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Abstract

We consider a class of stochastic differential equations in singular perturbation form,
where the drift terms are linear and diffusion terms are nonlinear functions of the state
variables. In our previous work, we approximated the slow variable dynamics of the
original system by a reduced-order model when the singular perturbation parameter
ε is small. In this work, we obtain an approximation for the fast variable dynamics.
We prove that the first and second moments of the approximation are within an O(ε)-
neighborhood of the first and second moments of the fast variable of the original system.
The result holds for a finite time-interval after an initial transient has elapsed. We
illustrate our results with a biomolecular system modeled by the chemical Langevin
equation.

1 Introduction

Systems with multiple time-scales can be written in singular perturbation form, where
the dynamics are separated into slow and fast, with a small parameter ε capturing the
separation in time-scales. The analysis of singularly perturbed systems consists of obtaining
a reduced-order model that approximates the dynamics of the system when the time-
scale separation is large. In the deterministic setting, the main method used to obtain
the reduced system is given by Tikhonov’s theorem, which gives a set of reduced-order
differential equations that approximate the slow variable dynamics, and a set of algebraic
equations that approximate the fast variable dynamics [2, 3]. Another method that is
used to analyze systems with multiple time-scales is the averaging principle, which gives a
reduced-order model that approximates the dynamics of the slow variables [4].
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Singular perturbation techniques have also been developed for stochastic systems with
multiple time-scales [5, 6, 3, 7]. However, these methods are not applicable to systems
where the diffusion term of the fast variable is nonlinear, and is of the order

√
ε, as seen,

for example, in biomolecular systems modeled by the chemical Langevin equation [8].
Averaging methods for stochastic differential equations have also been developed, and they
can be applied to the case where the diffusion term is on the order of

√
ε [9, 4]. However,

the averaging methods only provide an approximation to the slow variable dynamics.
In our previous work, we considered a class of singularly perturbed stochastic differential

equations with linear drift terms and nonlinear diffusion terms [10]. We obtained a reduced-
order model that approximates the slow variable dynamics of the original system and we
proved that the first and second moments of the reduced system are within an O(ε)-
neighborhood of the first and second moments of the original system, for a finite time
interval. This result was extended in [11] to prove that all the moments of the reduced
system are within an O(ε)-neighborhood of the corresponding moments of the original
system, for a finite time interval. Although, the above works provide an approximation to
the slow variable dynamics, in many applications it is necessary to obtain an approximation
for the fast variable in order to analyze the statistical properties of the system, such as
the mean and the variance. In fact, in many biomolecular applications, the variables
in the system may be affected by both slow and fast reactions, and thus the system is
represented in singular perturbation form after using a coordinate transformation [12].
Therefore, to analyze the properties of the variables of interest, it is necessary to have a
fast variable approximation. For example, in deterministic models of gene transcriptional
networks, singular perturbation approach with both slow and fast variable approximations
has been used to characterize the change in dynamics of transcription factors, caused by
the interconnections with other components [13, 14]. Hence, in this work, we obtain an
approximation for the fast variable dynamics of the original system in the form of an
algebraic expression of the reduced slow variable dynamics. We prove that the first and
second moments of the approximation are within an O(ε)-neighborhood of the first and
second moment dynamics of the fast variable of the original system. The result holds for
a finite time interval, after a short transient has elapsed.

This paper is organized as follows. In Section II, we introduce the class of systems
considered. In Section III, we define the fast variable approximation and derive the mo-
ments of the approximation. In Section IV, we prove that the first and second moments of
the fast variable approximation are within an O(ε)-neighborhood of those of the original
system. The results are illustrated with an example in Section V.
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2 System Model

Consider the singularly perturbed stochastc system

ẋ = fx(x, z, t) + σx(x, z, t)Γx, x(0) = x0 (1)

εż = fz(x, z, t, ε) + σz(x, z, t, ε)Γz, z(0) = z0 (2)

where x ∈ Dx ⊂ Rn and z ∈ Dz ⊂ Rm are the slow and fast variables, respectively. Γx is
a dx-dimensional white noise process and let Γf be a df -dimensional white noise process.
Then, Γz is a (dx + df )-dimensional white noise process. We assume that the system (1) -
(2) satisfies the following assumptions.

Assumption 1. The functions fx(x, z, t) and fz(x, z, t, ε) are affine functions of the state
variables x and z, i.e., we can write fx(x, z, t) = A1x+A2z+A3(t), where A1 ∈ Rn×n, A2 ∈
Rn×m and A3(t) ∈ Rn and fz(x, z, t, ε) = B1x+ B2z + B3(t) + α(ε)(B4x+ B5z + B6(t)),
where B1, B4 ∈ Rm×n, B2, B5 ∈ Rm×m, B3(t), B6(t) ∈ Rm. Also, we have that A3(t) and
B3(t) are continuously differentiable functions, and α(ε) is a continuously differentiable
function with α(0) = 0.

Assumption 2. The matrix-valued functions σx(x, z, t) and σz(x, z, t, ε) are such that,
there exist continuously differentiable functions Φ(x, z, t) : Rn×Rm×Rn → Rn×n, Λ(x, z, t, ε) :
Rn × Rm × R× R→ Rm×m, Θ(x, z, t, ε) : Rn × Rm × R× R→ Rm×n, that satisfy

σx(x, z, t)σx(x, z, t)T = Φ(x, z, t), (3)

σz(x, z, t, ε)σz(x, z, t, ε)
T = εΛ(x, z, t, ε), (4)

σz(x, z, t, ε)[ σx(x, z, t) 0 ]T = Θ(x, z, t, ε), (5)

where the elements of Φ(x, z, t), Λ(x, z, t, ε), Θ(x, z, t, ε) are affine functions of x and z,
i.e., we can write E[Φ(x, z, t)] = Φ(E[x],E[z], t), E[Λ(x, z, t, ε)] = Λ(E[x],E[z], t, ε), and
E[Θ(x, z, t, ε)] = Θ(E[x],E[z], t, ε). Also, we have that limε→0 Λ(x, z, t, ε) <∞ and
limε→0 Θ(x, z, t, ε) = 0 for all x, z and t.

Assumption 3. The matrix B2 is Hurwitz.

We assume that a unique, well-defined solution exists for the system (1) - (2), for a
finite time-interval. The sufficient conditions for existence of a unique solution is given in
[15], which consists of Lipschitz continuity and bounded growth conditions. The class of
systems that satisfy Assumption 2, includes the case where the diffusion term is a square-
root function of the state variables that may not satisfy the Lipschitz continuity condition.
In this case, the sufficient conditions in [16] can be used to verify the existence of a unique
solution.
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Original System

ẋ = fx(x, z, t) + σx(x, z, t) Γx

εż = fz(x, z, t, ε) + σz(x, z, t, ε) Γz

˙̄x = fx(x̄, γ1(x̄, t), t) + σx(x̄, γ1(x̄, t), t) Γx

( d
dt
E[x̄]

d
dt
E[x̄x̄T ]

)
=

(
g1(E[x̄], γ1(E[x̄], t), t)
g2(E[x̄],E[x̄x̄T ], γ1(E[x̄], t), γ2(E[x̄],E[x̄x̄T ], t), t)

)
d
dt


E[x]
E[xxT ]
εE[z]
εE[zzT ]
εE[zxT ]

 =


g1(E[x],E[z], t)
g2(E[x],E[xxT ],E[z],E[zxT ], t)
g3(E[x],E[z], t, ε)
g4(E[x],E[xxT ],E[z],E[zzT ],E[zxT ], t, ε)
g5(E[x],E[xxT ],E[z],E[zzT ],E[zxT ], t, ε)



Moments of the Original System Moments of the Reduced System

Reduced System

ε→ 0

Figure 1: Setting ε = 0 in the moment dynamics of the original system yields the moment dynamics
of the reduced system.

3 Fast variable approximation

In [10], we defined the reduced system which was shown to approximate the slow variable
dynamics, as

˙̄x = fx(x̄, γ1(x̄, t), t) + σx(x̄, γ1(x̄, t), t)Γx, x̄(0) = x0, (6)

where

γ1(x, t) = −B−1
2 (B1x+B3(t)), (7)

is the solution to fz(x, z, t, 0) = B1x + B2z + B3(t) = 0. We then quantified the error in
the slow variable approximation using the first and the second moments and obtained the
results summarized here in Theorem 1. First, consider the following function definitions
for suitable constant matrices a ∈ Rn , b ∈ Rn×n, c ∈ Rm, d ∈ Rm×m, and e ∈ Rm×n.

g1(a, γ1(a, t), t) = A1a+A2γ1(a, t) +A3(t),

g2(a, b, γ1(a, t), γ2(a, b, t), t) = A1b+A2γ2(a, b, t) + bAT1 +A3(t)aT + γ2(a, b, t)TAT2 + aA3(t)T

+ Φ(a, γ1(a, t), t),

g3(a, c, t, ε) = B1a+B2c+B3(t) + α(ε)(B4a+B5c+B6(t)),

g4(a, b, c, d, e, t, ε) = eBT
1 + dBT

2 + cB3(t)T + α(ε)(eBT
4 + dBT

5 + cB6(t)T ) +B1e
T

+ Λ(a, c, t, ε) +B2d+B3(t)cT + α(ε)(B4e
T +B5d+B6(t)cT ),

g5(a, b, c, d, e, t, ε) = ε(eAT1 + dAT2 + cA3(t)T ) +B1b+B2e+B3(t)aT + Θ(a, c, t, ε)

+ α(ε)(B4e
T +B5d+B6(t)cT ),

Theorem 1. Consider the original system in (1) - (2) and the reduced system in (6).
Under Assumptions 1 - 3, the commutative diagram in Fig. 1 holds. Furthermore, there
exists t1 > 0 such that

‖E[x̄(t)]− E[x(t)]‖ = O(ε), t ∈ [0, t1],

‖E[x̄(t)x̄(t)T ]− E[x(t)x(t)T ]‖F = O(ε), t ∈ [0, t1],
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where ‖.‖F is the Frobenius norm.

In [10] we illustrate via an example that, although γ1(x̄(t), t) provides a good ap-
proximation when it is used in the slow variable dynamics, it does not provide a good
approximation of the fast variable, in contrast to the deterministic case. To illustrate this
further, consider the following example as in [10].

ẋ = −a1x+ a2z, (8)

ż = −z + v1

√
εΓ, (9)

where a1 > 0. We have that z = γ1(x, t) = 0, and the reduced system is given by

˙̄x = −a1x̄.

Calculating the steady state second moment dynamics of x and z in the system (8) - (9),
we obtain

E[x2] =
a2

2v
2
2ε

2a1(1 + a1ε)
, (10)

E[z2] =
v2

1

2
. (11)

We also have that the E[x̄2] = 0 at steady state and E[γ1(x̄(t), t)2] = 0. Therefore, we see

that when ε = 0, ‖E[x2]−E[x̄2]‖ = 0 but ‖E[z2]−E[γ1(x̄, t)2]‖ =
v2
1
2 . Thus, z(t) = γ(x̄(t), t)

does not approximate the fast variable dynamics well.
In this work, we seek an approximation to the fast variable in the form

z̄(t) = γ1(x̄(t), t) + g(x̄(t), t)N, (12)

where N ∈ Rd is a random vector, whose components are independent standard normal
random variables that are also independent of x̄, and g(x̄(t), t) : Rn × R → Rm×d is a
suitable function. We call equation (12), the reduced fast system. We aim at determining
the function g(x̄(t), t) such that the first and second moments of z(t) in (1) - (2) are well
approximated by the first and second moments of z̄(t) in (12). To this end, define the
functions ψ, γ2 and γ3 for a ∈ Rn and b ∈ Rn×n such that

ψ(a, t) =

∫ ∞
0

e(B2v)Λ(a, γ1(a, t), t, 0)e(BT
2 v)dv, (13)

γ2(a, b, t) = −B−1
2 (B1b+B3(t)aT ), (14)

γ3(a, b, t) = −γ2(a, b, t)BT
1 (B−1

2 )T − γ1(a, t)B3(t)T (B−1
2 )T + ψ(a, t). (15)

We now make the following claim:
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Claim 1. Let g(x(t), t) satisfy the Lyapunov equation

g(x̄(t), t)g(x̄(t), t)TBT
2 +B2g(x̄(t), t)g(x̄(t), t)T = −Λ(x̄, γ1(x̄(t), t), t, 0). (16)

Then, the first and second moments of z̄(t) defined in (12) can be written in the form

E[z̄(t)] = γ1(E[x̄(t)], t), (17)

E[z̄(t)z̄(t)T ] = γ3(E[x̄(t)],E[x̄(t)x̄(t)T ], t). (18)

Proof. From equation (12), we have

E[z̄] = E[γ1(x̄, t) + g(x̄, t)N ].

Employing the linearity of the expectation operator and of the function γ1(x̄, t), we have

E[z̄] = γ1(E[x̄], t) + E[g(x̄, t)N ].

Since N is a random vector whose components are standard normal random variables, we
have that E[N ] = 0. As the function g(x̄, t) and the random vector N are independent, we
further obtain

E[z̄] = γ1(E[x̄], t).

Similarly, the second moment of the reduced fast variable can be calculated using (12)
as

E[z̄z̄T ] = E[(γ1(x̄, t) + g(x̄, t)N)(γ1(x̄, t) + g(x̄, t)N)T ],

= E[γ1(x̄, t)γ1(x̄, t)T ] + E[γ1(x̄, t)NT g(x̄, t)T ]

+ E[g(x̄, t)Nγ1(x̄, t)T ] + E[g(x̄, t)NNT g(x̄, t)T ]. (19)

Let G(x̄, t) = g(x̄, t)Nγ1(x̄, t)T and write γ1(x̄, t) = [γ1(x̄, t)1, . . . , γ1(x̄, t)m]T , g(x̄, t) =
[g(x̄, t)ij ] for i ∈ {1,m}, j ∈ {1, d} and N = [N1, . . . , Nd]

T . Then, the entries of G(x̄, t)
can be written as

G(x̄, t)ik =
d∑
j=1

γ1(x̄, t)kg(x̄, t)ijNj , where i ∈ {1,m} and k ∈ {1,m}.

As the functions γ1(x̄, t) and g(x̄, t) are independent from N , taking the expectation yields

E[G(x̄, t)ik] =
d∑
j=1

E[γ1(x̄, t)kg(x̄, t)ij ]E[Nj ].

6



Since Nj is a standard normal random variable we have that E[Nj ] = 0 for all j. There-
fore, we have E[G(x̄, t)] = 0. Similarly, we have that γ1(x̄, t)NT g(x̄, t)T = G(x̄, t)T , and
E[G(x̄, t)T ] = 0. Thus, we obtain

E[γ1(x̄, t)NT g(x̄, t)T ] = E[g(x̄, t)Nγ1(x̄, t)T ]T = 0. (20)

Let H(x̄, t) = g(x̄, t)NNT g(x̄, t)T . The entries of H(x̄, t) can be expressed as

H(x̄, t)ik =

d∑
l=1

d∑
j=1

g(x̄, t)ilg(x̄, t)kjNjNl.

Since γ1(x̄, t) and g(x̄, t) are independent from N , taking the expectation, we have

E[H(x̄, t)ik] =

d∑
l=1

d∑
j=1

E[g(x̄, t)ilg(x̄, t)kj ]E[NjNl].

AsNj are independent standard normal random variables, we have that E[NlNj ] = E[Nl]E[Nj ] =
0, for all l 6= j. When l = j, we have that NlNj = N2

j , which yields E[N2
j ] = var(Nj) = 1.

Then, we obtain

E[H(x̄, t)ik] =
d∑
j=1

E[g(x̄, t)ijg(x̄, t)kj ],

which results in

E[H(x̄, t)] = E[g(x̄, t)NNT g(x̄, t)T ] = E[g(x̄, t)g(x̄, t)T ]. (21)

Substituting (20) and (21) into (19) yields

E[z̄z̄T ] = E[γ1(x̄, t)γ1(x̄, t)T ] + E[g(x̄, t)g(x̄, t)T ]. (22)

From (16), we have that

E[g(x̄, t)g(x̄, t)T ]BT
2 +B2E[g(x̄, t)g(x̄, t)T ] = −Λ(E[x̄], γ1(E[x̄], t), t, 0).

for which, under Assumption 3, the unique solution is given by

E[g(x̄, t)g(x̄, t)T ] =

∫ ∞
0

e(B2v)Λ(E[x̄], γ1(E[x̄], t), t, 0)e(BT
2 v)dv = ψ(E[x̄], t), (23)

where ψ is defined in (13).
Therefore, using that γ1(x, t) = −B−1

2 (B1x + B3(t)), and substituting (23) into (21)
leads to

E[z̄z̄T ] = E[(−B−1
2 (B1x̄+B3(t)))(−B−1

2 (B1x̄+B3(t)))T ] + ψ(E[x̄], t),
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which, using (14) and (15) can be rewritten as

E[z̄z̄T ] = −γ2(E[x̄],E[x̄x̄T ], t)BT
1 (B−1

2 )T − γ1(E[x̄], t)B3(t)T (B−1
2 )T + ψ(E[x̄], t),

= γ3(E[x̄],E[x̄x̄T ], t).

From Theorem 1 we have that the first and second moment dynamics for the fast vari-
ables of the original system E[z(t)], E[z(t)z(t)T ] and the dynamics of the mixed moments
E[z(t)x(t)T ] are given by

ε
dE[z]

dt
= g3(E[x],E[z], t, ε), (24)

ε
dE[zzT ]

dt
= g4(E[x],E[xxT ],E[z],E[zzT ],E[zxT ], t, ε), (25)

ε
dE[zxT ]

dt
= g5(E[x],E[xxT ],E[z],E[zzT ],E[zxT ], t, ε). (26)

Now, we analyze the moment dynamics for the fast variable of the original system, that
is E[z(t)] and E[z(t)z(t)T ], when ε = 0.

Claim 2. Setting ε = 0, in the moment dynamics (24) and (26), results in

E[z(t)] = γ1(E[x(t)], t), (27)

E[z(t)z(t)T ] = γ3(E[x(t)],E[x(t)x(t)T ], t). (28)

Proof. Setting ε = 0 in (24) - (25), we obtain

B1E[x] +B2E[z] +B3(t) = 0, (29)

B1E[xxT ] +B2E[zxT ] +B3(t)E[xT ] = 0. (30)

Under Assumption 3, we have that the unique solutions to equations (29) - (30) is given
by

E[z] = −B−1
2 (B1E[x] +B3(t)) = γ1(E[x], t), (31)

E[zxT ] = −B−1
2 (B1E[xxT ] +B3(t)E[xT ])

= γ2(E[x],E[xxT ], t). (32)

We have that equation (31) is in the form of equation (27), proving the first equality.
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Setting ε = 0 in (25), we obtain

E[zzT ]BT
2 +B2E[zzT ] = −E[zxT ]BT

1 − E[z]B3(t)T −B1E[xzT ]−B3(t)E[zT ]− Λ(E[x],E[z], t, 0).

Using the expressions E[z] = γ1(E[x], t) and E[zxT ] = γ2(E[x],E[xxT ], t) from (31) - (32),
we have that

E[zzT ]BT
2 +B2E[zzT ] = −γ2(E[x],E[xxT ], t)BT

1 − γ1(E[x], t)B3(t)T −B1γ2(E[x],E[xxT ], t)T

−B3(t)γ1(E[x], t)T − Λ(E[x], γ1(E[x], t), t, 0). (33)

The equation (33) takes the form of the Lyapunov equation,

ATP + PA = −Q,

with

P = E[zzT ],

Q(E[x],E[xxT ], t) = γ2(E[x],E[xxT ], t)BT
1 + γ1(E[x], t)B3(t)T +B1γ2(E[x],E[xxT ], t)T

+B3(t)γ1(E[x], t)T + Λ(E[x], γ1(E[x], t), t, 0),

A = BT
2 .

Therefore, under Assumption 3, there exists a unique solution E[zzT ] = h(E[x],E[xxT ], t),
to equation (33). To prove that h(E[x],E[xxT ], t) = γ3(E[x],E[xxT ], t), we substitute (15)
into (33) (noting that γ3(E[x],E[xxT ], t) is symmetric), and simplify further to obtain

− γ2(E[x],E[xxT ], t)BT
1 − γ1(E[x], t)B3(t)T + ψ(E[x], t)BT

2 −B1γ2(E[x],E[xxT ], t)T

−B3(t)γ1(E[x], t)T +B2ψ(E[x], t)

= −γ2(E[x],E[xxT ])BT
1 − γ1(E[x], t)B3(t)T −B1γ2(E[x],E[xxT ], t)T −B3(t)γ1(E[x], t)T

− Λ(E[x], γ1(E[x], t), t, 0).

Canceling the common terms on both sides finally yields

ψ(E[x], t)BT
2 +B2ψ(E[x], t) = −Λ(E[x], γ1(E[x], t), t, 0). (34)

From the definition of ψ in (13), we have that ψ(E[x], t) =
∫∞

0 e(B2v)Λ(E[x], γ1(E[x], t), t, 0)e(BT
2 v)dv,

which is the unique solution to the Lyapunov equation in (34), under Assumption 3. There-
fore we have shown that E[zzT ] = γ3(E[x],E[xxT ], t) is the unique solution to (33).

4 Main Result

In this section, we quantify the error between the moments of the fast variable of the
original system given by (24) - (25) and moments of the reduced fast system given by (17)
- (18). To this end, we have the following Lemma, which is an extension to the results in
the commutative diagram in Fig. 1.
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Original System

ẋ = fx(x, z, t) + σx(x, z, t) Γx ˙̄x = fx(x̄, γ1(x̄, t), t) + σx(x̄, γ1(x̄, t), t) Γx

( d
dt
E[x̄]

d
dt
E[x̄x̄T ]

)
=

(
g1(E[x̄], γ1(E[x̄], t), t)
g2(E[x̄],E[x̄x̄T ], γ1(E[x̄], t), γ2(E[x̄],E[x̄x̄T ], t), t)

)
d
dt


E[x]
E[xxT ]
εE[z]
εE[zzT ]
εE[zxT ]

 =


g1(E[x],E[z], t)
g2(E[x],E[xxT ],E[z],E[zxT ], t)
g3(E[x],E[z], t, ε)
g4(E[x],E[xxT ],E[z],E[zzT ],E[zxT ], t, ε)
g5(E[x],E[xxT ],E[z],E[zzT ],E[zxT ], t, ε)



Moments of the Original System Moments of the Reduced System

Reduced System

ε→ 0

z̄ = γ1(x̄, t) + g(x̄, t)N

(
E[z̄]
E[z̄z̄T ]

)
=

(
γ1(E[x̄], t)
γ3(E[x̄],E[x̄x̄T ], t)

)

εż = fz(x, z, t, ε) + σz(x, z, t, ε) Γz

Figure 2: Setting ε = 0 in the moment dynamics for the fast variable of the original system yields
the moment dynamics of the reduced fast system.

Lemma 1. Under Assumptions 1 - 3, the commutative diagram in Fig. 2 holds.

Proof. Proof follows from Theorem 1, Claim 1 and Claim 2.

Theorem 2. Consider the original system in (1) - (2) and the reduced fast system in (12).
Under Assumptions 1 - 3 there exists ε∗ > 0, t1, tb > 0 with t1 > tb such that for ε < ε∗

we have

‖E[z̄(t)]− E[z(t)]‖ = O(ε), t ∈ [tb, t1],

‖E[z̄(t)z̄(t)T ]− E[z(t)z(t)T ]‖F = O(ε), t ∈ [tb, t1],
(35)

where ‖.‖F is the Frobenius norm.

Proof. As the moment dynamics are deterministic, the results in (35) can be proven by
applying the Tikhonov’s theorem to the moment dynamics of the original system and
moment dynamics of the reduced system given in Fig. 2. To this end, we first prove that
the assumptions of the Tikhonov’s theorem in [2] are satisfied.

In order to ensure the global exponential stability of the boundary layer dynamics for
the moments of the original system, we define the error variables

b1 := E[z]− γ1(E[x], t),

b2 := E[zxT ]− γ2(E[x],E[xxT ], t),

b3 := E[zzT ]− γ3(E[x],E[xxT ], t). (36)

Letting τ := t/ε denote the time variable in the fast time scale, it was shown in [10]
that the boundary layer dynamics of b1 and b2, given by
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db1
dτ

= B2b1,

db2
dτ

= B2b2,

are globally exponentially stable under Assumption 3. Next we analyze the boundary layer
dynamics of b3. From (36), the derivative of the variable b3 with respect to time t is given
by

ε
db3
dt

= ε
dE[zzT ]

dt
− ε∂γ3(E[x],E[xxT ], t)

∂t
− ε∂γ3(E[x],E[xxT ], t)

∂E[x]

dE[x]

dt

− ε∂γ3(E[x],E[xxT ], t)

∂E[xxT ]

dE[xxT ]

dt
. (37)

Writing τ = t/ε, and using equation (25), the dynamics of b3 in the fast timescale τ are
given by

db3
dτ

= g4(E[x],E[xxT ],E[z],E[zzT ],E[zxT ], t, ε)− ∂γ3(E[x],E[xxT ], t)

∂E[x]

dE[x]

dτ
− ∂γ3(E[x],E[xxT ], t)

∂τ

− ∂γ3(E[x],E[xxT ], t)

∂E[xxT ]

dE[xxT ]

dτ
, (38)

in which we have from Fig. 2, that the moments of the original system satisfy

dE[x]

dτ
= εg1(E[x],E[z], t), (39)

dE[xxT ]

dτ
= εg2(E[x],E[xxT ],E[z],E[zxT ], t). (40)

Using equation (15), we have that

∂γ3(E[x],E[xxT ], t)

∂τ
= εB−1

2

dB3(t)

dt
E[xT ]BT1 (B−1

2 )T + εB−1
2

dB3(t)

dt
B3(t)T (B−1

2 )T

− εγ1(E[x], t)
dB3(t)

dt
(B−1

2 )T + ε
∂

∂t

∫ ∞
0

e(B2v)Λ(E[x], γ1(E[x], t), t, 0)e(BT2 v)dv.

(41)

The boundary layer dynamic for b3 are given by setting ε = 0 in (38) and using E[z] =
b1 +γ1(E[x], t), E[zxT ] = b2 +γ2(E[x],E[xxT ], t), and E[zzT ] = b3 +γ3(E[x],E[xxT ], t). Due
to the linearity of the functions g1, g2, g3, g4, g5 in the commutative diagram of Fig. 2, we
have that the solutions E[x],E[z],E[xxT ],E[zxT ], E[zzT ] exist and are bounded on a finite
time interval t ∈ [0, t1] for some finite t1 > 0. Therefore, setting ε = 0 in (39) and (40) we

have that dE[x]
dτ = 0 and dE[xxT ]

dτ = 0.

Under Assumption 1, we have that dB3(t)
dt is continuous in t and therefore it is bounded

on the finite time interval t ∈ [0, t1]. Furthermore, we observe that, the matrix multipli-

cations in the term e(B2v)Λ(E[x], γ1(E[x], t), t, 0)e(BT
2 v) appearing in equation (41) results

11



in linear combinations of the entries of Λ. Therefore, due to the continuous differentiabil-
ity of Λ with respect to its arguments under Assumption 1, we have that the expression
∂
∂t

∫∞
0 e(B2v)Λ(E[x], γ1(E[x], t), t, 0)e(BT

2 v)dv is continuous with t. Hence, it is bounded on

the finite time interval t ∈ [0, t1]. Equation (41) thus implies that ∂γ3(E[x],E[xxT ],t)
∂τ = 0

when ε = 0. Therefore, setting ε = 0 in (38), using that α(0) = 0 and Λ(x, z, t, 0) < ∞
from Assumption 1 and Assumption 2, and taking E[z] = b1 + γ1(E[x], t), E[zxT ] =
b2 + γ2(E[x],E[xxT ], t), E[zzT ] = b3 + γ3(E[x],E[xxT ], t), we obtain the dynamics for b3 as

db3
dτ

= (b2 + γ2(E[x],E[xxT ], t))BT1 + (b3 + γ3(E[x],E[xxT ], t))BT2 + (b1 + γ1(E[x], t))B3(t)T

+B1(b2 + γ2(E[x],E[xxT ], t))T + Λ(E[x],E[z], t, 0)

+B2(b3 + γ3(E[x],E[xxT ], t))T +B3(t)(b1 + γ1(E[x], t))T .

Substituting here the expression of γ3 from (15), yields

db3
dτ

= (b2 + γ2(E[x],E[xxT ], t))BT1 + (b3 − γ2(E[x̄],E[x̄x̄T ], t)BT1 (B−1
2 )T − γ1(E[x̄], t)B3(t)T (B−1

2 )T

+ ψ(E[x], t))BT2 + (b1 + γ1(E[x], t))B3(t)T +B1(b2 + γ2(E[x],E[xxT ], t))T

+B2(b3 − γ2(E[x̄],E[x̄x̄T ], t)BT1 (B−1
2 )T − γ1(E[x̄], t)B3(t)T (B−1

2 )T + ψ(E[x], t))T

+B3(t)(b1 + γ1(E[x], t))T + Λ(E[x], γ1(E[x], t), t, 0). (42)

From (13), we have that ψ(E[x], t) =
∫∞

0 e(B2v)Λ(E[x], γ1(E[x], t), t, 0)e(BT
2 v)dv, which is

the unique solution to the Lyapunov equation

ψ(E[x], t)BT2 +B2ψ(E[x], t) = −Λ(E[x], γ1(E[x], t), t, 0). (43)

Therefore using (43) in (42), we finally obtain

db3
dτ

= b3B
T
2 +B2b

T
3 + b2B

T
1 +B1b

T
2 +B3(t)bT1 + b1B3(t)T . (44)

Under Assumption 3, we have that the matrix B2 is Hurwitz and therefore the dynamics
of b1 and b2 are globally exponentially stable. Then, using the solution of (44) for b3 given
by [17]

b3(τ) = eB2τ b3(0)eB
T
2 τ +

∫ τ

0

eB2(τ−v)(b2(v)BT1 +B1b2(v)T +B3(t)b1(v)T

+ b1(v)B3(t)T )(eB2(τ−v))T dv,

it follows that there exists a positive constants C1 and r1 such that ‖b3(τ)‖F ≤ C1(‖b1(0)‖F+
‖b2(0)‖F + ‖b3(0)‖F )e−r1τ , where ‖.‖F denotes the Frobenius norm. Then, taking Y =
[b1 b2 b3], and considering the exponential stability of b1 and b2, we can write ‖Y (τ)‖F ≤
C‖Y (0)‖F e−rτ for positive constants C and r. Therefore, we have that the origin is a
globally exponentially stable equilibrium point of the boundary layer dynamics.
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Under Assumption 1 we have that the functions g1, g2, g3, g4, g5 and their first partial
derivatives with respect to their arguments are continuous. We also have that the functions
γ1(E[x], t), γ2(E[x],E[xxT ], t), γ3(E[x],E[xxT ], t) have continuous first partial derivatives
with respect to their arguments. Due to the linearity of the functions g1 and g2, the reduced
system has a unique solution for t ∈ [0, t1]. Therefore, the assumptions of the Tikhonov’s
theorem are satisfied. Applying the Tikhonov’s theorem to the moment dynamics of the
original system, we then obtain the result in (35).

4.1 Illustrative Example

Next, we consider again the motivating example in Section 3, and approximate the fast
variable dynamics of the original system by the reduced fast system z̄(t) = γ1(x̄(t), t) +
g(x̄(t), t)N given in (12).

Setting ε = 0, we obtain γ1(x̄(t), t) = 0. To obtain g(x̄(t), t), we solve the equation

g(x̄(t), t)g(x̄(t), t)T (−1) + (−1)g(x̄(t), t)g(x̄(t), t)T = −v2
1

which yields g(x̄(t), t) =
√
v1/2. Therefore, the reduced fast system is given by

z̄(t) =
v1√

2
N.

We have that E[z̄(t)2] =
v2
1
2 E[N2], where E[N2] = 1. From equation (11), we also have that

the steady state second moment of the fast variable dynamics of the original system (9) is

given by E[z2] =
v2
1
2 . Therefore, it follows that ‖E[z2] − E[z̄2]‖ = 0 and that the reduced

fast system provides a good approximation for the fast variable dynamics of the original
system.

5 Example

In this section, we apply the results to a biomolecular system that exhibits time-scale
separation. Consider the system given in Fig. 3, where the transcription factor X binds to
the promoter p2 and regulates the production of protein G, while also binding to a non-
regulatory binding site p1. It has been show that the amount of non-regulatory binding
sites - also referred to as decoy sites - can alter the speed and the shape of the response
of protein X [18, 19, 20]. Stochastic effects of this system have also been studied in [21],
using the chemical Master equation. In this section, we model the dynamics of the system
using the chemical Langevin equation and obtain a reduced model, taking into account the
time-scale separation in the system.

The chemical reactions for the system can be written as follows: φ
k(t)−−⇀↽−−
δ1

X, X+p1
kon1−−−⇀↽−−−
koff1

C1, X+p2
kon2−−−⇀↽−−−
koff2

C2, C2
β−→ C2+G, G

δ−→ φ, where k(t) is the production rate of X, kon1, koff1
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X G

p2

p1

X G

Figure 3: Transcription factor X regulates the production of protein G, while also binding to
non-regulatory binding site p1.

and kon2, koff2 are the binding/unbinding rate constants between the transcription factor
X and the promoters p1 and p2, β is the production rate of the protein G, and δ1, δ2

are the decay rate constants of X and G respectively, which includes both degradation
and dilution. The total amount of each promoter is conserved, and hence we can write
Pt1 = p1 +C1 and Pt2 = p2 +C2. Denote by Ω the cell volume, and let Ω = 1 for simplicity.
Then, the chemical Langevin equations for the system can be written as

dX

dt
= k(t)− δ1X − kon1X(Pt1 − C1) + koff1C1 − kon2X(Pt2 − C2) + koff2C2

+
√
k(t)Γ1 −

√
δ1XΓ2 −

√
kon1X(Pt1 − C1)Γ3 +

√
koff1C1Γ4

−
√
kon2X(Pt2 − C2)Γ5 +

√
koff2C2Γ6, (45)

dC1

dt
= kon1X(Pt1 − C1)− koff1C1 +

√
kon1X(Pt1 − C1)Γ3 −

√
koff1C1Γ4, (46)

dC2

dt
= kon2X(Pt2 − C2)− koff2C2 +

√
kon2X(Pt2 − C2)Γ5 −

√
koff2C2Γ6, (47)

dG

dt
= βC2 − δ2G+

√
βC2Γ7 −

√
δ2GΓ8, (48)

where Γi are independent white noise processes. We assume that the binding between
the transcription factor X and the promoters are weak, giving Pt1 � C1 and Pt2 � C2.
Therefore, we can write the system (45) - (48) in the form

dX

dt
= k(t)− δ1X − kon1XPt1 + koff1C1 − kon2XPt2 + koff2C2+√
k(t)Γ1 −

√
δ1XΓ2 −

√
kon1XPt1Γ3 +

√
koff1C1Γ4 −

√
kon2XPt2Γ5 +

√
koff2C2Γ6,

dC1

dt
= kon1XPt1 − koff1C1 +

√
kon1XPt1Γ3 −

√
koff1C1Γ4,

dC2

dt
= kon2XPt2 − koff2C2 +

√
kon2XPt2Γ5 −

√
koff2C2Γ6,

dG

dt
= βC2 − δ2G+

√
βC2Γ7 −

√
δ2GΓ8.
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We have that the binding/unbinding reactions are much faster than protein production
and decay [22], and thus we can write ε = δ1/koff1, where ε� 1. Letting kd1 = koff1/kon1,
kd2 = koff2/kon2, and a = koff2/koff1 we have kon1 = δ1/(εkd1), kon2 = aδ1/(εkd2), koff1 =
δ1/ε, and koff2 = aδ1/ε. Then, with the change of variable y = X + C1 + C2, we can take
the system into standard singular perturbation form

dy

dt
= k(t)− δ1(y − C1 − C2) +

√
k(t)Γ1 −

√
δ1(y − C1 − C2)Γ2,

ε
dC1

dt
=

δ1
kd1

(y − C1 − C2)Pt1 − δ1C1 +
√
ε

√
δ1
kd1

(y − C1 − C2)Pt1Γ3 −
√
ε
√
δ1C1Γ4,

ε
dC2

dt
=
aδ1
kd2

(y − C1 − C2)Pt2 − aδ1C2 +
√
ε

√
aδ1
kd2

(y − C1 − C2)Pt2Γ5 −
√
ε
√
aδ1C2Γ6,

dG

dt
= βC2 − δ2G+

√
βC2Γ7 −

√
δ2GΓ8.

This system does not satisfy the sufficient conditions for existence of a unique solution in
[16], and we note that the existence of a unique, well-defined solution for chemical Langevin
equations is an ongoing research question [23, 24]. Therefore, in this case, we choose
parameter conditions that give sufficiently large molecular counts, in order to increase the
probability that the argument of the square-root term remains positive. In this example,
the argument of the square-root remained positive for all the simulation runs performed
and used to numerically determine the sample means.

Setting ε = 0, we obtain the function γ1(y, t) = [γ1(y, t)1, γ1(y, t)2]T in the form

C1 =

Pt1
kd1

y
Pt1
kd1

+ Pt2
kd2

+ 1
= γ1(y, t)1,

C2 =

Pt2
kd2

y
Pt1
kd1

+ Pt2
kd2

+ 1
= γ1(y, t)2.

Then, to obtain the function g(y, t) we consider the equation

g(y, t)g(y, t)TBT2 +B2g(y, t)g(y, t)T = −Λ(y, γ1(y, t), t, 0), (49)

where B2 and Λ are given by

B2 =

[
−δ1 Pt1kd1

− δ1 −δ1 Pt1kd1

−aδ1 Pt2kd2
−aδ1 Pt2kd2

− aδ1

]
,

Λ =


2δ1

Pt1
kd1

y

Pt1
kd1

+
Pt2
kd2

+1
0

0
2aδ1Pt2
kd2

y

Pt1
kd1

+
Pt2
kd2

+1

 .
The eigenvalues of B2 are given by −δ1 and − δ1(kd2Pt1+kd1(kd2+Pt2)

kd1kd2
where the parameters

δ1, kd1, Pt2, kd2, Pt2 are positive. Therefore, we have that the matrix B2 is Hurwitz. Then,
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solving the set of linear equations in (49), we find that the matrix g(y, t)g(y, t)T is given
by

1

(1 + Pt1
kd1

+ Pt2
kd2

)2

[
Pt1
kd1

(1 + Pt2
kd2

)y −Pt1kd1
Pt2
kd2

y

−Pt1kd1
Pt2
kd2

y Pt2
kd2

(1 + Pt1
kd1

)y

]
and therefore we have

g(y, t)

=
L√

S + 2
√

∆

[
Pt1
kd1

(1 + Pt2
kd2

)y +
√

∆ −Pt1kd1
Pt2
kd2

y

−Pt1kd1
Pt2
kd2

y Pt2
kd2

(1 + Pt1
kd1

)y +
√

∆

]
,

where S = (Pt1kd1
+ Pt2

kd2
+ 2Pt1kd1

Pt2
kd2

)y, ∆ = Pt1
kd1

Pt2
kd2

(1 + Pt1
kd1

+ Pt2
kd2

)y2 and L = 1

(1+
Pt1
kd1

+
Pt2
kd2

)
.

Then, the reduced system is given by

dy

dt
= k(t)− δ1Ly +

√
k(t)Γ1 −

√
δ1LyΓ2,

dG

dt
= β

Pt2
kd2

Ly − δ2G+

√
β
Pt2
kd2

LyΓ7 −
√
δ2GΓ8,

C1 =
Pt1
kd1

Ly +
L
((

Pt1
kd1

(1 + Pt2
kd2

)y +
√

∆
)
N1 − Pt1

kd1
Pt2
kd2

yN2

)
√
S + 2

√
∆

,

C2 =
Pt2
kd2

Ly +
L
(
−Pt1Pt2kd1kd2

yN1 +
(
Pt2
kd2

(1 + Pt1
kd1

)y +
√

∆
)
N2

)
√
S + 2

√
∆

,

where N1 and N2 are standard normal random variables.
Fig. 4 shows the error in the moments between the fast variable dynamics of the original

system and that of the approximation. The simulations are performed using the Euler-
Maruyama method for stochastic differential equations and the moments are calculated
using 500,000 simulation runs.

Remark: The above example is performed for illustration purposes and shows how
the reduction approach can be applied to obtain the fast variable approximation. We also
note that calculating the function g(x̄, t) from g(x̄, t)g(x̄, t)T obtained through (16) may be
challenging for systems with high dimension. However, in many applications, the analysis
typically requires the calculation of statistical properties such as the mean and the variance,
which can be directly calculated from the reduction approach using the functions γ(x, t)
and g(x̄, t)g(x̄, t)T in equations (7) and (16), which can be readily obtained.

6 Conclusion

We considered a class of singularly perturbed stochastic differential equations where the
drift terms are linear and diffusion coefficients are nonlinear functions of the state variables.
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Figure 4: Errors in the first and second order moments. The parameters used are k(t) = 10, δ1 =
0.1, δ1 = 1, kd1 = 1000, kd2 = 1000, Pt1 = 1000, Pt2 = 1000, β = 1, y(0) = 70, G(0) =
60, C1(0) = 20 and C2(0) = 20.

Building on the results in our previous paper [10], where we obtained a reduced system that
approximates the slow variable dynamics, in this work, we obtained an approximation for
the fast variable, when the time-scale separation is large. This result allows the derivation
of a reduced-order system with approximations for both slow and fast dynamics, which is
useful in many applications. In particular, biomolecular systems consist of variables affected
by both slow and fast reactions, which can be represented in singular perturbation form
after a coordinate transformation. This approach could be used to analyze the statistical
properties of such systems where the variables of interest are affected by both slow and
fast dynamics.

In future work, we aim at extending this analysis to systems with nonlinear drift terms.
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