR
µνρσ ≃ tr

(
1

8
L4 +M2L2 +M4

)
+

1

8

(
tr(L2)

)2

+ Φ̇ tr(L3 + 2M2L) + Φ̇2 tr(L2) .

(2.52)

Employing next (2.40) and the lapse equation replacement we get

RµνρσR
µνρσ ≃ tr

(
1

8
L4 +M2L2 +M4

)
+

1

8

(
tr(L2)

)2

+ tr

(
−MLML− 5

2
M2L2 −M4

)
+

1

4
tr(L2 −M2) tr(L2) .

(2.53)

Simplifying, we finally get:

RµνρσR
µνρσ ≃ tr

(
1

8
L4 −MLML − 3

2
M2L2

)
+

3

8

(
trL2

)2 − 1

4
trM2 trL2 , (2.54)

where we recall that ≃ means that the left-hand side and right-hand side are equal up to

field redefinitions and integrations by parts. This expression will be needed in the later

analysis.

Since we can do the reduction to one dimension without using the lapse function we

collect a few formulae. The nonvanishing Christoffel symbols, b-field field strengths and

curvatures are

Γ0
ij =

1

2
ġij , Γj

i0 =
1

2
gjkġik, or Γ0ij = −Γij0 = −1

2
ġij . (2.55)

H0
i
j = (M)ij , − 1

12
H2

µνρ = −1

4
trM2. (2.56)

Rijkl =
1

2
ġk[iġj]l, R0

i
0j = −1

2

(
L̇+

1

2
L2

)i

j , (2.57)

R00 = −1

2
tr(L̇)− 1

4
tr(L2), Ri

j =
1

2

(
L̇+

1

2
LtrL

)i

j , R = tr(L̇) +
1

4
(trL)2 +

1

4
tr(L2).

(2.58)
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To check the consistency of the reduction and our formulae we have examined in detail

the covariant field equations for the metric, b-field, and dilaton. Their reduction give the

equations of motion displayed above, with the lapse equation arising from the g00 equation.

We have also checked that we are not missing nontrivial field equations by setting g0i = 0

and b0i = 0 in the reduction ansatz.

2.3 O(d, d) covariant field redefinitions

In this subsection we consider the duality covariant, one-dimensional, two-derivative action

for H and Φ and then examine what are the possible duality covariant α′ corrections, up

to field redefinitions. The action, setting n = 1 in (2.27), is

S =

∫
dt e−Φ

(
−Φ̇ 2 − 1

8
tr Ṡ2

)
, S ≡ ηH . (2.59)

For brevity we have introduced S = ηH, which satisfies S2 = 1. The equations of motion

for S and Φ are then

S̈ + SṠ2 − Φ̇ Ṡ = 0 ,

−2Φ̈ + Φ̇ 2 − 1

8
tr Ṡ2 = 0 .

(2.60)

Thus, using O(d, d) covariant field redefinitions we can always replace

S̈ → − SṠ2 + Φ̇ Ṡ ,

Φ̈ → 1

2
Φ̇2 − 1

16
tr Ṡ2 .

(2.61)

We will next apply this freedom of duality covariant field redefinitions in the one-

dimensional O(α′) action found by Meissner. It is given by
∫
dte−ΦL with Lagrangian [17]

L =
1

16
tr Ṡ4 − 1

64

(
tr Ṡ2

)2 − 1

4
Φ̇ 2 tr Ṡ2 − 1

3
Φ̇ 4 . (2.62)

We will see that all dilaton terms can be removed by O(d, d) invariant field redefinitions.

We recall relation (2.43), which in O(d, d) covariant language reads

1

2

(
3− p− 2kX

)
Φ̇pX ≃ −p− 1

16
tr Ṡ2 Φ̇p−2X + Φ̇p−1X ′ . (2.63)

For X equal to a constant we get

Φ̇k ≃ 1

8

(
k − 1

k − 3

)
Φ̇k−2 tr Ṡ2 . (2.64)

This allows us to trade the Φ̇4 term in the above Lagrangian for a Φ̇2 tr Ṡ2 term.2 Note

now that the second relation in (2.42) implies that

Φ̇2 tr Ṡ2 ≃ 1

24

(
tr Ṡ2

)2
. (2.65)

2Note, however, that we could not eliminate a Φ̇3 term — but this is irrelevant because such term has

three derivatives and is of no interest to us.
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Using these relations one quickly shows that the above Lagrangian (viewed as an addition

to the two-derivative theory) is field-redefinition equivalent to the simpler

L ≃ 1

16
tr Ṡ4 − 1

32

(
tr Ṡ2

)2
. (2.66)

Classification of O(d, d) invariants. We will classify all possible O(d, d) invariant

terms that can be added to the two-derivative action. These will be written in terms of

S = ηH, its derivatives, the dilaton Φ and its derivatives. Terms that differ by O(d, d)

covariant field redefinitions will be considered equivalent. The result is simple: terms are

constructed by taking traces, or products of traces, of even powers of Ṡ. In particular,

terms involving the dilaton time derivatives do not appear.

To begin note that S has zero trace (see (2.25)), and therefore so do all of its derivatives,

tr(S) = tr(Ṡ) = tr(S̈) = 0 . (2.67)

Moreover, since SS = 1 we immediately learn that S and Ṡ anticommute:

SṠ + ṠS = 0 . (2.68)

We first show that traces of odd powers of Ṡ vanish. For this purpose we take a second

derivative of the above equation to get

2ṠṠ + S̈S + SS̈ = 0 . (2.69)

Multiplying from the left by (Ṡ)2k+1, with k a non-negative integer, we find

2(Ṡ)2k+3 + (Ṡ)2k+1S̈S + (Ṡ)2k+1SS̈ = 0 . (2.70)

Taking traces and using cyclicity, we have

2 tr(Ṡ2k+3) + tr
(
S Ṡ2k+1S̈ + Ṡ2k+1 SS̈

)
= 0 . (2.71)

Noting now with (2.68) that SṠ2k+1 = −Ṡ2k+1S, we learn that

tr(Ṡ2k+3) = 0 . (2.72)

Since tr(Ṡ) = 0, we have now proven, as we claimed, that

tr(Ṡ2k+1) = 0 , for k = 0, 1, . . . . (2.73)

There is no need to consider the use of S̈ or higher time derivatives of S. Using the

S field equation we can implement the replacements in (2.61) to trade a double derivative

of S for terms with S, Ṡ and Φ̇. We see that we must consider terms that also involve the

undifferentiated S. There is nothing that can be done with just S, as it has zero trace,

and once squared it equals the identity matrix. The question is if we can build some new

duality invariant using S and Ṡ. The answer is no, as we show next.
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If we have a trace of a string of products of S’s and Ṡ’s, using the anticommutativity

of S and Ṡ the term can be arranged so that all the S’s are near each other and thus, since

S2 = 1, the only possible terms are of the form

tr(SṠk) , (2.74)

for k a non-negative integer. It is straightforward to see that they vanish for all k, includ-

ing k = 1,

tr(SṠk) = tr(SṠṠk−1) = − tr(ṠSṠk−1) = − tr(SṠk) = 0 . (2.75)

Here we used (2.68) in the second equality and cyclicity of the trace in the third equality.

The last issue we have to discuss is terms with time derivatives of the dilaton. Only

first derivatives are relevant, since terms with two or more time derivatives of the dilaton

can be reduced by using the dilaton field equation. But we have already seen that (2.63)

allows us to get rid of such terms. Therefore there are no dilaton time derivatives in the

one-dimensional duality invariant action, up to field redefinitions.

Our analysis implies that for four derivatives the most general duality covariant terms

that, up to field redefinitions, can be added to the action are

O(α′) : a1trṠ4 + a2
(
trṠ2

)2
. (2.76)

For six derivative terms we have

O((α′)2) : c1 tr Ṡ6 + c2 tr Ṡ4 tr Ṡ2 + c3
(
tr Ṡ2

)3
. (2.77)

The terms that arise at order (α′)k−1 have 2k derivatives and look like

O((α′)k−1) : c1 tr Ṡ2k + c2 tr Ṡ2k−2 tr Ṡ2 + c3 tr Ṡ2k−4(tr Ṡ2)2 + c4 tr Ṡ2k−4 tr Ṡ4 + . . .

(2.78)

Letting z ≡ Ṡ2 and assuming that each factor in a product has its trace taken, the above

expression is

c1 z
k + c2z

k−1z + c3 z
k−2z z + c4 z

k−2z2 + . . . , (2.79)

making it clear that each summand can be associated with a partition of the integer k.

Thus the number of independent coefficients in the O((α′)k−1) action is p(k), the number

of partitions of k. This is the number of coefficients in the part of the action with 2k

derivatives.

For reference we collect the first few independent invariants in terms of L and M ,

tr(Ṡ2) = 2 tr
(
−L2 +M2) ,

tr(Ṡ4) = 2 tr
(
L4 + 2MLML− 4M2L2 +M4) ,

tr(Ṡ6) = 2 tr
(
−L6 − 6ML3ML + 3ML2ML2 + 6M2L4

− 3M2LM2L+ 6M3LML− 6M4L2 +M6
)
.

(2.80)
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3 Bosonic string theory at O(α′) revisited

As an application and illustration of the general procedure developed above, we consider the

bosonic string effective action including O(α′) corrections and investigate to what extent

it is constrained by duality invariance in the reduction to one dimension. We start with

the most general four-derivative action, up to field redefinitions, according to Tseytlin and

Metsaev. This action contains eight terms and thus eight coefficients γi, i = 1, . . . , 8, and

takes the form [20]:

S(γ) =

∫
dDx

√−g e−2φ L(γ) , (3.1)

where

L(γ) = γ1R
2
µνρσ + γ2HHR + γ3H

4 + γ4 (H
2
µν)

2

+ γ5 (H
2)2 + γ6H

2
µν ∂

µφ∂νφ + γ7H
2(∂φ)2 + γ8 (∂φ)

4 .
(3.2)

In here, the various terms are defined as follows:

HHR ≡ HµνλHρσ
λRµνρσ ,

H4 ≡ Hµνρ(HHH)µνρ ≡ Hµνρ Hµ
α
βHν

β
γHρ

γ
α ,

H2
µν ≡ Hµ

αβHναβ ,

(H2
µν)

2 ≡ H2
µνH

2µν ,

H2 ≡ HµνρH
µνρ .

(3.3)

Given the known result that the O(α′) action of bosonic string theory, up to field redefini-

tions, is [20]

∫
dDx

√−g e−2φ

(
R2

µνρσ − 1

2
HHR+

1

24
H4 − 1

8
(H2

µν)
2

)
, (3.4)

we know that

γ1 = 1, γ2 = −1

2
, γ3 =

1

24
, γ4 = −1

8
, γ5 = γ6 = γ7 = γ8 = 0 , (3.5)

is a duality invariant solution. We now want to see if this is the answer selected by the

condition of duality invariance.

The strategy is to reduce the Lagrangian L(γ) down to one dimension using the field

equations to eliminate L̇, Ṁ , Φ̈ and Φ̇2 terms. The result is equated to the general duality

covariant terms plus the most general lapse redefinition, as explained in (2.45). The lapse

redefinition takes the form
(
Φ̇2 − 1

4
tr(L2 −M2)

)(
b1tr(L

2) + b2tr(M
2) + b3(trL)

2 + b4Φ̇
2 + b5Φ̇(trL)

)
, (3.6)

where the terms in parenthesis are the most general terms we can write with two time

derivatives, realizing that tr(M) = tr(ML) = 0. The term with coefficient b5 gives, up to
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equations of motion, precisely minus the contribution of the term with coefficient b2. This

is so because, up to equations of motion,

e−Φ

(
Φ̇2 − 1

4
tr(L2 −M2)

)
tr(M2 + Φ̇L) ≃ e−Φ

(
Φ̇2 − 1

4
tr(L2 −M2)

)
tr L̇ , (3.7)

and the term in the right hand side is a total total derivative, as can be checked integrating

by parts the time derivative acting on L and using the dilaton, metric, and b-field equations

of motion. Therefore we can set b5 equal to zero. Using (2.76) and (2.45) the dimensionally

reduced Lagrangian should then be writable as

L(γ)
∣∣
1d

≃ a1tr(ηḢ)4 + a2
(
tr(ηḢ)2

)2

+

(
Φ̇2 − 1

4
tr(L2 −M2)

)(
b1tr(L

2) + b2tr(M
2) + b3(trL)

2 + b4Φ̇
2
)
,

(3.8)

which will constrain the γ coefficients. This is our key equation. The right-hand side can

be evaluated with (2.80) and (2.41) to give

rhs ≃ tr
(
2a1 L

4 + 4a1MLML− 8a1M
2L2 + 2a1M

4)

+ 4a2 (trL
2)2 + 4a2 (trM

2)2 − 8a2 (trM
2)(trL2)

+ b1

(
−1

3
tr(L2 −M2) trL2 +

2

3
tr
(
MLML+M2L2 +M4

))

+ b2

(
−1

3
tr(L2 −M2) trM2 +

2

3
tr
(
MLML+M2L2 +M4

))

+ b3

(
−1

3
tr(L2 −M2) (trL)2 +

2

3
(trM2)2 +

4

3
tr(M2L) trL

)

+ b4
1

12
(tr(L2 −M2))2 .

(3.9)

Now we must evaluate the left-hand side by computing the cosmological reduction

of (3.2). The Riemann-squared term was given in (2.54). The HHR invariant yields

HHR = tr

(
M2L2 +

1

2
MLML+ 2L̇M2

)

= tr

(
M2L2 +

1

2
MLML+ 2M4

)
+ 2 Φ̇ tr(M2L)

≃ tr

(
−1

2
MLML+M4

)
.

(3.10)

For the H4 invariants we find

H4 = 3 tr(M4) , (H2
µν)

2 = 4 tr(M4) + (tr(M2))2 , (H2)2 = 9 (trM2)2 . (3.11)

We need to calculate the terms with dilaton derivatives. Here we can use the lapse equation

(as well as the other equations) to replace

Φ̇2 → 1

4
tr(L2 −M2) , (3.12)
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and thus simplify some of the calculations. First, one finds

H2
µν∂

µφ∂νφ = −tr(M2)φ̇2

= −1

4
tr(M2)

(
Φ̇ +

1

2
trL

)2

= −1

4
Φ̇2tr(M2)− 1

4
Φ̇tr(M2)tr(L)− 1

16
tr(M2)(trL)2

≃ − 1

16
tr(L2 −M2)tr(M2) +

1

4
tr(M2L)tr(L) +

1

8
(trM2)2 − 1

16
tr(M2)(trL)2

≃ − 1

16
tr(M2)tr(L2) +

3

16
(trM2)2 +

1

4
tr(M2L)tr(L)− 1

16
tr(M2)(trL)2 .

(3.13)

The next structure, reduced to one-dimension, is proportional to the previous one

H2(∂φ)2 = −3 tr(M2) φ̇2 = 3H2
µν ∂

µφ∂νφ . (3.14)

Therefore,

γ6H
2
µν ∂

µφ∂νφ + γ7H
2(∂φ)2 = (γ6 + 3γ7)H

2
µν ∂

µφ∂νφ ≡ γ̃6H
2
µν ∂

µφ∂νφ , (3.15)

and we have put here the new constant γ̃6. The condition of duality invariance in one

dimension cannot completely determine the action. The last term takes a bit of effort,

giving

(∂φ)4 = φ̇4 =
1

16

(
Φ̇ +

1

2
trL

)4

=
1

16
Φ̇4 +

1

8
Φ̇3 trL +

3

32
Φ̇2(trL)2 +

1

32
Φ̇ (trL)3 +

1

(16)2
(trL)4

≃ 1

16

(
tr(L2 −M2)

)2 − 1

64
tr(L2 −M2) tr(M2) +

3

128
tr(L2 −M2) (trL)2

− 3

64
tr(M2) (trL)2 +

1

(16)2
(trL)4 .

(3.16)

We note here the presence of a term (trL)4. No other contribution to the left hand side

of (3.8) contains such term, nor is it contained on the right-hand side, as shown in (3.9).

This means that (∂φ)4 is incompatible with duality and we can immediately set

γ8 = 0 . (3.17)

The complete evaluation of the left hand side of (3.8) thus gives

lhs ≃ γ1

(
tr

(
1

8
L4 −MLML − 3

2
M2L2

)
+

3

8

(
trL2

)2 − 1

4
trM2 trL2

)

+ γ2

(
tr

(
−1

2
MLML+M4

))
+ γ3

(
3tr(M4)

)
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+ γ4

(
4 tr(M4) + (tr(M2))2

)
+ γ5

(
9(trM2)2

)

+ γ̃6

(
− 1

16
tr(M2) tr(L2) +

3

16
(trM2)2 +

1

4
tr(M2L)tr(L) − 1

16
tr(M2)(trL)2

)
.

(3.18)

Equating the coefficients of the independent structures on the left- and right-hand sides

of (3.8) we get ten equations:

1

8
γ1 = 2a1 ,

−
(
γ1 +

1

2
γ2

)
= 4a1 +

2

3
(b1 + b̃2) ,

−3

2
γ1 = − 8a1 +

2

3
(b1 + b̃2) ,

γ2 + 3γ3 + 4γ4 = 2a1 +
2

3
(b1 + b̃2) ,

3

8
γ1 = 4a2 −

1

3
b1 +

1

12
b4 ,

−1

4
γ1 −

1

16
γ̃6 = − 8a2 +

1

3
b1 −

1

3
b̃2 −

1

6
b4 ,

γ4 + 9γ5 +
3

16
γ̃6 = 4a2 +

1

3
b̃2 +

2

3
b3 +

1

12
b4 ,

1

4
γ̃6 =

4

3
b3 ,

− 1

16
γ̃6 =

1

3
b3 ,

0 = − 1

3
b3 .

(3.19)

The first four equations and the last three equations are completely equivalent to the

following values for the parameters

a1 =
1

16
γ1 , b1 + b̃2 = −3

2
γ1 , b3 = 0 , (3.20)

as well as the following constraints on the action coefficients:

γ2 = −1

2
γ1 , 3γ3 + 4γ4 = −3

8
γ1 , γ̃6 = 0 . (3.21)

With this information, the remaining equations are

3

8
γ1 = 4a2 −

1

3
b1 +

1

12
b4 ,

−1

4
γ1 = − 8a2 +

1

3
b1 −

1

3
b̃2 −

1

6
b4 ,

γ4 + 9γ5 = 4a2 +
1

3
b̃2 +

1

12
b4 .

(3.22)
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Interestingly, if we add the three of them, the right-hand side vanishes and we get one more

constraint for the action coefficients:

γ4 + 9γ5 = −1

8
γ1 . (3.23)

There are no more constraints from these equations and the full list of constraints is then

γ2 = −1

2
γ1 , 3γ3 + 4γ4 = −3

8
γ1 , γ4 + 9γ5 = −1

8
γ1 , γ̃6 = γ8 = 0 . (3.24)

We can parameterize the coefficients γ3, γ4, and γ5 in terms of a parameter t, and γ6 and

γ7 in terms of a parameter u (recalling that γ̃6 = γ6 + 3γ7 = 0). We then get

L(γ) = γ1

(
R2

µνρσ − 1

2
HHR +

(
1

24
+ t

)
H4 +

(
−1

8
− 3

4
t

)
(H2

µν)
2

+
1

12
t (H2)2 + uH2

µν ∂
µφ∂νφ − 1

3
uH2(∂φ)2

)
.

(3.25)

If we take t = u = 0 we recover the known T-duality invariant action. Up to an overall

constant, the eight coefficients in the action are really seven coefficients. From these seven

we have determined five, since we have two free parameters. The u parameter dependence

is such that reduced to one dimension it disappears. One can quickly check that the t

dependence also vanishes in a reduction to one dimension. The constraint of T-duality in

the reduction thus had no hope to determine t nor u.

4 Green-Schwarz term and T-duality at O(α′2)

We now turn to a different application. The goal it to investigate what the double field the-

ory (DFT) constructed in [13] is in terms of conventional field variables. This theory, which

we call DFT− [15], features the deformed gauge transformations of the Green-Schwarz

mechanism [22], as shown in [14]. In conventional language this implies that the field

strength H must be replaced by the improved field strength Ĥ that includes the Chern-

Simons term built from the Christoffel connection. Thus, the minimal action consistent

with the two-derivative theory and gauge invariance reads

S =

∫
dDx

√−g e−2φ

(
R+ 4(∂φ)2 − 1

12
Ĥ2

)
, (4.1)

where

Ĥµνρ(b,Γ) = 3
(
∂[µ bνρ] + α′Ω(Γ)µνρ

)
, (4.2)

with the Chern-Simons three-form

Ω(Γ)µνρ = Γα
[µ|β|∂νΓ

β

ρ]α +
2

3
Γα
[µ|β|Γ

β

ν|γ|Γ
γ

ρ]α . (4.3)

The full DFT− action might contain order α′2 terms beyond those following from the

Chern-Simons modification in the above minimal action, but this is not required by gauge
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invariance: the minimal action is exactly gauge-invariant under the deformed gauge trans-

formations of the Green-Schwarz mechanism. The purpose of this section is to test duality

invariance in order to decide if the above minimal action could be the complete action of

DFT−. We will see that while this minimal action satisfies duality invariance to order α′,

it does not satisfy duality invariance to order α′2. Thus the above action is not duality

complete, and we conclude that DFT− contains further higher-derivative invariants, whose

determination we leave for future work.

In order to reduce the action to one dimension one first verifies that the only non-

vanishing Chern-Simons components are

3Ω(Γ)0ij = −1

2
gklġk[i g̈j]l . (4.4)

It then follows that the only non-vanishing component of Ĥ is

Ĥ0ij = ḃij −
1

2
α′ gklġk[i g̈j]l , (4.5)

and in matrix notation:

Ĥ0
i
j =

(
M − 1

4
α′ [L, L̇]

)i

j . (4.6)

In order to simplify the evaluation of traces we often use the transposition properties

LT = gLg−1 , MT = −gMg−1 , L̇T = gL̇g−1 . (4.7)

Together with trQ = trQT , these allow us to show that

tr(M2k+1Lp) = 0 for any integers k, p ≥ 0 . (4.8)

A short computation then gives for the Ĥ2 term in the Lagrangian

− 1

12
Ĥ2

µνρ = −1

4
tr(ĤĤ) = −1

4
trM2 − 1

4
α′tr(ML̇L) +

1

32
α′2tr(L2L̇2 − (LL̇)2) . (4.9)

The α′ correction here is actually removable by a field redefinition, thus making it clear

that to O(α′) the test of T-duality invariance works out. Indeed, by the replacement

L̇ → M2 + Φ̇L we have

tr(ML̇L) ≃ tr(M3L) + Φ̇ tr(ML2) = 0 , (4.10)

since these traces are zero. Even though the α′ correction is removable, for the following

analysis we will keep this term, but it is convenient to rewrite it in terms of a metric field

equation. To do this we first note that the metric and b-field variation in the two-derivative

reduced theory (2.59) gives

δ

(
−1

8
e−Φ tr

[
(ηḢ)2

])
=

1

2
e−Φ tr

[
δb g−1 B g−1 − δg g−1Gg−1

]
, (4.11)

where G and B are given by

g−1G ≡ L̇−M2 − Φ̇L ,

g−1B ≡ Ṁ −ML− Φ̇M .
(4.12)
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Using the identities (4.8), we thus have

tr(ML̇L) = tr
(
LM(g−1G +M2 + Φ̇L)

)
= tr

(
LM g−1G

)
. (4.13)

It is convenient to symmetrize the factor multiplying G, which we do by adding the trace

of the transposed matrix and dividing by two:

tr(ML̇L) =
1

2
tr
([
L ,M

]
g−1G

)
. (4.14)

Thus, the reduced action finally takes the form

Sred =

∫
dt e−Φ

(
− Φ̇ 2 − 1

8
tr(ηḢ)2 − 1

8
α′ tr

([
L,M

]
g−1G

)
+

1

32
α′2 tr

(
L2L̇2 − (LL̇)2

))
.

(4.15)

We are now ready to test the duality invariance of the above action. To this end we

consider the most general duality covariant action to order (α′)2,

Sdual =

∫
dt e−Φ

(
− Φ̇ 2 − 1

8
tr(ηḢ)2 + α′2L(2)

)
, (4.16)

where, given the general classification in (2.78), we have

L(2) = a1 tr(ηḢ)6 + a2 tr(ηḢ)4 tr(ηḢ)2 + a3
(
tr(ηḢ)2

)3
. (4.17)

We have to allow for field redefinitions in Sdual, implemented by the following replacements

inside the generalized metric H(g, b):

g → g + α′δ(1)g + α′2δ(2)g , ∆ ≡ g−1δ(1)g ,

b → b + α′ · 0 + α′2δ(2)b .
(4.18)

The goal is to choose these redefinitions in such a way that we obtain the dimensionally

reduced action (4.15). Note that to first order in α′ we only redefine the metric, but to

second order in α′ both the metric and the antisymmetric tensor are redefined. In order to

compute the effect of the δ(2) redefinitions to order α′2 we just need the first variation of the

two-derivative term tr(ηḢ)2 given in (4.11). To compute the effect of the δ(1)g redefinition

to order α′2 we need the second variation of the two-derivative term under a change of the

metric. Denoting this change of the metric by ∆,

g → g + δg , ∆ ≡ g−1δg , (4.19)

a calculation gives

−1

8
e−Φtr(ηḢ)2

∣∣
g+δg

= −1

8
e−Φtr(ηḢ)2

∣∣
g
− 1

4
e−Φtr

(
−2∆M2 − 2L∆̇

)

− 1

4
e−Φtr

(
∆M∆M + 2∆2M2 − ∆̇∆̇ + 2∆̇∆L

)
.

(4.20)

The second order variation is on the second line of the right-hand side.
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We now perform the replacement (4.18) in the duality covariant action (4.16). Using

the general first variation (4.11), the second variation from (4.20), and letting ∆ ≡ g−1δ(1)g

we find

Sdual

∣∣
rep

=

∫
dt e−Φ

(
− Φ̇ 2 − 1

8
tr(ηḢ)2 − 1

2
α′ tr

[
∆ g−1G

]

+
1

2
α′2 tr

[
δ(2)b g−1Bg−1 − δ(2)g g−1Gg−1

]

− 1

4
α′2 tr

(
∆M∆M + 2∆2M2 − ∆̇∆̇ + 2∆̇∆L

)
+ α′2L(2) +O(α′3)

)
.

(4.21)

Comparing with the dimensionally reduced action (4.15), we infer that we need to choose

∆ =
1

4

[
L,M

]
, (4.22)

in order to match it to first order in α′. Note that this is not a duality covariant field

redefinition. For this choice we find for the second-order variation

− 1

4
tr
(
∆M∆M + 2∆2M2 − ∆̇∆̇ + 2∆̇∆L

)

≃ 1

32
tr
(
ML3ML−ML2ML2 + M4L2 −M3LML

)

+
1

8
Φ̇2 tr (MLML−M2L2) .

(4.23)

Thus, inserting this into (4.21), we get

Sdual

∣∣
rep

=

∫
dt e−Φ

(
− Φ̇ 2 − 1

8
tr(ηḢ)2 − 1

8
α′ tr

(
[L,M ] g−1G

)

+
1

2
α′2 tr

[
δ(2)b g−1Bg−1 − δ(2)g g−1Gg−1

]

+
1

32
α′2tr

(
ML3ML−ML2ML2 +M4L2 −M3LML

)

+
1

8
α′2 Φ̇2 tr (MLML−M2L2) + α′2L(2) +O(α′3)

)
.

(4.24)

We now note that up to further redefinitions we can replace

L2L̇2 − (LL̇)2 ≃ M4L2 −M2LM2L , (4.25)

where it is easy to see that no dilaton terms are produced. Therefore we can add to the

above Lagrangian the term

1

32
α′2 tr

(
L2L̇2 − (LL̇)2

)
− 1

32
α′2 tr

(
M4L2 −M2LM2L

)
, (4.26)
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by absorbing the field redefinitions into the still undetermined δ(2)b and δ(2)g. This, to-

gether with the use of (2.44) for the term on the last line of the Lagrangian, gives

Sdual

∣∣
rep

=

∫
dte−Φ

(
−Φ̇2 − 1

8
tr(ηḢ)2 − 1

8
α′tr

(
[L,M ] g−1G

)
+

1

32
α′2tr

(
L2L̇2 − (LL̇)2

)

+
1

2
α′2tr

[
δ(2)bg−1Bg−1 − δ(2)gg−1Gg−1

]

+
1

32
α′2tr

(
ML3ML−ML2ML2 +M2LM2L−M3LML

)

+
1

32
α′2tr(L2 −M2)tr(MLML−M2L2) + α′2L(2) +O(α′3)

)
.

(4.27)

Let us now compare this with the dimensionally reduced action (4.15),

Sred =

∫
dt e−Φ

(
− Φ̇ 2 − 1

8
tr(ηḢ)2 − 1

8
α′ tr

(
[L,M ]g−1G

)
+

1

32
α′2 tr

(
L2L̇2 − (LL̇)2

))
.

(4.28)

This coincides exactly with the first line of (4.27). Therefore, the hypothesis that the action

is duality invariant requires that we can choose the duality covariant terms in L(2) so that

the final two lines of (4.27) are zero up to field and lapse redefinitions, thereby determining

in particular δ(2)g and δ(2)b in the second line. By the procedure explained in section 2

(see eq. (2.45)) this requires that we can choose coefficients a1, . . . , a3 and a function X

such that

0 ≃ 1

32
tr
(
ML3ML−ML2ML2 + M2LM2L−M3LML

)

+
1

32
tr(L2 −M2) tr (MLML−M2L2)

+ a1 tr(ηḢ)6 + a2 tr(ηḢ)4 tr(ηḢ)2 + a3
(
tr(ηḢ)2

)3

+

(
Φ̇2 − 1

4
tr(L2 −M2)

)
X .

(4.29)

We now make the most general ansatz for the function X to this order in derivatives by

writing X = Y + X̃, where

Y = α1 trL
4 + α2 tr(L

2M2) + α3 tr(MLML) + α4 trM
4 , (4.30)

is the most general ansatz with a single trace, no dilaton derivatives, and an even number

of M ’s. The term X̃ then includes dilaton derivatives and or multiple traces. This implies

that it cannot contribute relevant terms with single traces.3

3Single trace terms in (4.29) can arise from X̃ terms of the form Φ̇k
W , where W has a single trace.

Inserted in (4.29), the single-trace terms can only arise from Φ̇k+2
W . The recursive relation (2.43) then

implies that the single-trace contribution arises from Φ̇2
W

′
...

′

, where W is primed-differentiated k times.

The effect of this contribution amounts to additive changes to the coefficients αi in (4.30), since Y includes

all possible single traces. This is an irrelevant contribution (if one only cares about single traces, as we do)

since the coefficients in Y are already completely general. Finally, one can quickly check that a Φ̇4 in X̃

can only give multiple traces.
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The idea now is to show that the single trace part of (4.29) cannot be satisfied. To

extract the single traces from the last line of (4.29) we recall the identity (2.41). Since all

terms in Y have k = 4, the contribution to the single trace from Φ̇2 Y is proportional to Y ′′

Φ̇2 Y |s.t. ≃ 2

k(2k − 1)
Y ′′ ≃ 1

14
Y ′′ . (4.31)

We find

Y ′′ = tr
[
2(2α1 + α2 + α3)MLML3 + (4α1 + α2)M

2L4 + (α2 + 2α3)ML2ML2

+ (8α1 + 5α2 + 4α3 + 4α4)M
4L2 + (4α1 + 3α2 + 2α3 + 4α4)M

2LM2L

+ 2(3α2 + 4α3 + 4α4)M
3LML+ 2(α2 + α3 + 2α4)M

6
]
.

(4.32)

Since nowhere here there is an L6 we cannot get the full tr(ηḢ)6 and therefore we must

have a1 = 0. Moreover, as tr(ηḢ)6 is the only duality invariant single trace term to this

order in derivatives, this means that we must cancel the full set of four single trace terms

on the first line of (4.29). In order to see that no solution exists it suffices to collect terms

in Y ′′ proportional to M2:

Φ̇Y
∣∣
s.t.

= (4α′
1 + 2α′

2 + 2α′
3)tr(ML3ML) + (α′

2 + 2α′
3)tr(ML2ML2)

+ (4α′
1 + α′

2)tr(M
2L4) +O(M4) ,

(4.33)

where we defined α′
i =

1
14αi. To cancel the single traces in (4.29) we need

4α′
1 + 2α′

2 + 2α′
3 = − 1

32
, α′

2 + 2α′
3 =

1

32
, 4α′

1 + α′
2 = 0 . (4.34)

The use of the third equation means that the first and second equations become, respec-

tively,

α′
2 + 2α′

3 = − 1

32
, α′

2 + 2α′
3 =

1

32
, (4.35)

which has no solution. This proves that duality does not hold to O(α′2) for the action

in (4.1).

5 Conclusions

We have improved on a method by Meissner to test T-duality invariance of actions with

α′ corrections. The method is now systematic enough that it can be used to test duality

covariance to O(α′2). It works with an arbitrary field basis, so the analysis can begin with

the simplest form of the action that can be obtained by covariant field redefinitions. We

have emphasized a built-in limitation of the method: there are non-trivial linear combina-

tions of terms that give zero upon dimensional reduction to one dimension. Such linear

combinations of terms cannot be constrained by this test.

The above test of T-duality invariance of α′ corrections does not suffice to prove that

a given action is duality invariant to a given order in α′. It provides a necessary but not

sufficient condition for duality invariance. For the bosonic or heterotic string a direct proof
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of T-duality invariance to order α′ would be furnished by an extension of the Maharana-

Schwarz analysis [6] to order α′. An exactly duality-invariant effective action almost surely

would require terms of all orders in α′. While the test of T-duality can be applied to string

theories in the critical dimension, it could also be applied to the low-energy limits and

derivative corrections that arise after arbitrary compactifications, as long as there remains

spatial dimensions so that continuous T-duality would emerge upon further compactifica-

tion on tori.

The power of a double field theory formulation is that it proves T-duality just by its

existence. The doubled α′ geometry of [13] furnishes an exactly T-duality invariant action

with α′ corrections. This theory, called DFT−, is a duality invariant completion of the

Green-Schwarz mechanism. We have at present little idea how this action looks in terms of

conventional field variables beyond first order in α′. We applied our test to learn that the

action in conventional variables must have terms beyond those that arise from the minimal

Green-Schwarz modification of the b-field field strength in the kinetic terms.
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