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Abstract

This note contains full proofs of all the results provided in the submission “On a semi-autonomous
lane departure assist system” to the 2016 Conference on Decision and Control by the same authors,

[2].
Introduction

This note is a complement to [2] and its main objective is to provide full proofs of the results presented
in the mentioned paper. Unless stated otherwise all the notations are as in [2] and also the numbers of
theorems refer to that paper. Additional material is provided in the Appendix.

Main results

Theorem 3.1. Let 2% = (U%, V0,70 40, d?,d%) € Wy N W_ be such that
(i) (U, V2,19 € [Unin, Unaz] X [=V, V] x [=7,7;
(i) 40 €] =, .

Define 78: X ~ [T, Tw] X [—07,0¢] by

(T{Z,(Sf) ifl’ GWEF,
m(z) = { (75, —05) if © € WE\ WK,

[—fwﬁw] X [—Sf,gf] otherwise.

Then the corresponding flow satisfies for every t € Ry such that x1(s;7°,2°) € [Unin, Umaz| for all
s € [0,¢], o
x(t;n%,2%) € S and  x4(t; 7%, 2%) €] — o, .
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Proof. The proof requires some technical results that are provided in Appendix A. Fix an arbitrary
20 satisfying the assumptions of Theorem 3.1. It suffices to show that x(t; 7%, 2% € Wy nW_ and
%4(t; 7%, 2%) € ] — 1, 9] for all t € Ry such that

%1(5;7%,2%) € [Unmin, Umaz] Vs € [0, 1]. (1)

It will be convenient to denote the set of times ¢t € Ry for which (1) is satisfied by 7. We start by

showing that
x(t; 7%, 2%) € Wy VteT.

Assume to the contrary that there exists t; € T such that
z = %(t1; 7%, 2%) € WE. (2)
Lemmas A.1 and A.2 state that in this case there exists to € [0,¢1[ C T satisfying
Ty = X(to; 7%, 20) € OW, C Wy, (3)

and for all ¢ € [to, 1], o
x(t; %, 2%) € We.
Thus from the very definition of 7° and (3) it follows that
xr1 = )A((tl — tg;af,xg) S W+,

contradicting (2). Next, let us define
t* == inf {t eT ‘ %4(t; w8, 20) € {—1/;,1;}} ,
where we set t* = oo if this set is empty. We show that for all ¢t € [0,t*[N T,
%x(t;w%,2%) e W_, (4)

and that this in turn implies that t* = oo which establishes the statement of the theorem.

Let us start by showing that (4) holds for all ¢ € [0,¢*[ N T. We argue again by contradiction and
assume that there exists t3 € [0,t*[ such that %(t3; 7%, 2°) € W°. Applying as before Lemmas A.1 and
A.2 there exists t4 € [0,¢3] such that

xy = X(ty; 75,20 e OW_ CcW_,
and for all ¢ € ]t4, t3],
%x(t; w*, 2%) € We. (5)
Next we define
t5 := min {t S [t4,t3] ’ )A((t;ﬂ's,l‘o) S 8W+} ,

where we use the convention that t5 = t3 if the set {t € [t4, 3] | x(t; 7, 2%) € OW, } is empty. Notice
also that this set is compact, thus if it is not empty, then this minimum is well-defined. If t5 > t4, then
for all t € [t4, (t5 + t4)/2]

x(t; 7%, 2%) € W\ WE.



A similar argument as above allows then to conclude that %((t5 + t4)/2; 7%, 2") € W_, contradicting
(5). It remains to consider the case t4 = t5, that is x4 € OW; NOW-_. We will show that in fact
x4 € Woyr N Wy— which then by Condition 2 establishes the contradiction.
Since t4 < t*, it is clear that o
Xa(ta; 7%, %) € ] =, ). (6)
Thus, by the characterization of the boundaries of W, and W_ given in Proposition A.6 and Lemma A .4
there exist t4 € Ty (z4) and t_ € T_(x4) satisfying

%6 (L3 tw, dp, 24) = X5(t—; 0, —df, 1) = 0.

Hence, if t4 > 0 or t_ > 0 then the maps t — X¢(t; ty,d s, z4) and t— X5(t; tw, —dy, 24) have a local
minimum in ¢4, respectively ¢{_. This establishes that in this case X6 (ty;tw,d #,x4) = 0, respectively
)(5(15_7 w, —d #,x4) = 0. It remains to consider the cases when either ¢4 or t_ equals zero. Let us start
with the case when ¢, = 0. Since x4 € W, , %X(¢; 7%, 2%) € W, for all t € R, and (6) holds true, there
exists € > 0 such that o
&G(t;tw,df,m) >0 Vte [0,6],
%6(t; 7%, 2°) > 0Vt € [ty — €, tq).
This yields _ .
0 S )26(0;Ew, df,3?4) = )A(6<t4; 7TS, xo) S 0.

Consequently, §6(0; tw,d f:@4) = 0 as desired.
Consider now the case when ¢t_ = 0, that is x5(0; t, —af, x4) = 0. By (5), for every n € N large
enough,
" =x(1/n; 7% x4) € WE.

That is, there exists t” € T_(z") such that
%5 (t", by, —d g, 2") < 0. (7)

By continuity and Lemma A.3 it is clear that the sequence (t",2"),en is contained in a compact set.
Consequently there exists a convergent subsequence, for convenience still denoted by (t", ™). Its limit
is denoted by (¢, ). Clearly & = x4 and by continuity of the flows

)24(&% —df,1'4)<w and X5( —df,1'4) 0.

In fact, since x4 € W_ and %4(t4; 7%, 2°) > —1;, it follows from Lemma A.4 and Corollary A.5 that in
fact B . _
X4 (t; b, —dy,24) <t and  Xs5(¢;ty, —dy,z4) = 0. (8)

We show that Xs5(f; ty, —dy,xz4) = 0. This is clear if £ > 0 because X5(;ty, —dyf,z4) has a local
minimum in ¢ in this case. We can therefore assume that ¢ = 0. Moreover, since it follows readily
from 24 € W_ and (8) that x5(0; t, —dy,x4) > 0, it suffices to exclude the case X5(0; top, —dy,z4) > 0.
Indeed, if §5(0; tow, —(_if, x4) > 0 then there exist n > 0 and € > 0 such that

§5(O;fw, —(_if,m) > Vo € B(xy,€).



By continuity of # +— %x(¢; 7, 24) there exists ¢ > 0 such that for all t € [0, €], X(t; 7%, 2) € B(x4,¢/2).
Similarly, the continuous function (¢, z) — X(¢; ty, —dy, x) is uniformly continuous on the compact set
[0,1] x B(z4,1). This implies in partlcular that for some €” > 0 we have that for all z € B(z4,1) and
all t1,t9 € [0,1] satisfying |t1 — to] < €,

H)A((tlafwyiafv )7X(t25 wH df7 )H S

l\')\m

Using convergence of the sequence " — 0 when n — oo, there exists n € N such that

l <¢e and "<
n
It is then easy to check that for all s € [0,1/n] and all ¢ € [0,¢"],
%x(s;7°, xY) € B(xg,€/2) and  X(t;ty, —dy,2") € B(x,€).

Finally, noticing that 2" = %(1/n;7*, 2*) we find

t'n
>25(tn;fw,—af7x") :§C5(O;Ew,—af, +/ 5 w,—df, )d
0

_ 1/n "
= X5(0;ty, —dy, 24) —I—/ x(t; 78, x dt—l—/ X5( —dg,2"™)dt
0 0

1 n
> =+t")n>0.
n

This however contradicts with (7). Hence x5(0;t,,, —d #,24) = 0 in the case when ¢ = 0. The proof of
(4) is complete.
It remains to deduce that t* = co. Indeed, if t* < oo, then by (4)

min {5{6(75*;TrS,xO),fcg)(t*;Trs,xo)} > 0.
Furthermore, since by Lemma A.2 the sets W, and W_ are closed, it is also clear that
x(t*; 7%, 2%) e W nW_,

which however by [2, Condition 3] contradicts with the fact that x4(t*; 7, 2°) € {—, 1;} The proof is
complete. O

Proposition 3.2. If V; > 0 then Wys N Wy_ = 0.

Proof. Clearly it is equivalent to show that if Wy N Wy— # 0 then V; = 0. For this let z € Wor N Wy_.
By the very definition of these sets, see [2, Eq. (3)], it follows that there exist s € Ty (z) and ¢t € T_(x)
such that

X6(8;tw, df,2) = X5(t; 8y, —ds,2)) =0
X6(8;tw, df, ) = X5(t; t, —dy, ) = 0.

Clearly, (s,t,z) is a feasible point of the optimization problem [2, Eq. (5)] achieving the lower bound 0.
This allows to conclude that V; = 0 and completes the proof. O



Proposition 3.3. If Vo > 0 then for all x € X such that ) = — and d, < W/ cos(¢) we have that
x € WS.

Proof. Tt is equivalent to show that if there exits x = (U, V,r,¢,d;,d,) € X such that ¢ = —12 and

dr < Wycos(¢) satisfying © € W, then Vo, < 0. Let x be as above. As we discuss in more detail in
Appendix A, see in particular the proof of Proposition A.6, the map z ~ X¢(+; ty, dy, ) is such that if
x1 = (U,V,r,) and d’ < d? then for all t € R, we have

XG(t; Ew7af7(x17dl1’d71*)) Sf{f’)(t; Ewaaf’(xlvd%dz)) vt €]RJr' (9)

Since z = (x1,d;,d,) € Wy, X6(t; fw,(_if,x) > 0 for all t € T (x). Furthermore, as d, < W/ cos(1)),
using (9) and defining = (21,0, W/ cos(¢)) it follows that

%o(litu, dp, 7)) >0 VEETy(E) = Th(a).

Finally, using that by Lemma A.3 the set T, (Z) is bounded, it follow from the intermediate value
theorem that there exists ¢ € Ry for which %4(; ., dy,Z) = 0. Consequently Vo < 0. O

Appendix

A Some properties of the sets W, and W_

In this section we provide some technical results used in the proof of the safety result Theorem 3.1.

Lemma A.1. Let A C R™ be a closed set and ¢: Ry — R™ be continuous. Let ¢(0) € A and assume
there exists t € Ry such that ¢(t) € A°. Then there exists t* € [0,t] such that ¢(t*) € DA and $(t) € A°
for all t € |t*,1].

Proof. The set T := ¢~1(A) N [0,%] is compact by continuity of ¢ and does not contain . Defining
t* := max T, we observe that ¢(t*) € A, t* <t and ¢(t) € A for all ¢ € |t*,¢]. It remains to show that
o(t*) € 0A.

For this we show that for every e > 0 there exists y € B(¢(t*),e) N A°. Let € > 0 be arbitrary. By
continuity of ¢ there exists § > 0 such that for all ¢ € |t* — 0,t* + ] we have |p(t*) — ¢(¢)| < e. Thus it
follows that y = ¢(t* 4+ 0/2) € B(¢(t*),€) N A°. The proof is complete. O

We use the statement of Lemma A.1 to prove properties of the sets W, and W_. This, in particular
can be done since these sets are closed by the following result.

Lemma A.2. The sets Wy and W— are closed.
Proof. We show that W, is closed, the proof for W_ is analogous. For all ¢t € R, let us define
Wi(t) = {a: ‘ X6(t; 6w, dp,z) > 0 A Ra(t; by, dp, 2) < zﬁ} U {a; ‘ Xa(t; by, dy, ) > 1/?}. (10)

It follows from the very definition that Wy = (\,cg, W4 (t). Thus it suffices to show that for all t € Ry,
Wy (t) is closed. This is however clear since (10) can be written as

Wi(t) = ({x } %6(t; . dy, ) > 0} N {x ) X4(t; by, dy,z) < 1/3}) U {x

= {o | %o(titw,dy, ) 2 0} U {o | Raltstu,dyp ) = 0}

%t B dp,2) 2 )
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O

The rest of the results are used to characterize the boundary of the sets W, and W_. We start
with some preliminary results.

Lemma A.3. There exists a constant K > 0 such that for all x = (U, V,r,4,d;,d,) € X with
Y € [—, Y] we have
T+(z) € B(0,K) and  T_(z) C B(0,K).

Proof. Let x = (U,V,r,1,d;,d,) € X be as in the statement of the lemma. By the system dynamics [2,
Eq. 1] it is clear that for all ¢ € Ry we have

X4(t; b, dy, ) = x3(t; b, dyp,x) Vg € S([=05, 7).
The first step consists of showing that there exist ¢ € Ry and n > 0 such that for all ¢ > ¢,
x3(t; b, dp ) > and  x3(t;ty, —dp,z) < —n. (11)

We show only the former, the later is analogous. For this, let us introduce the notations

cr+c crly — iyl crlyr — eyl
a; = fm - a12=7wm”, ag = ———— L
z
Cfl?c + Crl% b cy b crly
a2 = ——F—, 1= -, 2 = .
JZ m Jz

By Assumption 2 all these constants are positive and for all U € [Upin, Upaz| defining
_an a2 _f by

the lateral dynamics can be written as

(Z) = A(U) C{) + B6;,

see [2, Eq. 1]. In the following we fix U € [Upin, Umaz]. Using Condition 1, a simple computation shows
that the matrix A(U) has conjugate complex eigenvalues with real part Ag.(U) and imaginary part
Arm (U) given by

Are(U) = —%U“” <0 and  Am(U)

_ V4a21U? — dayzas — (a1 — az)?

5T > 0.

Notice that both Ar.(U) and Ar,(U) are increasing functions of U. Using Fulmer’s method, see for
instance [1, Section 9.4], we know that by setting

MU) = (1/Atm(U))(A(U) = Are(U)1d),

we get that
AUt — Are(U) (1d cos(Afm (U)t) + M(U) sin(Apm (U)E)) .



Then, using that for all t € Ry,

xa(t;tw,dp )\ awy (VY L5 [1oAw)i—s)
<X3(t§fwadf7$) — e r) T 0 b

a simple computation shows that there exists a constant C' > 0 such that

X3(t;t’w7 df7 CU)

> _PreUnanltor 4 5, ( 2a21b1 + (a11 — az2)bo Are(Umaz) > '

2Umam ()\Re(Umin)2 + )\Im(Umax)2) ; )\Re(Umin)2 + )\Im(Umax)2
Using Assumption 2, it is not difficult to check that 2as1b1 + (@11 — ag2)b2 > 0. Thus setting,

n = o 2a21b1 + (a11 — ag2)bs Are(Umaz) )

2 <2Umax ()\Re(Uvmin)2 + )\Im(Umax)Q) a )\Re(Uvmin)2 + )\Im(Umax)2

it follows from the fact that e ze(Umast) 5 0 when r — oo that there exists ¢ € R, such that
erreUmac)t 0 < ) for all ¢ > #. The first statement of (11) follows.

Next, we use (11) to deduce that there exists K > 0 such that for all ¢ > K and all z € X as
in the Lemma, X4(t;fw,af,x) > 1; First notice that by Condition 1 there exists a bounded over
approximation R of the reachable set R(V,7) and hence V and 7 such that R € [-V, V] x [-7,7].
Therefore x3(¢; ty,ds,x) € [—7,7] for all t € Ry and by assumption ¢ € [—t,1p]. This implies that

t
x4(t; by, dyp ) >0 —/ rds > —) — tr.
0

Thus for all ¢t > ¢ we have

t
X4(t; b, df, ) = x4 (t; by, dy, ) +/ x3(t; by, dy,x) > —tp — 7 + (t — ). (12)
f

Setting K = 2(¢) + &7 +nt)/n, it follows from (12) that for all t > K, x4(t; t, df, z) > 9. Notice that a
similar argument allows to prove that for all ¢ > K, and all z € X as in the Lemma, X4 (t; 6w, —dy, x) <

—.
Finally, since by definition of % this implies that X4(t; $,,d s, 2) = ¢ and X4(t;ty, —dy,z) = —¢) for
all t > K the assertion of the lemma follows. O

Lemma A.4. Let x = (U, V,r,¢,d;,d,) € Wy be such that ¢ < Y and there exists t € Ry such that
x6(t;tw,df,z) = 0. Then t € T (x). Moreover, an analogous statement holds for x € W_.

Proof. We argue by contradiction and assume that %4(%; t,,d frT) = 1; From the very definition of Xg
it follows then that

X6(L; tw, dy, ) = (X6(F; tw, Ay, 2)%X3 (L b, dy, ) + U) tan(xa(f; tw, df, ) + Xo(F; . dy, 7)

= U tan(v¢) + Xo(¢; fw,af, x)
2 Umzn tan(lﬁ) - ‘77



where V is as in the proof of Lemma A.3. From Condition 3 it follows then that ﬁg;(f; tw, af, x) > 0.
By continuity of the map t — X¢(%; ty, d s, ), there exists € > 0 such that

%6(t;tw,dy,z) <0 VtE [t —e,t].

Moreover, since x € Wy and ¢ < 1, it is clear that d, > 0. It follows therefore from Lemma A.1 that
there exists tg € [0,t — €[ for which

X6(to; tw,dp,2) =0 and  Re(t;ty,dp, ) <0V E o, t — €. (13)

The fact that 2 € W, implies then also that X4(t;ty,ds, ) = ¢ for all t € Jto,t — €] and hence by
continuity, %4(to;ds, ) = 1. The same arguments as above allow therefore to conclude that X¢(to; z) > 0.
However, by (13) we have also that

X6(8; tw, df, x) — Xe(to; tw, df, ) <0

—_ 9

&G(to;fw>af¢$)zsgg}+ s —1p

which is impossible. O
The lemma has the following useful Corollary.

Corollary A.5. Let x = (U,V,r,4,d;,d,) € Wy such that i) < V. Then

ﬁﬁ(t,tw,df,m) 20 Vt€R+
A similar statement holds true for x € W_.

Proof. Assume to the contrary that there exists ¢ € Ry such that Xg(Z; t,, af, x) < 0. Since x € W4
and 1 < 9, %6(0; ty,d s, z) > 0. It follows then from Lemma A.1 that there exists ¢y € [0, ] for which
(13) holds true. As above in the proof of Lemma A.4 it then also follows that %4(to; ty,ds, ) = . This
however contradicts with the fact that by Lemma A.4 ¢ty € Ty (x). O

Finally we are ready to provide a description of the boundary of W, and W_ respectively.

Proposition A.6. The following inclusions hold true:

C OWy,

| a

{x e W, | 3t € To(w) s.t. %6(t: by, dy, ) = 0

{a? eW_ |3t e T_() s.t. %5(t:ty,ds,2) =0} C OW_.

Moreover,
{I S 8W+ ‘ P < QZJ} C {$ S W+ ‘ dt e TJr(x) s.t. )A(G(t;fw,aﬁx) = 0}7
{a: € OW_ ‘ > —z/?} c{reWw_|3teT () st %5(t;tw, dy,z) =0}.



Remark A.7. Notice that the inclusion in (14) is strict. Indeed, consider z € X with U € [Unin, Umaz]
arbitrary and V and r be the steady state lateral velocity and yaw rate corresponding to U and the
constant control input d 7. It is easy to check that in this case r > 0 and hence ¢ — X4(t; tw,d £,x)
is an increasing function of time. Let ¢ = 1; and d, = 1, i.e. ﬁcﬁ(O;Ew,af,x) < —1. Then it is clear
that © € Wy and T, (z) = (). However, for all € > 0 small enough, (U, V,r, ¥ — e, d, d,) € W{. Hence
x € OW4.

Proof of Proposition A.6. We show the result only in the case of W,.. Similar arguments allow to prove
the other case.

We start by showing (14). Let & € {x €Wy ‘ 3t € To(w) s.t. Xe(t; by, dyf, ) = 0}. Since T € Wy
it suffices to show that for all € > 0 there exists z € B(Z, €) such that x ¢ W, . Fix € > 0, recall that
T = (U,V,fﬂﬁ,dl,aﬁ) and set x = (0,17,73,1&,@,& —€/2) € B(Z,¢e). Consider next the linear time
varying system with dynamics

f: (t7 dT) = &Q(t; (_ifa 07 V? 72) + (U + drﬁfi(t; af: Ua V: 73)) tan(&4(t; afa ﬁa Va fﬂ '&))7 (16)

where we omitted the arguments the flows do not depend on. By the definition of Xg it is clear that for
all ¢ S R+ . _ ) B
)A((;(t; .%') = f(t,fiﬁ(t;tw,df,.%')) and )A((;(t; i‘) = f(t,)zﬁ(t;tw,df,j})).

Thus ¢ — Xe(t; tw, d s, z) and t — Xg(t; £y, dy, &) are the flows of the linear time varying system with
dynamics given by (16). Since this is a 1-dimensional system, by uniqueness of solutions, it follows from
d, —€/2 < d, that for all t € T (z) = T4 (2),

)A(G(t;twa df,CC) < Xﬁ(tafw)af7j)

Finally, since there exists ¢ € T, (&) such that
0 = x¢(t; fw,(_if,a?) > x¢(t; Ew,(_if,x).

This shows that = ¢ W, and completes the proof of (14).

It remains to show (15). Let z = (U, V,r,v,d;, d,) € OW, be such that ¢ < 1. Since by Lemma A.2
the set Wy is closed, it is clear that £ € W,. We show that there exists t € 7, (&) such that
X6(t; tw,ds, ) = 0. We argue by contradiction. Thus, assume that

X6(t;tw,dp,7) >0 Vt € To(Z).
By Lemma A.3 there exists K > 0 such that
T+(x) C B(0,K) Vo € X1 x R. (17)

This in particular implies that 7. (Z) is compact. Consequently there exists 77 > 0 such that

min_ X (¢ by, ds, ) = n1. (18)
teT(Z)

Next notice that by [2, Condition 3] there exists 12 > 0 such that

V/ tan(i) + nm = Umim



and therefore setting 7 := min{n; /2, n2/(27)} we obtain
V/ tan('l;) +nr < Umzn (19)

We claim that for all t € R, B
ot by, 7) > 1, (20)

Assume to the contrary that there exists t € R such that x6(t; ty, af, Z) < n. Since 9 < ¥ it follows
from (18) that %6(0; ty,dy, ) > 7. From Lemma A.1 we obtain then that there exists t* € [0, [ such
that X¢(t*;ty,dy, ) = n and )

Xo(titw,dp, ) <n  VEEt ] (21)
It follows readily from (21) that . B

)Aiﬁ(t*; Ew, df, f) <0.

On the other hand, since 1 < 7y it follows from (18) that t* € T, ()¢, that is, X4(t*; ty, ds, ) = 1.
Furthermore by [2, Condition 3],

X6(t*; b, dy, 7) = U tan(e)) 4 %o (t*; tw, d g, T) + X6 (t*; tw, dy, 7)%3 (£ b, d g, T) tan()
> Upnin tan(yp) — V — nirtan(e)) > 0,
where the last inequality follows from (19). This establishes the desired contradiction and thus proves
(20).

Next, the continuous function (¢, z) — Xg(t; t, d £, ) is uniformly continuous on the compact set
B(0,K) x B(z,1). One can therefore find an € > 0 such that for all z1, 29 € B(Z,1) with ||z1 — 22| <,

|%6(t; £, d o 1) — Ko (t; £, dp, 20)| < g vt € B0, K). (22)
Take © € B(Z,€) arbitrary. By (17), (20) and (22),
%6(t: b dy, 7) > g Vt € To ().

We conclude that B(Z,e) C W, which contradicts with the fact that £ € 9V;. This proves that there

exists t € T4(z) such that Xe(t;ty,df, Z) = 0. Applying Lemma A.4 it is clear that actually t € T (z)
and the proof is complete. O
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