Deterministic model derivation and model reduction of an activator-repressor genetic oscillator

Nithin Senthur Kumar and Domitilla Del Vecchio

Massachusetts Institute of Technology

Introduction

This note contains the derivation of the deterministic model and model reduction using singular perturbation used in the submission "Loading as a design parameter for genetic circuits" to the 2016 American Control Conference by the same authors.

Derivation of model

A deterministic ODE model of an activator-repressor (A-R) genetic oscillator is derived considering the biochemical reactions of activation, repression, multimerization, transcription, and translation of a generic protein (P) which, due to the symmetry of the model (both proteins are activated by A and repressed by R) can be used to describe the evolution of the concentration of both A and R. These reactions are given by:

$$
A + A + \dots + A \frac{\beta_{A}}{\beta_{A'}} A_n,
$$
\n(1)

$$
R + R + \dots + R \frac{\beta_{R}}{\beta_{R'}} R_m, \tag{2}
$$

$$
R_m + DNAP \xrightarrow{\text{a}^*} R_m : DNAP,
$$
 (3)

$$
A_n + DNA^P \xleftarrow{\text{a'} } A_n : DNA^P,
$$
\n(4)

$$
A_n: DNA^P \xrightarrow{\alpha_1} m_P + A_n: DNA^P,
$$
 (5)

$$
DNAP \xrightarrow{\alpha_2} m_P + DNAP,
$$
 (6)

$$
m_P \xrightarrow{\kappa} m_P + P,\tag{7}
$$

$$
m_P \xrightarrow{\delta} \emptyset,\tag{8}
$$

$$
P \xrightarrow{\gamma} \emptyset. \tag{9}
$$

Let A and R multimerize with cooperativity n and m, with forward rates of β_A, β_R and reverse rates of β'_A, β'_R , respectively, leading to reactions (1)-(2). Since activation and repression are assumed to take place at the transcriptional level, the complex formed by the reversible reaction (with forward rate a^* and reverse rate d^*) between R_m and DNA promoter (DNA^P), denoted $R_m:DNA^P$, does not contribute to transcription and effectively sequesters free DNAP, as given in (3). Conversely, $A_n: DNA^P$ is the complex formed by the reversible reaction (with forward rate a' and reverse rate d') between A_n and DNA^P , as shown in (4). This complex undergoes translation at rate α_1 to produce an mRNA molecule, leading to (5). The model also assumes that some transcription can occur without A bound to DNA^P (i.e., transcriptional leakiness), described by (6). Translation occurs at a rate κ , given in (7), and mRNA and protein decay at a rate δ and γ , respectively, given in (8)-(9). The ODE model for the mRNA and protein dynamics is given by:

$$
\dot{m}_P = \alpha_1 [A_n : DNA^P] + \alpha_2 [DNA^P] - \delta m_P,
$$

$$
\dot{P} = \kappa m_P - \gamma P.
$$
 (10)

Assuming the total concentration of DNA is constant, the following conservation law holds:

$$
DNA_{tot} = DNA^P + [R_m : DNA^P] + [A_n : DNA^P].
$$

Assuming complex formation occurs significantly faster than mRNA and protein dynamics [1], setting their respective rate equations at quasi-steady state (i.e., $\dot{A}_n, \dot{R}_m, [\dot{A}_n : \dot{D}NAP], [\dot{R}_m : \dot{D}NAP] = 0$ and solving for $[A_n : DNA^P]$ and $[DNA^P]$ in terms of A, R yields:

$$
[\mathbf{A}_n : \mathbf{DNA}^{\mathbf{P}}] = \frac{\frac{a'\beta_A}{d'\beta_{A'}} DNA_{tot}A^n}{1 + \frac{a'\beta_A}{d'\beta_{A'}}A^n + \frac{a^*\beta_R}{d^*\beta_{R'}}R^m},\tag{11}
$$

$$
[DNAP] = \frac{DNA_{tot}}{1 + \frac{a'\beta_A}{d'\beta_{A'}}A^n + \frac{a^*\beta_R}{d^*\beta_{R'}}R^m}.
$$
 (12)

Equation (10) represents the dynamics of a general mRNA and protein system with transcriptional activation and repression by A and R, respectively. Substituting $(11)-(12)$ in (10) and then using the subscripts "R" or "A" to denote parameters corresponding to R or A production and decay, respectively yields the final model equations:

$$
\dot{m}_A = \frac{\alpha (A/k_A)^n + \alpha_0}{1 + (A/k_A)^n + (R/k_R)^m} - \delta_A m_A,
$$

\n
$$
\dot{m}_R = \frac{\alpha (A/k_A)^n + \alpha_0}{1 + (A/k_A)^n + (R/k_R)^m} - \delta_R m_R,
$$

\n
$$
\dot{A} = \kappa_A m_A - \gamma_A A,
$$

\n
$$
\dot{R} = \kappa_R m_R - \gamma_R R.
$$
\n(13)

Model reduction via singular perturbation of system with load to A

We consider A transcriptionally regulating downstream promoter sites. Let the free promoter sites be denoted as C_{10} and the sites bound to A be denoted as C_{11} . Since DNA does not decay, the total concentration of promoter sites is conserved, that is $C_{10} + C_{11} = C_{t1}$, where C_{t1} represents the total concentration of the free and bound promoter sites. The complex formation reaction is given by: $C_{10} + A \stackrel{a}{\rightleftarrows}$ \vec{C}_{11} , leading to the three-state system:

$$
\dot{A} = \frac{\kappa_A}{\delta_A} \frac{\alpha (A/k_A)^n + \alpha_0}{1 + (A/k_A)^n + (R/k_R)^m} - \gamma_A A - \dot{C}_{11},
$$
\n
$$
\dot{R} = \frac{\kappa_R}{\delta_R} \frac{\alpha (A/k_A)^n + \alpha_0}{1 + (A/k_A)^n + (R/k_R)^m} - \gamma_R R,
$$
\n
$$
\dot{C}_{11} = a(C_{t1} - C_{11})A - dC_{11}.
$$
\n(14)

In order to analyze how the eigenvalues of the linearized system change due to the addition of C_{t1} , we consider a reduced order model. Using the assumption that complex formation (C_{11}) occurs relatively faster than protein dynamics (A,R) [1], the three-state system can be reduced to two states. To this end, we employ singular perturbation and introduce the new (slow) variable Z, defined as $Z = A + C_{11}$. Rewrite the system by defining $\epsilon = \frac{\gamma_A}{d}$, $K_{d1} = \frac{d}{a}$, and $a = \frac{\gamma_A}{\epsilon K_{d1}}$. Substituting these expressions into (14) yields the system in standard singular perturbation form given by:

$$
\dot{Z} = \frac{\kappa_A}{\delta_A} \frac{\alpha(\frac{Z - C_{11}}{k_A})^n + \alpha_0}{1 + (\frac{Z - C_{11}}{k_A})^n + (R/k_R)^m} - \gamma_A (Z - C_{11}),
$$
\n
$$
\dot{R} = \frac{\kappa_R}{\delta_R} \frac{\alpha(\frac{Z - C_{11}}{k_A})^n + \alpha_0}{1 + (\frac{Z - C_{11}}{k_A})^n + (R/k_R)^m} - \gamma_R R,
$$
\n
$$
\epsilon \dot{C}_{11} = \frac{\gamma_A}{K_{d1}} (C_{t1} - C_{11})(Z - C_{11}) - \gamma_A C_{11}.
$$
\n(15)

Setting $\epsilon = 0$ and solving for C_{11} in terms of A yields the slow manifold:

$$
C_{11} = \frac{C_{t1}A/K_{d1}}{1 + A/K_{d1}} = g_1(A),
$$

which can be shown to be locally exponentially stable [2]. Since $Z = A + C_{11}$, we have $\dot{Z} = \dot{A} + \dot{C}_{11}$, and so:

$$
\dot{Z} = \dot{A} + \frac{dg_1(A)}{dA}\dot{A}.
$$

Solving for \dot{A} yields:

$$
\begin{split} \dot{A} &= \frac{\dot{Z}}{1 + \frac{dg_1(A)}{dA}}, \\ &= \Big(\frac{\kappa_A}{\delta_A} \frac{\alpha(\frac{A}{k_A})^n + \alpha_0}{1 + (\frac{A}{k_A})^n + (\frac{R}{k_R})^m} - \gamma_A A\Big) \frac{(1 + \frac{A}{K_{d1}})^2}{(1 + \frac{A}{K_{d1}})^2 + \frac{C_{t1}}{K_{d1}}}. \end{split}
$$

The resulting reduced model of the clock with load on A is thus given by:

$$
\dot{A} = \frac{(1 + \frac{A}{K_{d1}})^2}{(1 + \frac{A}{K_{d1}})^2 + \frac{C_{t1}}{K_{d1}}} \left(\frac{\kappa_A}{\delta_A} \frac{\alpha(\frac{A}{K_A})^n + \alpha_0}{1 + (\frac{A}{K_A})^n + (\frac{R}{K_R})^m} - \gamma_A A\right),
$$
\n
$$
\dot{R} = \frac{\kappa_R}{\delta_R} \frac{\alpha(A/k_A)^n + \alpha_0}{1 + (A/k_A)^n + (R/k_R)^m} - \gamma_R R.
$$

Model reduction of the system with load on R can be similarly derived.

Model reduction via singular perturbation of system with load and complex decay

We consider load to A transcriptionally regulating downstream promoter sites that decay at a constant rate when bound with A. The modified load reactions to A are given by:

$$
A + C_{10} \underset{d}{\overset{a}{\rightleftharpoons}} C_{11},
$$

$$
C_{11} \overset{\pi_A}{\rightarrow} C_{10}.
$$

The dynamics of the three-state system have changed to $(f_1(A,R) = \frac{\kappa_A}{\delta_A})$ $\frac{\alpha (A/k_A)^n + \alpha_0}{1 + (A/k_A)^n + (R/k_R)^m},$ $f_2(A,R) = \frac{\kappa_R}{\delta_R}$ $\frac{\alpha (A/k_A)^n + \alpha_0}{1 + (A/k_A)^n + (R/k_R)^m}$):

$$
\dot{A} = f_1(A, R) - \gamma_A A + dC_{11} - aA(C_{t1} - C_{11}),
$$

\n
$$
\dot{R} = f_2(A, R) - \gamma_R R,
$$

\n
$$
\dot{C}_{11} = aA(C_{t1} - C_{11}) - (d + \pi_A)C_{11}.
$$

Introduce a slow (X) and fast (Y) variable, given by:

$$
X = A + C_{11},
$$

$$
Y = \frac{d}{d + \pi_A} C_{11}.
$$

The three-state system is thus now given by $(p_A = \frac{d}{d + \pi_A})$:

$$
\dot{X} = f_1(X - \frac{Y}{p_A}, R) - \gamma_A(X - \frac{Y}{p_A}) - \frac{\pi_A Y}{p_A},
$$
\n
$$
\dot{Y} = p_A a (X - \frac{Y}{p_A})(C_{t1} - \frac{Y}{p_A}) - d\frac{Y}{p_A},
$$
\n
$$
\dot{R} = f_2(X - \frac{Y}{p_A}, R) - \gamma_R R.
$$

Define $\epsilon = \frac{\gamma_A}{d}$, $K_{d1} = \frac{d}{a}$. This leads to $d = \frac{\gamma_A}{\epsilon}$, $a = \frac{\gamma_A}{\epsilon K_{d1}}$, and:

$$
\epsilon \dot{Y} = \frac{\gamma_A p_A}{K_{d1}} A (C_{t1} - \frac{Y}{p_A}) - \frac{\gamma_A Y}{K_{d1}}.
$$

Set $\epsilon=0$ to find the slow manifold:

$$
Y = \frac{p_A^2}{K_{d1}} A(C_{t1} - \frac{Y}{p_A}),
$$

=
$$
\frac{p_A^2 C_{t1} A}{K_{d1} + p_A A} = h_1(A).
$$

Solving for \dot{A} :

$$
X = A + \frac{Y}{p_A},
$$

\n
$$
\dot{X} = \dot{A} + \frac{1}{p_A} \frac{\partial h_1}{\partial A} \dot{A} \implies \dot{A} = \frac{\dot{X}}{1 + \frac{1}{p_A} \frac{\partial h_1}{\partial A}},
$$

\n
$$
\dot{A} = \frac{f_1(A, R) - \gamma_A A - \frac{\pi_A p_A C_{t1} A}{K_{d1} + p_A A}}{1 + \frac{p_A K_{d1} C_{t1}}{(K_{d1} + p_A A)^2}}.
$$

Model reduction of the system with load on R and complex decay can be similarly derived.

References

- [1] U. Alon, "An Introduction to Systems Biology: Design Principles of Biological Circuits," Chapman & Hall/CRC, 2007.
- [2] D. del Vecchio and R. Murray, "Biomolecular Feedback Systems," Princeton University Press, 2014.