
CBMM Memo No. 45 March 24, 2016

Learning Real and Boolean Functions: When Is Deep
Better Than Shallow

by

Hrushikesh Mhaskar1, Qianli Liao2, Tomaso Poggio2

1 Department of Mathematics, California Institute of Technology, Pasadena,
Institute of Mathematical Sciences, Claremont Graduate University, CA, 91125

2 Center for Brains, Minds, and Machines, McGovern Institute for Brain Research,
Massachusetts Institute of Technology, Cambridge, MA, 02139

Abstract: We describe computational tasks – especially in vision – that correspond to compositional/hierarchical
functions. While the universal approximation property holds both for hierarchical and shallow networks, we prove that
deep (hierarchical) networks can approximate the class of compositional functions with the same accuracy as shallow
networks but with exponentially lower VC-dimension as well as the number of training parameters. This leads to the
question of approximation by sparse polynomials (in the number of independent parameters) and, as a consequence, by
deep networks. We also discuss connections between our results and learnability of sparse Boolean functions, settling an
old conjecture by Bengio. 1

This work was supported by the Center for Brains, Minds and Machines
(CBMM), funded by NSF STC award CCF 1231216. HNM was supported in
part by ARO Grant W911NF-15-1-0385.

1This version (March 24th, 2016) is an update of the original version submitted on March 5th, 2016.

1 INTRODUCTION

The main goal of this paper is to begin to answer the ques-
tion: why should deep networks be better than shallow net-
works? Our claim here is that hierarchical networks are
a more efficient approximation of the computations that
need to be performed on images – and possibly other sen-
sory signals. The argument of the paper compares shallow
(one-hidden layer) networks with deep networks (see for
example Figure 1). Both types of networks use the same
small set of operations – dot products, linear combinations,
a fixed nonlinear function of one variable, possibly convo-
lution and pooling. The logic of the paper is as follows.

• Both shallow (a) and deep (b) networks are universal,
that is they can approximate arbitrarily well any con-
tinuous function of d variables on a compact domain.

• We show that the approximation of functions with a
compositional structure – such as f(x1, · · · , xd) =
h1(h2 · · · (hj(hi1(x1, x2), hi2(x3, x4)), · · ·)) – can
be achieved with the same degree of accuracy by
deep and shallow networks but that the VC-dimension
and the fat-shattering dimension are much smaller for
the deep networks than for the shallow network with
equivalent approximation accuracy. It is intuitive that
a hierarchical network matching the structure of a
compositional function should be “better” at approx-
imating it than a generic shallow network but univer-
sality of shallow networks makes the statement less
than obvious. Our result makes clear that the intuition
is indeed correct and provides quantitative bounds.

• Why are compositional functions important? We
show that some basic visual recognition tasks do in
fact require compositional functions. More in gen-
eral, and less formally, it can be argued that symmetry
properties of image statistics require hierarchies such
as the bottom of Figure 1. In particular, we argue that
hierarchical functions are effectively dictated by the
statistics of natural images consisting of several over-
lapping objects, that is objects in clutter, rather than a
single object against an homeogeneous background.

• Finally we discuss the relation between composition-
ality and sparsity. We sketch new results that lead
to interesting connections between the learning of
Boolean functions and the learning of functions of real
variables.

2 PREVIOUS WORK

The success of Deep Learning in the present landscape of
machine learning poses again an old theory question: why
are multi-layer networks better than one-hidden-layer net-
works? Under which conditions? The question is relevant

in several related fields from machine learning to function
approximation and has appeared many times before.

A personal (TP) version of this question starts with an old
paper on nonlinear associative memories which described
under which conditions higher and higher degree operators
should be learned from data to improve the performance of
linear regression. The idea that compositionality is impor-
tant in networks for learning and requires several layers in
a network was the subject of a chapter in an early paper
on (mostly RBF) networks for regularization(Poggio and
Girosi, 1989). Most Deep Learning references these days
start with Hinton’s backpropagation and with Lecun’s con-
volutional networks (see for a nice review (LeCun et al.,
2015)). Of course, multilayer convolutional networks have
been around at least as far back as the optical process-
ing era of the 70s. Fukushima’s Neocognitron(Fukushima,
1980) was a convolutional neural network that was trained
to recognize characters. The HMAX model of visual cor-
tex(Riesenhuber and Poggio, 1999a) was described as a se-
ries of AND and OR layers to represent hierarchies of dis-
junctions of conjunctions.

A version of the questions about why hierarchies was asked
in (Poggio and Smale, 2003) as follow: A comparison with
real brains offers another, and probably related, challenge
to learning theory. The “learning algorithms” we have de-
scribed in this paper correspond to one-layer architectures.
Are hierarchical architectures with more layers justifiable
in terms of learning theory? It seems that the learning the-
ory of the type we have outlined does not offer any general
argument in favor of hierarchical learning machines for
regression or classification. This is somewhat of a puzzle
since the organization of cortex – for instance visual cortex
– is strongly hierarchical. At the same time, hierarchical
learning systems show superior performance in several en-
gineering applications. ...The theoretical issues surround-
ing hierarchical systems of this type are wide open, and
likely to be of paramount importance for the next major
development of efficient classifiers in several application
domains...

More specific, intriguing work (Montufar et al., 2014) pro-
vided an estimation of the number of linear regions that
a network with ReLU nonlinearities can in principle syn-
thesize but leaves open the question of whether they can be
used for learning. Sum-Product networks, which are equiv-
alent to polynomial networks (see (B. Moore and Poggio,
1998; Livni et al., 2013), are a simple case of a hierarchy
that can be analyzed (Delalleau and Bengio, 2011). Work
on hierarchical quadratic networks (Livni et al., 2013), to-
gether with function approximation results (Pinkus, 1999;
Mhaskar, 1993b), is most relevant to the approach here.
This paper is a short, updated version of material that ap-
peared in (Poggio et al., 2015b) and especially in (Poggio
et al., 2015a).

3 MAIN RESULTS

3.1 COMPOSITIONAL FUNCTIONS

It is natural to conjecture that hierarchical compositions of
functions such as

f(x1, · · · , x8) = h3(h21(h11(x1, x2), h12(x3, x4)),

h22(h13(x5, x6), h14(x7, x8)))
(1)

are approximated more efficiently by deep than by shallow
networks.

We assume that the shallow networks do not have any
structural information on the function to be learned (here
its compositional structure), because they cannot represent
it directly. Deep networks with standard architectures on
the other hand do represent compositionality and can be
adapted to the details of such prior information.

In addition, both shallow and deep representations may or
may not reflect invariance to group transformations of the
inputs of the function (Soatto, 2011; Anselmi et al., 2015).
Invariance is expected to decrease the complexity of the
network, for instance its VC-dimension. Since we are in-
terested in the comparison of shallow vs deep architectures,
here we consider the generic case of networks (and func-
tions) for which invariance is not assumed.

We approximate functions of d variables of the form of
Equation 1 functions with networks in which the activation
nonlinearity is a so called ReLU, originally called ramp
by Breiman and given by σ(x) = |x|+ where |x|+ =
max(0, x) . The architecture of the deep networks reflects
Equation 1 with each node hi being a ridge function (in
particular it may be an additive piecewise linear spline in
the generalized sense of (Girosi et al., 1995), see Figure 1).
As such, each node contains a certain number of units.

In the following we will estimate the number of units and
layers required by shallow and hierarchical networks to ap-
proximate a function with a desired accuracy; we will then
estimate the VC-dimension associated with the resulting
network (assuming its output is used for binary classifi-
cation). A direct connection between regression and bi-
nary classification is provided by the following observation
due to (Livni et al., 2013). Combining Theorems 11.13
and 14.1 from (Anthony and Bartlett, 2002), it is possible
to show that the fat-shattering dimension is upper-bounded
by the VC-dimension of a slightly larger class of networks,
which have an additional real input and an additional out-
put node computing a linear threshold function in R2. Such
a class of networks has a similar VC-dimension to the orig-
inal class, hence the fat-shattering dimension can also be
bounded.

3.2 VC BOUNDS

To compute the relevant VC bounds we use a well-known
result (Anthony and Bartlett, 2002):

Theorem 1. Any binary function class in a Euclidean
space, which is parameterized by at most n parameters and
can be computed by at most p floating point operations, has
VC-dimension at most O(np).

This result provides immediately VC bounds for shallow
and deep networks with d input variables. Examples for
d = 8 are shown in Figure 1. We assume that the node
in the shallow network consists of N units computing∑N
i=1 ciσ(〈wi,x〉 + bi), with wi,x ∈ Rd and ci, bi ∈ R.

Thus each unit has d + 2 parameters for a total of O(dN)
parameters. Each unit involves d multiplications, d + 1
additions and 1 rectification for a total of O(dN) opera-
tions. Similarly each of the d − 1 nodes of the deep net-
work consists of n units computing

∑n
i=1 ai| 〈vi,x〉+ ti|,

with vi,x ∈ R2, ai, ti ∈ R. We assume that d = 2` where
` is the number of layers. Each unit has 4 parameters and
requires ≤ 8 operations for a total of 4n(d− 1) parameters
and 8n(d− 1) operations. With this notation we obtain

Proposition 1. The VC-dimension of the shallow network
with N units is O(d2N2); the VC-dimension of the binary
tree network with n(d− 1) units is bounded by O(n2d2).

It is important to emphasize here that state-of-art Deep
Learning Neural Networks (DLNNs), with their small ker-
nel size and many layers, are quite similar to the binary
tree architecture (notice that the number of units decreases
at higher and higher levels and that each unit receives only
neighboring inputs from the layer below), independently
of any additional (see remark in Figure 1) convolutional
architecture. Visual cortex has a similar compositional ar-
chitecture with receptive fields becoming larger and larger
in higher and higher areas corresponding to layers here. An
example is the old HMAX model (Riesenhuber and Poggio,
1999b) which took into account information about physiol-
ogy of the ventral stream: it has an architecture of the bi-
nary tree type. Taking it all together, it is not suprising that
DLNNs trained on Imagenet share properties with neurons
at various stages of visual cortex: the results of this paper
suggest that the reason is the very similar binary-tree-like
architecture.

3.3 DEGREE OF APPROXIMATION

We now describe the complexity of the shallow and deep
networks, measured by the number of trainable parameters
required in order to obtain uniform approximation to a tar-
get function up to an accuracy of ε > 0. Let Id = [−1, 1]d

be the unit cube in the Euclidean space Rd, and ‖ · ‖ denote

a)

b)

x1 x2 x3 x4 x5 x6 x7 x8

x1 x2 x3 x4 x5 x6 x7 x8

Figure 1: a) A shallow universal network in 8 variables
and N units which can approximate a generic function
f(x1, · · · , x8). b) A binary tree hierarchical network
in 8 variables, which approximates well functions of the
form f(x1, · · · , x8) = h3(h21(h11(x1, x2), h12(x3, x4)),
h22(h13(x5, x6), h14(x7, x8))). Each of the nodes in b)
consists of n ReLU units and computes the ridge function
(Pinkus, 1999)

∑n
i=1 ai| 〈vi,x〉 + ti|+, with vi,x ∈ R2,

ai, ti ∈ R. Each term corresponds to called a “channel’.
Similar to the shallow network a hierarchical network as
in b) can approximate a generic function; the text proves
how it approximates a compositional functions better than
a shallow network. No invariance is assumed here. Ad-
ditional properties of position and scale invariance of the
compositional function would imply h11 = h12 = h13 =
h14 and h21 = h22 and h11 ∝ h21 ∝ h3. These constraints
(the first one corresponds to weight sharing in convolu-
tional networks) further reduce the VC-dimension of the
network. Notice that state-of-art DLNNs with their small
kernel size and many layers are quite similar to the binary
tree architecture, which is itself very similar to hierarchical
models of visual cortex.

the uniform norm:

‖f‖ = max
x∈Id

|f(x)|, f ∈ C(Id).

If Vn ⊂ C(Id), where the parameter n indicates the com-
plexity of Vn, the degree of approximation of f ∈ C(Id)
from V is defined by

dist(f, Vn) = inf
P∈Vn

‖f − P‖. (2)

A central problem in approximation theory is to study the
interdependence of the rate at which dist(f, Vn) → 0 as
n → ∞ and the “smoothness” of f . It is customary in ap-
proximation theory to codify this smoothness information
in terms of membership in a compact set K of functions.
The worst case error in approximating a target function
given the only a priori information that f ∈ K is there-
fore

worst(Vn,K) = sup{dist(f, Vn) : f ∈ K}. (3)

If Vn ⊆ Vn+1 for all n, and V is the union of Vn’s, then the
complexity of approximation from V of functions in K is
given for ε > 0 by

complexity(V,K, ε) = min{n ≥ 0 : worst(Vn,K) ≤ ε}.
(4)

Typically, the index n in the notation Vn is proportional to
the number of trainable parameters in describing the ele-
ments of Vn. The quantity complexity(V,K, ε) thus repre-
sents the minimum number of parameters required to ap-
proximate an arbitrary function f ∈ K by elements of
V in order to guarantee that the error in approximation is
≤ ε.

Let σ : R→ R be the activation function computed by each
unit in the network. The number of trainable parameters in
the set Sn of all shallow networks of the form

n∑
i=1

aiσ(〈wi,x〉+ bi) (5)

is (d + 2)n, and dist(f,Sn) is the best error than can be
expected in approximating f by such networks. We define
W to be the set of all f : Id → R which have a continuous
gradient, such that ‖f‖W = ‖f‖ +

∑d
k=1 ‖Dkf‖ ≤ 1.

We are interested in estimating complexity(S,W, ε) (see
(6) below).

The key idea here is that the closure of the space spanned
by r linear combination of dilations and shifts of a univari-
ate C∞ function σ which is not a polynomial contains the
space of univariate polynomials Πr−1 of degree r − 1 (see
(Mhaskar, 1996, Proposition 2.2), (Pinkus, 1999, Corol-
lary 3.6)). In fact, the following proposition is proved in
(Mhaskar, 1996), (see also (Pinkus, 1999)):

Proposition 2. Let N ≥ 1, d ≥ 2 be integers, and σ be
a univariate C∞ function which is not a polynomial. Then
the closure of SNd contains the space of all polynomials in
d variables with coordinatewise degree < N .

Using this fact, it is observed in (Mhaskar, 1996, Theo-
rem 2.1) that when σ is as in Proposition 2, the following
estimate on the complexity of approximation by shallow
networks S =

⋃∞
n=1 Sn holds:

complexity(V,W, ε) = O(ε−d). (6)

Is this the best? To investigate this question, let Mn : K →
Rn be a continuous mapping (parameter selection), and
An : Rn → C(Id) be any mapping (recovery algorithm).
Then an approximation to f is given byAn(Mn(f)), where
the continuity of Mn means that the selection of parame-
ters is robust with respect to perturbations in f . Analogous
to the way the complexity was defined in (4) using (3), one
can define the nonlinear n–width of a compact set K by
(cf. (DeVore et al., 1989))

dn(K) = inf
Mn,An

sup
f∈K
‖f −An(Mn(f))‖, (7)

and the curse for K by

curse(K, ε) = min{n ≥ 1 : dn(K) ≤ ε}. (8)

While the complexity in (4) depends upon the choice of
approximants V , the curse depends only on K, and rep-
resents the best that can be achieved by any continuous
parameter selection and recovery processes. Neither of
them addresses the question of how to accomplish the ap-
proximation. It is shown in (DeVore et al., 1989) that
curse(W, ε) ≥ cε−d. So, the estimate (6) is the best pos-
sible among all reasonable methods of approximating ar-
bitrary functions in W , although by itself, the estimate (6)
is blind to the process by which the approximation is ac-
complished; in particular, this process is not required to be
robust.

We note that both the curse and the complexity depends
upon the norm in which the approximation is desired and
the class K to which the target function in known to be-
long. In general, shallow networks do a better approxima-
tion, for example, with both the curse and complexity of the
order ε−2, independent of the input dimension d, if the class
K consists of functions which are inherently shallow net-
works in some abstract sense, i.e., where the target function
has the form (5), except that the sum expression is replaced
by an integral with respect to some measure (e.g., (Barron,
1993; Kurková and Sanguineti, 2001; Kurková and San-
guineti, 2002; Mhaskar, 2004)).

For the hierarchical binary tree network, the analogue of
these results is obtained by considering the compact set
WH to be the class of all functions f which have the same

structure (e.g., (1)), where each of the constituent functions
h are in W (applied with only 2 variables). We define the
corresponding class of deep networks Dn to be set of all
functions with the same structure, where each of the func-
tions h is in Sn, and D =

⋃∞
n=1Dn. Since each of the

constituent function is a function in W of two variables,
(6) applied with d = 2 implies that each of these functions
can be approximated from Sε−2 up to accuracy ε. Our as-
sumption that f ∈ WH implies that there is a “good prop-
agation” of the error in an approximation of f from Dε−2 .
Thus, for functions in WH , we have

complexity(D,K, ε) = O(ε−2). (9)

We note that the number of parameters involved in an ele-
ment of Dε−2 is ≤ 6(d − 1)ε−2. Thus, (9) is a substantial
improvement over (6) in terms of the number of trainable
parameters required to achieve the accuracy ε, provided the
target function has the hierarchical structure.

Remarks

• Given the estimates in this section, a very coarse
bound on the VC-dimension of the binary classifier
induced by the deep network in Dε−2 is O(d2ε−4),
whereas the VC-dimension of the shallow network in
Sε−2 is O(d2ε−2d).

• The above estimates can be easily extended from the
special case of a binary tree to similar types of trees,
and even directed acyclic graphs.

• The assumption f ∈ W (respectively, f ∈ WH)
may be guaranteed in actual implementations by com-
monly used normalization operations on the weights
of a deep network.

• The ReLU activation function satisfies in practice the
assumptions of Proposition 2 (see Proposition 3.7
(Pinkus, 1999)).

• Since the bounds (9) and (6) apply under different a
priori assumptions on the target functions, it is mis-
leading to conclude that deep networks always yield
better approximations in terms of the number of pa-
rameters involved for every target function. From
the point of view of approximation theory as applied
to arbitrary smooth functions, an interesting advan-
tage of deep networks (with more than one hidden
layer) is that they provide optimal local approximation
analogous to spline approximation, while shallow net-
works are inherently unable to do so (Mhaskar, 1993a;
Mhaskar, 1993b; Chui et al., 1994; Chui et al., 1996).

• The fact that hierarchical functions are approximated
more efficiently by deep than by shallow networks
has been shown to be true in an important special

case. For the hierarchical quadratic networks de-
scribed in (Livni et al., 2013) (see section 4) there a
VC-dimension bound is much lower than for the cor-
responding shallow network.

• In a sense hierarchical deep networks can avoid the
curse of dimensionality for compositional functions
with respect to shallow networks because each module
in the hierarchy has bounded dimensionality, which
is equal to 2 in the binary tree case. As we mention
elsewhere, the VC-dimension can be further reduced
by invariances such as translation invariance (corre-
sponding to weight sharing).

4 WHY DOES VISION REQUIRE
COMPOSITIONAL FUNCTIONS?

We saw that, though both deep hierarchies and shallow hi-
erarchies are universal, deep hierarchies are approximated
inefficiently by shallow ones. The final step in the argu-
ment is to show that deep hierarchical functions represent
critical computations for vision.

The general point is that hierarchies – and weight sharing
– reflect symmetries in the physical world that manifest
themselves through the image statistics. Assume for in-
stance that a computational hierarchy such as

hl(· · ·h3(h21(h11(x1, x2), h12(x3, x4)),

h22(h13(x5, x6), h14(x7, x8)) · · ·)))
(10)

is given. Then shift invariance of the image statistics could
be reflected in the following property: the local node “pro-
cessors” should satisfy h21 = h22 and h11 = h12 = h13 =
h14 since there is no reason for them to be different across
images. In a similar way h3 and h21 should be “scaled”
versions of each other because of scale invariance. Similar
invariances of image statistics – for instance to rotation –
can be similarly use to constrain the local processes h.

It is natural to ask whether the hierarchy itself – for sim-
plicity the idealized binary tree of the Figure 1– follows
from a specific symmetry in the world and which one. A
possible answer to this question follows from the fact that
in natural images the target object is usually among several
other objects at a range of scales and position, that is the tar-
get object is embedded in clutter. From the physical point
of view, this is equivalent to the observation that there are
several localized clusters of surfaces with similar proper-
ties (objects). These basic aspects of the physical world are
reflected in properties of the statistics of images: locality,
shift invariance and scale invariance. In particular, local-
ity reflects clustering of similar surfaces in the world – the
closer to each other pixels are in the image, the more likely
they are to be correlated. Thus nearby patches are likely to
be correlated (because of locality), and so are neighboring

(because of shift invariance) image regions of increasing
size (because of scale invariance). Ruderman’s pioneering
work (Ruderman, 1997) concludes that this set of proper-
ties is equivalent to the statement that natural images con-
sist of many object patches that may partly occlude each
other (object patches are image patches which have similar
properties because they are induced by local groups of sur-
faces with similar properties). We argue that Ruderman’s
conclusion implies

• the property of selfsimilarity of image statistics, which
in part reflects the compositionality of objects and
parts: parts are themselves objects, that is selfsimilar
clusters of similar surfaces in the physical world.

• the pervasive presence of clutter: in an image target
objects are typically embedded among many objects
at different scales and positions.

The first property – compositionality – was a main motiva-
tion for hierarchical architectures such as Fukushima’s and
later imitations of it such as HMAX which can be seen to
be similar to a pyramid of AND and OR layers (Riesen-
huber and Poggio, 1999b), that is a sequence of conjunc-
tions and disjunctions. The presence of clutter, together
with the need of position and scale invariance, implies that
many visual computations, that is functions evaluated on
images, should have a compositional structure. According
to these arguments, compositional functions should be im-
portant for vision tasks. Notice that there is a subtle but im-
portant distinction between a) translation and scale invari-
ance in object recognition and b) shift invariance and scale
invariance of the statistics of natural images. Of course,
the reason one wants shift and scale invariance in object
recognition is because objects can appear at any position
and scale in images, which is exactly why the statistics of
images is position and scale invariant. In a related vein, it
is possible to learn invariances, such as shift and scale in-
variance, from generic visual experience, because they are
reflected in image statistics.

4.1 SANITY CHECK: RECOGNITION IN
CLUTTER

The arguments of the previous section are suggestive. Here
we provide a more formal argument which shows a signifi-
cant advantage of hierarchical functions relative to shallow
ones. The advantage derives from the locality property of
objects and concerns an important computation: recogni-
tion in clutter. Figure 2 summarizes the skeleton of the
argument: the recognition of object A suffers from inter-
ference from clutter (B) in a shallow network.

The point can be formalized by starting from an (obvious)
result (Anselmi et al., 2015) showing that pooling over a

A B A B

Figure 2: Two objects (A and B) are shown to a shallow (a)
and a deep (b) network, both with invariance to translation
obtained via convolution and pooling within each of the re-
ceptive fields. In the case of the deep network each of the
two objects can be processed in the lower layers without
interference by the other object. There is a key prediction
here for the architecture of the ventral stream: there should
be bypass connections – direct or indirect – from lower lay-
ers to the output layer to allow clutter-robust recognition at
the cost of reduced invariance. This is not possible for the
shallow network.

convolution is a group average of dot products of the image
with transformations of templates by group elements. This
group average is invariant and can be unique. By adapting
the proof there (Anselmi et al., 2015), it is easy to show
(as we are doing in a longer version of this paper), that
invariance and potential uniquenss of pooling do not hold
when clutter – defined as image patches that may change
from one presentation of the object to the next presentation
– is present within the pooling regions.

As shown in Figure 2, in the case of the deep network
each of the two objects can be processed in the lower lay-
ers without interference from the other object. Thus hier-
archies, unlike shallow architectures, correspond to visual
computations that are more robust to clutter.

5 SPARSE FUNCTIONS

In this section we argue that the case of tree-like composi-
tional functions is a special case of a more general formu-
lation.

For the the intuition underlying our claim consider a
node in the last layer of a deep network with two lay-
ers. The outputs of the layer are combined to provide
the one-dimensional output of the network. The node
in the last layer consists of m units, each evaluating an
activation function σ as described in Section 3.3. The
node receives inputs from the layer below which approx-
imates an element of Πk,d, the linear space of multi-
variate algebraic polynomials of coordinatewise degree at
most k − 1 in d variables. Suppose now that the node
we are considering has the same inputs for each of its
m units. The node then approximates a polynomial in

Πm,1, the linear space of (univariate) algebraic polyno-
mials of degree at most m − 1. The output of the node
– which is the output of the network in our example –∑m
j=1 ajσ

(〈
vj ,
∑kd

i=1 ciσ(〈wi,x〉+ bi)
〉

+ tj

)
thus ap-

proximates polynomials of coordinatewise degree (k −
1)(m− 1) in x which are sparse in the sense that they may
have much fewer independent coefficients than a generic
polynomial in x of the same degree.

We have already implied in Section 3.3 that a hierarchical
network can approximate a high degree polynomial P in
the input variables x1, · · · , xd, that can be written as a hi-
erarchical composition of lower degree polynomials. For
example, let

Q(x, y) = (Ax2y2 +Bx2y + Cxy2 +Dx2 + 2Exy +

Fy2 + 2Gx+ 2Hy + I)2
10

.

Since Q is nominally a polynomial of coordinatewise de-
gree 211, Proposition 2 shows that a shallow network with
211+1 units is able to approximateQ arbitrarily well on Id.
However, because of the hierarchical structure ofQ, Propo-
sition 2 shows also that a hierarchical network with 9 units
can approximate the quadratic expression, and 10 further
layers, each with 3 units can approximate the successive
powers. Thus, a hierarchical network with 11 layers and 39
units can approximateQ arbitrarily well. We note that even
ifQ is nominally of degree 211, each of the monomial coef-
ficients in Q is a function of only 9 variables, A, · · · , I . A
similar, simpler example was tested using standard DLNN
software and is shown in Figure 3.

Similar considerations apply to trigonometric polynomials
and thus to Fourier approximations of functions. In this
context, the lowest level layer can be regarded as approx-
imating a trigonometric polynomial of a low degree, e.g.,
see (Mhaskar and Micchelli, 1995), and the layers after
that can continue to be regarded as effectively approximat-
ing algebraic polynomials of high degree as above. In this
way the network can be shown to approximate trigonomet-
ric polynomials containing high frequency terms. Notice
that adding units to a shallow network with a single layer
can also increase the highest frequency in the Fourier ap-
proximation but much more slowly than adding the same
number of units to create an additional layer. The tradeoff
is that now the Fourier terms that are contained in the func-
tion space approximated by the network are not anymore
guaranteed to be a generic polynomial but just a sparse
polynomial and have fewer trainable free parameters.

Definition 1. We formally say that a polynomial (algebraic
or trigonometric) is sparse if each of the coefficients in the
polynomial with respect to some basis is a function of a
small number of parameters.

It is clear – and we will provide formal proofs in another pa-
per – that this notion generalizes the hierarchical network

polynomials as well as the notion of sparsity in compres-
sive sensing, where sparsity is defined in terms of the num-
ber of non–zero coefficients in some expansion.

With this definition we state results from previous sections
in the following way.

Compositional functions can be represented by sparse al-
gebraic or trigonometric polynomials; such sparse polyno-
mials can be approximated by hierarchical networks with a
matching architecture better than by shallow networks.

Following the discussion of this section and the example of
Figure 3, we conjecture that general sparse functions, and
not only compositional ones, may be approximated better
by hierarchical networks. It will be interesting to explore
the sense in which functions admitting sparse polynomial
approximations may be generic (see section 4 for an analy-
sis similar in this spirit). It is equally intriguing to speculate
whether in practice (Poggio and Smale, 2003) only sparse
functions may be learnable.

6 BOOLEAN FUNCTIONS

Our results sketched in the previous section are interest-
ing not only in themselves but also because they suggest
several connections to similar properties of Boolean func-
tions. In fact our results seem to generalize properties al-
ready known for Boolean functions which are of course a
special case of functions of real variables. We first recall
some definitions followed by a few observations.

One of the most important and versatile tools for theo-
retical computer scientists for the study of functions of n
Boolean variables, their related circuit design and several
associated learning problems, is the Fourier transform over
the Abelian group Zn2 . This is known as Fourier analysis
over the Boolean cube {−1, 1}n. The Fourier expansion
of a Boolean function f : {−1, 1}n → {−1, 1} or even a
real-valued Boolean function f : {−1, 1}n → [−1, 1] is
its representation as a real polynomial, which is multilin-
ear because of the Boolean nature of its variables. Thus
for Boolean functions their Fourier representation is identi-
cal to their polynomial representation. In the following we
will use the two terms interchangeably. Unlike functions
of real variables, the full finite Fourier expansion is exact
instead of an approximation and there is no need to distin-
gush between trigonometric and real polynomials. Most of
the properties of standard harmonic analysis are otherwise
preserved, including Parseval theorem. The terms in the
expansion correspond to the various monomials; the low
order ones are parity functions over small subsets of the
variables and correspond to low degrees and low frequen-
cies in the case of polynomial and Fourier approximations,
respectively, for functions of real variables.

Section 5 suggests the following approach to characterize

which functions are best learned by which type of network
– for instance shallow or deep. The structure of the net-
work is reflected in polynomials that are best approximated
by it – for instance generic polynomials or sparse polyno-
mials (in the coefficients) in d variables of order k. The
tree structure of the nodes of a deep network reflects the
structure of a specific sparse polynomial. Generic polyno-
mial of degree k in d variables are difficult to learn because
the number of terms, trainable parameters and associated
VC-dimension are all exponential in d. On the other hand,
functions approximated well by sparse polynomials can be
learned efficiently by deep networks with a tree structure
that matches the polynomial. We recall that in a similar
way several properties of certain Boolean functions can be
“read out” from the terms of their Fourier expansion corre-
sponding to “large” coefficients, that is from a polynomial
that approximates well the function.

Classical results (Hastad, 1987) about the depth-breadth
tradeoff in circuits design show that deep circuits are more
efficient in representing certain Boolean functions than
shallow circuits. Hastad proved that highly-variable func-
tions (in the sense of having high frequencies in their
Fourier spectrum) in particular the parity function cannot
even be decently approximated by small constant depth
circuits (see also (Linial et al., 1993)). These results on
Boolean functions have been often quoted in support of
the claim that deep neural networks can represent functions
that shallow networks cannot. For instance Bengio and Le-
Cun (Bengio and LeCun, 2007) write “We claim that most
functions that can be represented compactly by deep archi-
tectures cannot be represented by a compact shallow ar-
chitecture”.”. Until now this conjecture lacked a formal
proof. It seems now that the results summarized in this
paper and especially the ones announced in section 5 set-
tle the issue, justifying the original conjecture and provid-
ing a general approach connecting results on Boolean func-
tions with current real valued neural networks. Of course,
we do not imply that the capacity of deep networks is ex-
ponentially larger than the capacity of shallow networks.
As pointed out by Shalev-Shwartz, this is clearly not true,
since the VC dimension of a network depends on the num-
ber of nodes and parameters and not on the depth. We re-
mark that a nice theorem was recently published (Telgar-
sky, 2015), showing that a certain family of classification
problems with real-valued inputs cannot be approximated
well by shallow networks with fewer than exponentially
many nodes whereas a deep network achieves zero error.
This is a special case of our results and corresponds to high-
frequency, sparse trigonometric polynomials.

Finally, we want to speculate about a series of observa-
tions on Boolean functions that may show an interesting
use of our approach using the approximating polynomials
and networks for studying the learning of general functions.
It is known that within Boolean functions the AC0 class of

f(x) = 2(2cos
2
(x) - 1)

2
- 1

#units

20 30 40 50 60 70 80 90

T
e
s
t
e
rr
o
r

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

1 hidden

2 hidden

3 hidden

#parameters

0 100 200 300 400 500 600 700 800 900
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

1 hidden

2 hidden

3 hidden

Figure 3: A sparse trigonometric function f(x) = cos4 x (shown on the top of the figure) with one input variable is learned
in a regression set-up using standard deep networks with 1, 2 or 3 hidden layers. In the 1 hidden layer setting, 24, 48,
72, 128 and 256 hidden units were tried. With 2 hidden layers, 12, 24 and 36 units per layer were tried. With 3 hidden
layers, 8, 16 and 24 units per layer were tried. Each of the above settings was repeated 5 times, reporting the lowest
test error. Mean squared error (MSE) was used as the objective function; the y axes in the above figures are the square
root of the testing MSE. For the experiments with 2 and 3 hidden layers, batch normalization (Ioffe and Szegedy, 2015)
was used between every two hidden layers. 60k training and 60k testing samples were drawn from a uniform distribution
over [−2π, 2π]. The training process consisted of 2000 passes through the entire training data with mini batches of size
3000. Stochastic gradient descent with momentum 0.9 and learning rate 0.0001 was used. Implementations were based on
MatConvNet (Vedaldi and Lenc, 2015). Same data points are plotted in 2 sub-figures with x axes being number of units
and parameters, respectively. Note that with the input being 1-D, the number of parameters of a shallow network scales
slowly with respect to the number of units, giving a shallow network some advantages in the right sub-figure. Although
not shown here, the training errors are very similar to those of testing. The advantage of deep networks is expected to
increase with increasing dimensionality of the function as implied by section Sparse Functions. As noted in the text, even
in this simple case the solution found by SGD are almost certain to be suboptimal. Thus the figure cannot be taken as fully
reflecting the theoretical results of this paper.

polynomial size constant depth circuits is characterized by
Fourier transforms where most of the power spectrum is
in the low order coefficients. Such functions can be ap-
proximated well by a polynomial of low degree and can
be learned well by considering only such coefficients. In
general, two algorithms (Mansour, 1994) seems to allow
learning of certain Boolean function classes:

1. the low order algorithm that approximates functions
by considering their low order Fourier coefficients and

2. the sparse algorithm which learns a function by ap-
proximating its significant coefficients.

Decision lists and decision trees can be learned by algo-
rithm 1. Functions with small L1 norm can be approxi-
mated well by algorithm 2. Boolean circuits expressing
DNFs can be approximated by 1 but even better by 2. In
fact, in many cases most of the coefficients of the low terms

may still be negligeable and furthermore it may the case
that a function can be approximated by a small set of co-
efficients but these coefficients do not correspond to low-
order terms. All these cases are consistent with the descrip-
tion we have in section 5. For general functions they may
suggest the following. Many functions can be learned effi-
ciently in terms of their low order coefficients and thus by
shallow networks. This corresponds to using Tikhonov reg-
ularization that effectively cuts out high frequencies. Other
functions must be learned in terms of their sparse coeffi-
cients by a deep network with an appropriate architecture.
This is more similar to L1 regularization. The sparsity ap-
proach which corresponds to deep networks includes the
shallow Tikhonov approach and thus is more general and
preferrable at least as long as computational and sample
complexity issues are not taken into account.

7 DISCUSSION

There are two basic questions about Deep Neural Net-
works. The first question is about the power of the ar-
chitecture – which classes of functions can it approximate
how well? In this paper we focus on the approximation
properties of a polynomial in the input vector x which is
in the span of the network parameters. The second ques-
tion, which we do not address here, is about learning the
unknown coefficients from the data: do multiple solutions
exist? How “many”? Why is SGD so unreasonably effi-
cient, at least in appearance? Are good minima easier to
find with deep than shallow networks? This last point is
in practice very important. Notice that empirical tests like,
Figure 3, typically mix answers to the two questions.

In this paper we address only the first question. We have
introduced compositional functions and show that they are
sparse in the sense that they can be approximated by sparse
polynomials. Sparse polynomials do not need to be com-
positional in the specific sense of Figure 1 (consider the
one-dimensional case). Deep networks can represent func-
tions that have high frequencies in their sparse Fourier rep-
resentation with fewer units than shallow networks (thus
with lower VC-dimension). An unexpected outcome of our
comparison of shallow vs. deep networks is that sparsity of
Fourier coefficients is a a more general constraint for learn-
ing than Tikhonov-type smoothing priors. The latter is usu-
ally equivalent to cutting high order Fourier coefficients.
The two priors can be regarded as two different implemen-
tations of sparsity, one more general than the other. Both
reduce the number of terms, that is trainable parameters, in
the approximating trigonometric polynomial – that is the
number of Fourier coefficients.

In summary, we have derived new connections between a
body of apparently disparate mathematical concepts that
apply to learning of real-valued as well as of Boolean
functions. They include compositionality, degree of ap-
proximating polynomials, sparsity, VC-dimension, Fourier
analysis of Boolean functions and their role in determin-
ing when deep networks have a lower sample complexity
than shallow networks. One of the conclusions is that stan-
dard Tikhonov regularization in RKHS should be replaced,
when possible, by compositionality or sparsity via deep
networks.

Acknowledgment

This work was supported by the Center for Brains, Minds
and Machines (CBMM), funded by NSF STC award CCF
1231216. HNM was supported in part by ARO Grant
W911NF-15-1-0385.

References

Anselmi, F., Leibo, J. Z., Rosasco, L., Mutch, J., Tacchetti,
A., and Poggio, T. (2015). Unsupervised learning of
invariant representations. Theoretical Computer Sci-
ence.

Anthony, M. and Bartlett, P. (2002). Neural Network
Learning - Theoretical Foundations. Cambridge Uni-
versity Press.

B. Moore, B. and Poggio, T. (1998). Representations prop-
erties of multilayer feedforward networks. Abstracts
of the First annual INNS meeting, 320:502.

Barron, A. R. (1993). Universal approximation bounds for
superpositions of a sigmoidal function. Information
Theory, IEEE Transactions on, 39(3):930–945.

Bengio, Y. and LeCun, Y. (2007). Scaling learning algo-
rithms towards ai. In Bottou, L., Chapelle, O., and
DeCoste, D.and Weston, J., editors, Large-Scale Ker-
nel Machines. MIT Press.

Chui, C. K., Li, X., and Mhaskar, H. N. (1994). Neural
networks for localized approximation. Mathematics
of Computation, 63(208):607–623.

Chui, C. K., Li, X., and Mhaskar, H. N. (1996). Limitations
of the approximation capabilities of neural networks
with one hidden layer. Advances in Computational
Mathematics, 5(1):233–243.

Delalleau, O. and Bengio, Y. (2011). Shallow vs. deep
sum-product networks. In Advances in Neural Infor-
mation Processing Systems 24: 25th Annual Confer-
ence on Neural Information Processing Systems 2011.
Proceedings of a meeting held 12-14 December 2011,
Granada, Spain., pages 666–674.

DeVore, R. A., Howard, R., and Micchelli, C. A. (1989).
Optimal nonlinear approximation. Manuscripta math-
ematica, 63(4):469–478.

Fukushima, K. (1980). Neocognitron: A self-organizing
neural network for a mechanism of pattern recognition
unaffected by shift in position. Biological Cybernet-
ics, 36(4):193–202.

Girosi, F., Jones, M., and Poggio, T. (1995). Regulariza-
tion theory and neural networks architectures. Neural
Computation, 7:219–269.

Hastad, J. T. (1987). Computational Limitations for Small
Depth Circuits. MIT Press.

Ioffe, S. and Szegedy, C. (2015). Batch normalization: Ac-
celerating deep network training by reducing internal
covariate shift. arXiv preprint arXiv:1502.03167.

Kurková, V. and Sanguineti, M. (2001). Bounds on
rates of variable basis and neural network approxi-
mation. IEEE Transactions on Information Theory,
47(6):2659–2665.

Kurková, V. and Sanguineti, M. (2002). Comparison of
worst case errors in linear and neural network approx-
imation. IEEE Transactions on Information Theory,
48(1):264–275.

LeCun, Y., Bengio, Y., and G., H. (2015). Deep learning.
Nature, pages 436–444.

Linial, N., Y., M., and N., N. (1993). Constant depth cir-
cuits, fourier transform, and learnability. Journal of
the ACM, 40(3):607620.

Livni, R., Shalev-Shwartz, S., and Shamir, O. (2013).
A provably efficient algorithm for training deep net-
works. CoRR, abs/1304.7045.

Mansour, Y. (1994). Learning boolean functions via the
fourier transform. In Roychowdhury, V., Siu, K., and
Orlitsky, A., editors, Theoretical Advances in Neural
Computation and Learning, pages 391–424. Springer
US.

Mhaskar, H. N. (1993a). Approximation properties of
a multilayered feedforward artificial neural network.
Advances in Computational Mathematics, 1(1):61–
80.

Mhaskar, H. N. (1993b). Neural networks for localized ap-
proximation of real functions. In Neural Networks for
Processing [1993] III. Proceedings of the 1993 IEEE-
SP Workshop, pages 190–196. IEEE.

Mhaskar, H. N. (1996). Neural networks for optimal ap-
proximation of smotth and analytic functions. Neural
Computation, 8:164–177.

Mhaskar, H. N. (2004). On the tractability of multivari-
ate integration and approximation by neural networks.
Journal of Complexity, 20(4):561–590.

Mhaskar, H. N. and Micchelli, C. A. (1995). Degree of ap-
proximation by neural and translation networks with a
single hidden layer. Advances in Applied Mathemat-
ics, 16(2):151–183.

Montufar, G. F.and Pascanu, R., Cho, K., and Bengio, Y.
(2014). On the number of linear regions of deep neural
networks. Advances in Neural Information Processing
Systems, 27:2924–2932.

Pinkus, A. (1999). Approximation theory of the mlp model
in neural networks. Acta Numerica, pages 143–195.

Poggio, T., Anselmi, F., and Rosasco, L. (2015a). I-theory
on depth vs width: hierarchical function composition.
CBMM memo 041.

Poggio, T. and Girosi, F. (1989). A theory of networks
for approximation and learning. Laboratory, Mas-
sachusetts Institute of Technology, A.I. memo n1140.

Poggio, T., Rosaco, L., Shashua, A., Cohen, N., and
Anselmi, F. (2015b). Notes on hierarchical splines,
dclns and i-theory. CBMM memo 037.

Poggio, T. and Smale, S. (2003). The mathematics of learn-
ing: Dealing with data. Notices of the American Math-
ematical Society (AMS), 50(5):537–544.

Riesenhuber, M. and Poggio, T. (1999a). Hierarchical mod-
els of object recognition in cortex. Nat. Neurosci.,
2(11):1019–1025.

Riesenhuber, M. and Poggio, T. (1999b). Hierarchical
models of object recognition in cortex. Nature Neu-
roscience, 2(11):1019–1025.

Ruderman, D. (1997). Origins of scaling in natural images.
Vision Res., pages 3385 – 3398.

Soatto, S. (2011). Steps Towards a Theory of Visual Infor-
mation: Active Perception, Signal-to-Symbol Conver-
sion and the Interplay Between Sensing and Control.
arXiv:1110.2053, pages 0–151.

Telgarsky, M. (2015). Representation benefits of
deep feedforward networks. arXiv preprint
arXiv:1509.08101v2 [cs.LG] 29 Sep 2015.

Vedaldi, A. and Lenc, K. (2015). Matconvnet: Convo-
lutional neural networks for matlab. In Proceedings
of the 23rd Annual ACM Conference on Multimedia
Conference, pages 689–692. ACM.

