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Introduction

This note contains the derivation of the deterministic model and model reduc-
tion using singular perturbation used in the submission “Loading as a design
parameter for genetic circuits” to the 2016 American Control Conference by the
same authors.

Derivation of model

A deterministic ODE model of an activator-repressor (A-R) genetic oscillator
is derived considering the biochemical reactions of activation, repression, mul-
timerization, transcription, and translation of a generic protein (P) which, due
to the symmetry of the model (both proteins are activated by A and repressed
by R) can be used to describe the evolution of the concentration of both A and
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R. These reactions are given by:

A + A + ...+ A
βA−−⇀↽−−−
βA′

An, (1)

R + R + ...+ R
βR−−⇀↽−−−
βR′

Rm, (2)

Rm + DNAP a∗−−⇀↽−−
d∗

Rm : DNAP, (3)

An + DNAP a′−−⇀↽−−
d′

An : DNAP, (4)

An : DNAP α1−−→ mP + An : DNAP, (5)

DNAP α2−−→ mP + DNAP, (6)

mP
κ−−→ mP + P, (7)

mP
δ−−→ ∅, (8)

P
γ−−→ ∅. (9)

Let A and R multimerize with cooperativity n and m, with forward rates of
βA, βR and reverse rates of β′A, β

′
R, respectively, leading to reactions (1)-(2).

Since activation and repression are assumed to take place at the transcriptional
level, the complex formed by the reversible reaction (with forward rate a∗ and
reverse rate d∗) between Rm and DNA promoter (DNAP), denoted Rm:DNAP,
does not contribute to transcription and effectively sequesters free DNAP, as
given in (3). Conversely, An:DNAP is the complex formed by the reversible
reaction (with forward rate a′ and reverse rate d′) between An and DNAP,
as shown in (4). This complex undergoes translation at rate α1 to produce
an mRNA molecule, leading to (5). The model also assumes that some tran-
scription can occur without A bound to DNAP (i.e., transcriptional leakiness),
described by (6). Translation occurs at a rate κ, given in (7), and mRNA and
protein decay at a rate δ and γ, respectively, given in (8)-(9). The ODE model
for the mRNA and protein dynamics is given by:

ṁP = α1[An : DNAP ] + α2[DNAP ]− δmP ,

Ṗ = κmP − γP. (10)

Assuming the total concentration of DNA is constant, the following conservation
law holds:

DNAtot = DNAP + [Rm : DNAP ] + [An : DNAP ].

Assuming complex formation occurs significantly faster than mRNA and protein
dynamics [1], setting their respective rate equations at quasi-steady state (i.e.,

Ȧn, Ṙm, [ ˙An : DNAP], [ ˙Rm : DNAP]= 0) and solving for [An:DNAP] and [DNAP]
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in terms of A,R yields:

[An : DNAP] =

a′βA

d′βA′
DNAtotA

n

1 + a′βA

d′βA′
An + a∗βR

d∗βR′
Rm

, (11)

[DNAP] =
DNAtot

1 + a′βA

d′βA′
An + a∗βR

d∗βR′
Rm

. (12)

Equation (10) represents the dynamics of a general mRNA and protein system
with transcriptional activation and repression by A and R, respectively. Sub-
stituting (11)-(12) in (10) and then using the subscripts “R” or “A” to denote
parameters corresponding to R or A production and decay, respectively yields
the final model equations:

ṁA =
α(A/kA)n + α0

1 + (A/kA)n + (R/kR)m
− δAmA,

ṁR =
α(A/kA)n + α0

1 + (A/kA)n + (R/kR)m
− δRmR,

Ȧ = κAmA − γAA,
Ṙ = κRmR − γRR. (13)

Model reduction via singular perturbation of sys-
tem with load to A

We consider A transcriptionally regulating downstream promoter sites. Let the
free promoter sites be denoted as C10 and the sites bound to A be denoted as
C11. Since DNA does not decay, the total concentration of promoter sites is
conserved, that is C10 +C11 = Ct1, where Ct1 represents the total concentration
of the free and bound promoter sites. The complex formation reaction is given

by: C10 +A
a

�
d
C11, leading to the three-state system:

Ȧ =
κA
δA

α(A/kA)n + α0

1 + (A/kA)n + (R/kR)m
− γAA− Ċ11,

Ṙ =
κR
δR

α(A/kA)n + α0

1 + (A/kA)n + (R/kR)m
− γRR,

Ċ11 = a(Ct1 − C11)A− dC11. (14)

In order to analyze how the eigenvalues of the linearized system change due to
the addition of Ct1, we consider a reduced order model. Using the assumption
that complex formation (C11) occurs relatively faster than protein dynamics
(A,R) [1], the three-state system can be reduced to two states. To this end, we
employ singular perturbation and introduce the new (slow) variable Z, defined
as Z = A+C11. Rewrite the system by defining ε = γA

d , Kd1 = d
a , and a = γA

εKd1
.
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Substituting these expressions into (14) yields the system in standard singular
perturbation form given by:

Ż =
κA
δA

α(Z−C11

kA
)n + α0

1 + (Z−C11

kA
)n + (R/kR)m

− γA(Z − C11),

Ṙ =
κR
δR

α(Z−C11

kA
)n + α0

1 + (Z−C11

kA
)n + (R/kR)m

− γRR,

εĊ11 =
γA
Kd1

(Ct1 − C11)(Z − C11)− γAC11. (15)

Setting ε = 0 and solving for C11 in terms of A yields the slow manifold:

C11 =
Ct1A/Kd1

1 +A/Kd1
= g1(A),

which can be shown to be locally exponentially stable [2]. Since Z = A + C11,
we have Ż = Ȧ+ Ċ11, and so:

Ż = Ȧ+
dg1(A)

dA
Ȧ.

Solving for Ȧ yields:

Ȧ =
Ż

1 + dg1(A)
dA

,

=
(κA
δA

α( AkA )n + α0

1 + ( AkA )n + ( RkR )m
− γAA

) (1 + A
Kd1

)2

(1 + A
Kd1

)2 + Ct1

Kd1

.

The resulting reduced model of the clock with load on A is thus given by:

Ȧ =
(1 + A

Kd1
)2

(1 + A
Kd1

)2 + Ct1

Kd1

(
κA
δA

α( AkA )n + α0

1 + ( AkA )n + ( RkR )m
− γAA

)
,

Ṙ =
κR
δR

α(A/kA)n + α0

1 + (A/kA)n + (R/kR)m
− γRR.

Model reduction of the system with load on R can be similarly derived.

Model reduction via singular perturbation of sys-
tem with load and complex decay

We consider load to A transcriptionally regulating downstream promoter sites
that decay at a constant rate when bound with A. The modified load reactions
to A are given by:

A+ C10

a
�
d
C11,

C11
πA→ C10.

4



The dynamics of the three-state system have changed to (f1(A,R) = κA

δA

α(A/kA)n+α0

1+(A/kA)n+(R/kR)m ,

f2(A,R) = κR

δR

α(A/kA)n+α0

1+(A/kA)n+(R/kR)m ):

Ȧ = f1(A,R)− γAA+ dC11 − aA(Ct1 − C11),

Ṙ = f2(A,R)− γRR,
Ċ11 = aA(Ct1 − C11)− (d+ πA)C11.

Introduce a slow (X) and fast (Y) variable, given by:

X = A+ C11,

Y =
d

d+ πA
C11.

The three-state system is thus now given by (pA = d
d+πA

):

Ẋ = f1(X − Y

pA
, R)− γA(X − Y

pA
)− πAY

pA
,

Ẏ = pAa(X − Y

pA
)(Ct1 −

Y

pA
)− d Y

pA
,

Ṙ = f2(X − Y

pA
, R)− γRR.

Define ε = γA
d , Kd1 = d

a . This leads to d = γA
ε , a = γA

εKd1
, and:

εẎ =
γApA
Kd1

A(Ct1 −
Y

pA
)− γAY

Kd1
.

Set ε = 0 to find the slow manifold:

Y =
p2A
Kd1

A(Ct1 −
Y

pA
),

=
p2ACt1A

Kd1 + pAA
= h1(A).

Solving for Ȧ:

X = A+
Y

pA
,

Ẋ = Ȧ+
1

pA

∂h1
∂A

Ȧ =⇒ Ȧ =
Ẋ

1 + 1
pA

∂h1

∂A

,

Ȧ =
f1(A,R)− γAA− πApACt1A

Kd1+pAA

1 + pAKd1Ct1

(Kd1+pAA)2

.

Model reduction of the system with load on R and complex decay can be simi-
larly derived.
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