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Introduction

This note contains the derivation of the deterministic model and model reduc-
tion using singular perturbation used in the submission “Loading as a design
parameter for genetic circuits” to the 2016 American Control Conference by the
same authors.

Derivation of model

A deterministic ODE model of an activator-repressor (A-R) genetic oscillator
is derived considering the biochemical reactions of activation, repression, mul-
timerization, transcription, and translation of a generic protein (P) which, due
to the symmetry of the model (both proteins are activated by A and repressed
by R) can be used to describe the evolution of the concentration of both A and



R. These reactions are given by:

A+A+...+A%An, (1)
R+R+...+R%Rm, 2)
R, + DNAP d: R,, : DNAP, (3)
A, + DNAP % A, : DNAF, (4)
A, : DNAP 25 mp + A, : DNAP, (5)
DNA” 225 mp + DNAF, (6)

mp — mp + P, (7)

mp —2 0, (8)

P50 (9)

Let A and R multimerize with cooperativity n and m, with forward rates of
Ba,Br and reverse rates of 5/, By, respectively, leading to reactions (1)-(2).
Since activation and repression are assumed to take place at the transcriptional
level, the complex formed by the reversible reaction (with forward rate a* and
reverse rate d*) between R,, and DNA promoter (DNAF), denoted R,,:DNAF,
does not contribute to transcription and effectively sequesters free DNAF, as
given in (3). Conversely, A,;:DNAF is the complex formed by the reversible
reaction (with forward rate @’ and reverse rate d’) between A, and DNAFP,
as shown in (4). This complex undergoes translation at rate a; to produce
an mRNA molecule, leading to (5). The model also assumes that some tran-
scription can occur without A bound to DNAF (i.e., transcriptional leakiness),
described by (6). Translation occurs at a rate &, given in (7), and mRNA and
protein decay at a rate 6 and -, respectively, given in (8)-(9). The ODE model
for the mRNA and protein dynamics is given by:

mp = ai[A, : DNAP] + ay[DNAF] — smp,

P =xmp —~P. (10)

Assuming the total concentration of DNA is constant, the following conservation
law holds:

DNAyy; = DNAP +[R,, : DNAF] +[A, : DNAF].

Assuming complex formation occurs significantly faster than mRNA and protein
dynamics [1], setting their respective rate equations at quasi-steady state (i.e.,
Ap, R, [An : DNAP], [Ry, : DNAP]= 0) and solving for [A,:DNAF] and [DNAP]



in terms of A, R yields:

@BA DN A,y A™

T Bar
[A, : DNAP] = x . (11)
a’'B n a*f m’
1+ 98aan y 285 R
DNA
Py _ tot
[DNA ]_ 1+ a’'Ba An 4 a*Br Rm' (12)
d’BA’ d*,BR/

Equation (10) represents the dynamics of a general mRNA and protein system
with transcriptional activation and repression by A and R, respectively. Sub-
stituting (11)-(12) in (10) and then using the subscripts “R” or “A” to denote
parameters corresponding to R or A production and decay, respectively yields
the final model equations:

I alA/ka)™ + ap sam
AT T (Aka) + Rk T

a(A/ka)™ + ap

mpr = — dpMmRg,

BT 1+ (AJka) + (RJkg)™ R

A= kama— a4,

R:KJRmR—’yRR. (13)

Model reduction via singular perturbation of sys-
tem with load to A

We consider A transcriptionally regulating downstream promoter sites. Let the
free promoter sites be denoted as Cyy and the sites bound to A be denoted as
C11. Since DNA does not decay, the total concentration of promoter sites is
conserved, that is C1g+ C11 = Cy1, where Cyp represents the total concentration
of the free and bound promoter sites. The complex formation reaction is given

a
by: Cio + A 2 (41, leading to the three-state system:
d

kA a(A/ka)™ + ao

== —yaA - Chy,
541+ (A/ka)" + (R/kp)m 4 1
. KR a(A/kA)™ + ag
R=_2E — vrR,
or L+ (A/ka)" + (R/kp)m  'F
011 = Q(Ctl — Cll)A - dCu. (14)

In order to analyze how the eigenvalues of the linearized system change due to
the addition of C};, we consider a reduced order model. Using the assumption
that complex formation (Ci1) occurs relatively faster than protein dynamics
(AJR) [1], the three-state system can be reduced to two states. To this end, we
employ singular perturbation and introduce the new (slow) variable Z, defined

as Z = A+C1y. Rewrite the system by defining e = 2, Kg; = g, and a = 6%1 .




Substituting these expressions into (14) yields the system in standard singular
perturbation form given by:

o o) 4 g
= < 7—C _’YA(Z_Cll)v
041+ (Tu)n + (R/kr)™
_ @ a(Z;iACu)n —+ g R
Or 1+ (5ony+ Rk
6011 = %(Cﬂ - C1)(Z — C11) —vaCh1. (15)
d1
Setting € = 0 and solving for C1; in terms of A yields the slow manifold:
CnA/Kn
Ci1 = - - A )
1 1+ A/Kan 91(4)

which can be shown to be locally exponentially stable [2]. Since Z = A + Cy1,
we have Z = A + C1, and so:

Z=A A.
MY
Solving for A yields:
, Z
A:41+dgél(4A);
LS e ) B Ch e
0a 1+ ()" + ()™ 1+ A2+ Lo

The resulting reduced model of the clock with load on A is thus given by:
: (1+ Kil )? KA a(%)n + Qo YA
= _— — YA s
() + 8\ T A+ ()
hofR a(A/kA)™ + ag
or 14 (A/ka)" + (R/kg)™

Model reduction of the system with load on R can be similarly derived.

- 'yRR.

Model reduction via singular perturbation of sys-
tem with load and complex decay

We consider load to A transcriptionally regulating downstream promoter sites
that decay at a constant rate when bound with A. The modified load reactions
to A are given by:

A+ Cio = Cia,
d

A
011 — 010.



The dynamics of the three-state system have changed to (f1 (A, R) = %4 —(A/ka)" oo

(A/k4) 54 T+(A/kA)"+(R/kr)™>
_ K a "o .
f2(A7 R) - ﬁ 1+(A/kA)T?+(R/]?:R)"7’).

A= fi(A,R) —v4A +dCi1 — aA(Cy — Cha),
R = f2(A,R) — VrR,
Cll =aA(Cy — C11) — (d+7a)Ch1.

Introduce a slow (X) and fast (Y) variable, given by:

X = A+ Ch,
d
Y = Ch1-
PR
The three-state system is thus now given by (pa = ﬁ)
Y TAY
X = fi(X = — R)—ya(X — —) - =,
pa Y
Y Y
Y =pga(X — —)(Cyy — —) —d—
pba pa
R—fQ(X— ,R)—’YRR
Define e = 1, K41 = g. This leads to d = 32, a = F2-, and:
, _ 7APA Y qaY
€Y = ACy — —) — .
d1 (Can pA) Ko
Set € = 0 to find the slow manifold:
2
Pa Y
Y ==-2A(CyH — —),
Ko (Can PA)
204 A
= PA¥us  _ po(A).
Ka1 +paA
Solving for A:
Y
X=A+—,
pa
.. 1 0hy . . X
pA 1 Da 0A
_ fi(A, R) —vaA - 7@?5122?
Ka1Ch :
L+ ®nvpadry

Model reduction of the system with load on R and complex decay can be simi-
larly derived.
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