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Abstract

This note contains full proofs of all the results provided in the submission “On a semi-autonomous
lane departure assist system” to the 2016 Conference on Decision and Control by the same authors,
[2].

Introduction

This note is a complement to [2] and its main objective is to provide full proofs of the results presented
in the mentioned paper. Unless stated otherwise all the notations are as in [2] and also the numbers of
theorems refer to that paper. Additional material is provided in the Appendix.

Main results

Theorem 3.1. Let x0 = (U0, V 0, r0, ψ0, d0
l , d

0
r) ∈ W+ ∩W− be such that

(i) (U0, V 0, r0) ∈ [Umin, Umax]× [−Ṽ , Ṽ ]× [−r̃, r̃];

(ii) ψ0 ∈ ]− ψ̃, ψ̃[.

Define πs : X  [−τ̄w, τ̄w]× [−δ̄f , δ̄f ] by

πs(x) :=


(τ sw, δ̄f ) if x ∈ Wc

+,

(τ sw,−δ̄f ) if x ∈ Wc
− \Wc

+,

[−τ̄w, τ̄w]× [−δ̄f , δ̄f ] otherwise.

Then the corresponding flow satisfies for every t ∈ R+ such that x1(s;πs, x0) ∈ [Umin, Umax] for all
s ∈ [0, t],

x(t;πs, x0) ∈ S and x4(t;πs, x0) ∈ ]− ψ̃, ψ̃[.
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Proof. The proof requires some technical results that are provided in Appendix A. Fix an arbitrary
x0 satisfying the assumptions of Theorem 3.1. It suffices to show that x̂(t;πs, x0) ∈ W+ ∩ W− and
x̂4(t;πs, x0) ∈ ]− ψ̃, ψ̃[ for all t ∈ R+ such that

x̂1(s;πs, x0) ∈ [Umin, Umax] ∀s ∈ [0, t]. (1)

It will be convenient to denote the set of times t ∈ R+ for which (1) is satisfied by T . We start by
showing that

x̂(t;πs, x0) ∈ W+ ∀t ∈ T.

Assume to the contrary that there exists t1 ∈ T such that

x1 := x̂(t1;πs, x0) ∈ Wc
+. (2)

Lemmas A.1 and A.2 state that in this case there exists t2 ∈ [0, t1[ ⊂ T satisfying

x2 := x̂(t2;πs, x0) ∈ ∂W+ ⊂ W+, (3)

and for all t ∈ [t2, t1],
x̂(t;πs, x0) ∈ Wc

+.

Thus from the very definition of πs and (3) it follows that

x1 = x̂(t1 − t2; d̄f , x2) ∈ W+,

contradicting (2). Next, let us define

t∗ := inf
{
t ∈ T

∣∣∣ x̂4(t;πs, x0) ∈ {−ψ̃, ψ̃}
}
,

where we set t∗ =∞ if this set is empty. We show that for all t ∈ [0, t∗[ ∩ T ,

x̂(t;πs, x0) ∈ W−, (4)

and that this in turn implies that t∗ =∞ which establishes the statement of the theorem.
Let us start by showing that (4) holds for all t ∈ [0, t∗[ ∩ T . We argue again by contradiction and

assume that there exists t3 ∈ [0, t∗[ such that x̂(t3;πs, x0) ∈ Wc
−. Applying as before Lemmas A.1 and

A.2 there exists t4 ∈ [0, t3[ such that

x4 := x̂(t4;πs, x0) ∈ ∂W− ⊂ W−,

and for all t ∈ ]t4, t3],
x̂(t;πs, x0) ∈ Wc

−. (5)

Next we define
t5 := min

{
t ∈ [t4, t3]

∣∣ x̂(t;πs, x0) ∈ ∂W+

}
,

where we use the convention that t5 = t3 if the set
{
t ∈ [t4, t3]

∣∣ x̂(t;πs, x0) ∈ ∂W+

}
is empty. Notice

also that this set is compact, thus if it is not empty, then this minimum is well-defined. If t5 > t4, then
for all t ∈ [t4, (t5 + t4)/2]

x̂(t;πs, x0) ∈ Wc
− \Wc

+.
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A similar argument as above allows then to conclude that x̂((t5 + t4)/2;πs, x0) ∈ W−, contradicting
(5). It remains to consider the case t4 = t5, that is x4 ∈ ∂W+ ∩ ∂W−. We will show that in fact
x4 ∈ W0+ ∩W0− which then by Condition 2 establishes the contradiction.

Since t4 < t∗, it is clear that
x̂4(t4;πs, x0) ∈ ]− ψ̃, ψ̃[. (6)

Thus, by the characterization of the boundaries ofW+ andW− given in Proposition A.6 and Lemma A.4
there exist t+ ∈ T+(x4) and t− ∈ T−(x4) satisfying

x̂6(t+; t̄w, d̄f , x4) = x̂5(t−; t̄w,−d̄f , x4) = 0.

Hence, if t+ > 0 or t− > 0 then the maps t 7→ x̂6(t; t̄w, d̄f , x4) and t 7→ x̂5(t; t̄w,−d̄f , x4) have a local

minimum in t+, respectively t−. This establishes that in this case ˙̂x6(t+; t̄w, d̄f , x4) = 0, respectively
˙̂x5(t−; t̄w,−d̄f , x4) = 0. It remains to consider the cases when either t+ or t− equals zero. Let us start
with the case when t+ = 0. Since x4 ∈ W+, x̂(t;πs, x0) ∈ W+ for all t ∈ R+ and (6) holds true, there
exists ε > 0 such that

x̂6(t; t̄w, d̄f , x4) ≥ 0 ∀t ∈ [0, ε],

x̂6(t;πs, x0) ≥ 0 ∀t ∈ [t4 − ε, t4].

This yields
0 ≤ ˙̂x6(0; t̄w, d̄f , x4) = ˙̂x6(t4;πs, x0) ≤ 0.

Consequently, ˙̂x6(0; t̄w, d̄f , x4) = 0 as desired.
Consider now the case when t− = 0, that is x̂5(0; t̄w,−d̄f , x4) = 0. By (5), for every n ∈ N large

enough,
xn := x̂(1/n;πs, x4) ∈ Wc

−.

That is, there exists tn ∈ T−(xn) such that

x̂5(tn, t̄w,−d̄f , xn) < 0. (7)

By continuity and Lemma A.3 it is clear that the sequence (tn, xn)n∈N is contained in a compact set.
Consequently there exists a convergent subsequence, for convenience still denoted by (tn, xn)n. Its limit
is denoted by (t̄, x̄). Clearly x̄ = x4 and by continuity of the flows

x̂4(t̄; t̄w,−d̄f , x4) ≤ ψ̃ and x̂5(t̄; t̄w,−d̄f , x4) ≤ 0.

In fact, since x4 ∈ W− and x̂4(t4;πs, x0) > −ψ̃, it follows from Lemma A.4 and Corollary A.5 that in
fact

x̂4(t̄; t̄w,−d̄f , x4) < ψ̃ and x̂5(t̄; t̄w,−d̄f , x4) = 0. (8)

We show that ˙̂x5(t̄; t̄w,−d̄f , x4) = 0. This is clear if t̄ > 0 because x̂5(t̄; t̄w,−d̄f , x4) has a local
minimum in t̄ in this case. We can therefore assume that t̄ = 0. Moreover, since it follows readily
from x4 ∈ W− and (8) that ˙̂x5(0; t̄w,−d̄f , x4) ≥ 0, it suffices to exclude the case ˙̂x5(0; t̄w,−d̄f , x4) > 0.

Indeed, if ˙̂x5(0; t̄w,−d̄f , x4) > 0 then there exist η > 0 and ε > 0 such that

˙̂x5(0; t̄w,−d̄f , x) ≥ η ∀x ∈ B(x4, ε).
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By continuity of t 7→ x̂(t;πs, x4) there exists ε′ > 0 such that for all t ∈ [0, ε′], x̂(t;πs, x4) ∈ B(x4, ε/2).
Similarly, the continuous function (t, x) 7→ x̂(t; t̄w,−d̄f , x) is uniformly continuous on the compact set

[0, 1]×B(x4, 1). This implies in particular that for some ε′′ > 0 we have that for all x ∈ B(x4, 1) and
all t1, t2 ∈ [0, 1] satisfying |t1 − t2| ≤ ε′′,∥∥x̂(t1; t̄w,−d̄f , x)− x̂(t2; t̄w,−d̄f , x)

∥∥ ≤ ε

2
.

Using convergence of the sequence tn → 0 when n→∞, there exists n ∈ N such that

1

n
≤ ε′ and tn ≤ ε′′.

It is then easy to check that for all s ∈ [0, 1/n] and all t ∈ [0, tn],

x̂(s;πs, x4) ∈ B(x4, ε/2) and x̂(t; t̄w,−d̄f , xn) ∈ B(x4, ε).

Finally, noticing that xn = x̂(1/n;πs, x4) we find

x̂5(tn; t̄w,−d̄f , xn) = x̂5(0; t̄w,−d̄f , xn) +

∫ tn

0

˙̂x5(t; t̄w,−d̄f , xn)dt

= x̂5(0; t̄w,−d̄f , x4) +

∫ 1/n

0
x̂(t;πs, x4)dt+

∫ tn

0

˙̂x5(t; t̄w,−d̄f , xn)dt

≥
(

1

n
+ tn

)
η > 0.

This however contradicts with (7). Hence ˙̂x5(0; t̄w,−d̄f , x4) = 0 in the case when t̄ = 0. The proof of
(4) is complete.

It remains to deduce that t∗ =∞. Indeed, if t∗ <∞, then by (4)

min
{
x̂6(t∗;πs, x0), x̂5(t∗;πs, x0)

}
≥ 0.

Furthermore, since by Lemma A.2 the sets W+ and W− are closed, it is also clear that

x̂(t∗;πs, x0) ∈ W+ ∩W−,

which however by [2, Condition 3] contradicts with the fact that x̂4(t∗;πs, x0) ∈ {−ψ̃, ψ̃}. The proof is
complete.

Proposition 3.2. If V1 > 0 then W0+ ∩W0− = ∅.

Proof. Clearly it is equivalent to show that if W0+ ∩W0− 6= ∅ then V1 = 0. For this let x ∈ W0+ ∩W0−.
By the very definition of these sets, see [2, Eq. (3)], it follows that there exist s ∈ T+(x) and t ∈ T−(x)
such that

x̂6(s; t̄w, d̄f , x) = x̂5(t; t̄w,−d̄f , x)) = 0

˙̂x6(s; t̄w, d̄f , x) = ˙̂x5(t; t̄w,−d̄f , x) = 0.

Clearly, (s, t, x) is a feasible point of the optimization problem [2, Eq. (5)] achieving the lower bound 0.
This allows to conclude that V1 = 0 and completes the proof.
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Proposition 3.3. If V2 > 0 then for all x ∈ X such that ψ = −ψ̃ and dr ≤ W`/ cos(ψ̃) we have that
x ∈ Wc

+.

Proof. It is equivalent to show that if there exits x = (U, V, r, ψ, dl, dr) ∈ X such that ψ = −ψ̃ and
dr ≤ W` cos(ψ̃) satisfying x ∈ W+ then V2 ≤ 0. Let x be as above. As we discuss in more detail in
Appendix A, see in particular the proof of Proposition A.6, the map x 7→ x̂6(·; t̄w, d̄f , x) is such that if
x1 = (U, V, r, ψ) and d1

r ≤ d2
r then for all t ∈ R+, we have

x̂6(t; t̄w, d̄f , (x1, d
1
l , d

1
r)) ≤ x̂6(t; t̄w, d̄f , (x1, d

2
l , d

2
r)) ∀t ∈ R+. (9)

Since x = (x1, dl, dr) ∈ W+, x̂6(t; t̄w, d̄f , x) ≥ 0 for all t ∈ T+(x). Furthermore, as dr ≤ W`/ cos(ψ̃),
using (9) and defining x̃ = (x1, 0,W`/ cos(ψ̃)) it follows that

x̂6(t; t̄w, d̄f , x̃)) ≥ 0 ∀t ∈ T+(x̃) = T+(x).

Finally, using that by Lemma A.3 the set T+(x̃) is bounded, it follow from the intermediate value
theorem that there exists t̄ ∈ R+ for which x̂4(t̄; t̄w, d̄f , x̃) = 0. Consequently V2 ≤ 0.

Appendix

A Some properties of the sets W+ and W−
In this section we provide some technical results used in the proof of the safety result Theorem 3.1.

Lemma A.1. Let A ⊂ Rn be a closed set and φ : R+ → Rn be continuous. Let φ(0) ∈ A and assume
there exists t̄ ∈ R+ such that φ(t̄) ∈ Ac. Then there exists t∗ ∈ [0, t̄[ such that φ(t∗) ∈ ∂A and φ(t) ∈ Ac
for all t ∈ ]t∗, t̄].

Proof. The set T := φ−1(A) ∩ [0, t̄] is compact by continuity of φ and does not contain t̄. Defining
t∗ := max T , we observe that φ(t∗) ∈ A, t∗ < t̄ and φ(t) ∈ Ac for all t ∈ ]t∗, t̄]. It remains to show that
φ(t∗) ∈ ∂A.

For this we show that for every ε > 0 there exists y ∈ B(φ(t∗), ε) ∩Ac. Let ε > 0 be arbitrary. By
continuity of φ there exists δ > 0 such that for all t ∈ ]t∗ − δ, t∗ + δ[ we have |φ(t∗)− φ(t)| ≤ ε. Thus it
follows that y := φ(t∗ + δ/2) ∈ B(φ(t∗), ε) ∩Ac. The proof is complete.

We use the statement of Lemma A.1 to prove properties of the sets W+ and W−. This, in particular
can be done since these sets are closed by the following result.

Lemma A.2. The sets W+ and W− are closed.

Proof. We show that W+ is closed, the proof for W− is analogous. For all t ∈ R+ let us define

W+(t) =
{
x
∣∣∣ x̂6(t; t̄w, d̄f , x) ≥ 0 ∧ x̂4(t; t̄w, d̄f , x) < ψ̃

}
∪
{
x
∣∣∣ x̂4(t; t̄w, d̄f , x) ≥ ψ̃

}
. (10)

It follows from the very definition that W+ =
⋂
t∈R+

W+(t). Thus it suffices to show that for all t ∈ R+,
W+(t) is closed. This is however clear since (10) can be written as

W+(t) =
({
x
∣∣ x̂6(t; t̄w, d̄f , x) ≥ 0

}
∩
{
x
∣∣∣ x̂4(t; t̄w, d̄f , x) < ψ̃

})
∪
{
x
∣∣∣ x̂4(t; t̄w, d̄f , x) ≥ ψ̃

}
=
{
x
∣∣ x̂6(t; t̄w, d̄f , x)) ≥ 0

}
∪
{
x
∣∣∣ x̂4(t; t̄w, d̄f , x) ≥ ψ̃

}
.
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The rest of the results are used to characterize the boundary of the sets W+ and W−. We start
with some preliminary results.

Lemma A.3. There exists a constant K > 0 such that for all x = (U, V, r, ψ, dl, dr) ∈ X with
ψ ∈ [−ψ̃, ψ̃] we have

T+(x) ⊂ B(0,K) and T−(x) ⊂ B(0,K).

Proof. Let x = (U, V, r, ψ, dl, dr) ∈ X be as in the statement of the lemma. By the system dynamics [2,
Eq. 1] it is clear that for all t ∈ R+ we have

ẋ4(t; t̄w,df , x) = x3(t; t̄w,df , x) ∀df ∈ S([−δ̄f , δ̄f ]).

The first step consists of showing that there exist t̄ ∈ R+ and η > 0 such that for all t ≥ t̄,

x3(t; t̄w, d̄f , x) ≥ η and x3(t; t̄w,−d̄f , x) ≤ −η. (11)

We show only the former, the later is analogous. For this, let us introduce the notations

a11 =
cf + cr
m

, a12 =
crlr − cf lf

m
, a21 =

crlr − cf lf
Jz

,

a22 =
cf l

2
f + crl

2
r

Jz
, b1 =

cf
m
, b2 =

cf lf
Jz

.

By Assumption 2 all these constants are positive and for all U ∈ [Umin, Umax] defining

A(U) =

(
−a11

U
a12
U − U

a21
U −a22

U

)
and B =

(
b1
b2

)
,

the lateral dynamics can be written as(
V̇
ṙ

)
= A(U)

(
V
r

)
+Bδf ,

see [2, Eq. 1]. In the following we fix U ∈ [Umin, Umax]. Using Condition 1, a simple computation shows
that the matrix A(U) has conjugate complex eigenvalues with real part λRe(U) and imaginary part
λIm(U) given by

λRe(U) = −a11 + a22

2U
< 0 and λIm(U) =

√
4a21U2 − 4a12a21 − (a11 − a22)2

2U
> 0.

Notice that both λRe(U) and λIm(U) are increasing functions of U . Using Fulmer’s method, see for
instance [1, Section 9.4], we know that by setting

M(U) = (1/λIm(U))(A(U)− λRe(U)Id),

we get that
eA(U)t = eλRe(U)t (Id cos(λIm(U)t) +M(U) sin(λIm(U)t)) .

6



Then, using that for all t ∈ R+,(
x2(t; t̄w, d̄f , x)
x3(t; t̄w, d̄f , x)

)
= eA(U)t

(
V
r

)
+ δ̄f

∫ t

0
eA(U)(t−s)Bds,

a simple computation shows that there exists a constant C > 0 such that

x3(t; t̄w, d̄f , x)

≥ −eλRe(Umax)tC + δ̄f

(
2a21b1 + (a11 − a22)b2

2Umax (λRe(Umin)2 + λIm(Umax)2)
− λRe(Umax)

λRe(Umin)2 + λIm(Umax)2

)
.

Using Assumption 2, it is not difficult to check that 2a21b1 + (a11 − a22)b2 > 0. Thus setting,

η =
δ̄f
2

(
2a21b1 + (a11 − a22)b2

2Umax (λRe(Umin)2 + λIm(Umax)2)
− λRe(Umax)

λRe(Umin)2 + λIm(Umax)2

)
,

it follows from the fact that eλRe(Umaxt) → 0 when r → ∞ that there exists t̄ ∈ R+ such that
eλRe(Umax)tC ≤ η for all t ≥ t̄. The first statement of (11) follows.

Next, we use (11) to deduce that there exists K > 0 such that for all t ≥ K and all x ∈ X as
in the Lemma, x4(t; t̄w, d̄f , x) ≥ ψ̃. First notice that by Condition 1 there exists a bounded over
approximation R of the reachable set R(Ṽ , r̃) and hence V̄ and r̄ such that R ∈ [−V̄ , V̄ ] × [−r̄, r̄].
Therefore x3(t; t̄w, d̄f , x) ∈ [−r̄, r̄] for all t ∈ R+ and by assumption ψ ∈ [−ψ̃, ψ̃]. This implies that

x4(t̄; t̄w, d̄f , x) ≥ ψ −
∫ t̄

0
r̄ds ≥ −ψ̃ − t̄r̄.

Thus for all t ≥ t̄ we have

x4(t; t̄w, d̄f , x) = x4(t̄; t̄w, d̄f , x) +

∫ t

t̄
x3(t; t̄w, d̄f , x) ≥ −ψ̃ − t̄r̄ + (t− t̄)η. (12)

Setting K = 2(ψ̃+ t̄r̄+ ηt̄)/η, it follows from (12) that for all t ≥ K, x4(t; t̄w, d̄f , x) ≥ ψ̃. Notice that a
similar argument allows to prove that for all t ≥ K, and all x ∈ X as in the Lemma, x4(t; t̄w,−d̄f , x) ≤
−ψ̃.

Finally, since by definition of x̂ this implies that x̂4(t; t̄w, d̄f , x) = ψ̃ and x̂4(t; t̄w,−d̄f , x) = −ψ̃ for
all t ≥ K the assertion of the lemma follows.

Lemma A.4. Let x = (U, V, r, ψ, dl, dr) ∈ W+ be such that ψ < ψ̃ and there exists t̄ ∈ R+ such that
x̂6(t̄; t̄w, d̄f , x) = 0. Then t̄ ∈ T+(x). Moreover, an analogous statement holds for x ∈ W−.

Proof. We argue by contradiction and assume that x̂4(t̄; t̄w, d̄f , x) = ψ̃. From the very definition of x̂6

it follows then that

˙̂x6(t̄; t̄w, d̄f , x) =
(
x̂6(t̄; t̄w, d̄f , x)x̂3(t̄; t̄w, d̄f , x) + U

)
tan(x̂4(t̄; t̄w, d̄f , x)) + x̂2(t̄; t̄w, d̄f , x)

= U tan(ψ̃) + x̂2(t̄; t̄w, d̄f , x)

≥ Umin tan(ψ̃)− V̄ ,
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where V̄ is as in the proof of Lemma A.3. From Condition 3 it follows then that ˙̂x6(t̄; t̄w, d̄f , x) > 0.

By continuity of the map t 7→ ˙̂x6(t̄; t̄w, d̄f , x), there exists ε > 0 such that

x̂6(t; t̄w, d̄f , x) < 0 ∀t ∈ [t− ε, t̄[.

Moreover, since x ∈ W+ and ψ < ψ̃, it is clear that dr ≥ 0. It follows therefore from Lemma A.1 that
there exists t0 ∈ [0, t− ε[ for which

x̂6(t0; t̄w, d̄f , x) = 0 and x̂6(t; t̄w, d̄f , x) < 0 ∀t ∈ ]t0, t− ε]. (13)

The fact that x ∈ W+ implies then also that x̂4(t; t̄w, d̄f , x) = ψ̃ for all t ∈ ]t0, t− ε] and hence by

continuity, x̂4(t0; d̄f , x) = ψ̃. The same arguments as above allow therefore to conclude that ˙̂x6(t0;x) > 0.
However, by (13) we have also that

˙̂x6(t0; t̄w, d̄f , x) = lim
s→t0+

x̂6(s; t̄w, d̄f , x)− x̂6(t0; t̄w, d̄f , x)

s− t0
≤ 0,

which is impossible.

The lemma has the following useful Corollary.

Corollary A.5. Let x = (U, V, r, ψ, dl, dr) ∈ W+ such that ψ < ψ̃. Then

x̂6(t; t̄w, d̄f , x) ≥ 0 ∀t ∈ R+.

A similar statement holds true for x ∈ W−.

Proof. Assume to the contrary that there exists t̄ ∈ R+ such that x̂6(t̄; t̄w, d̄f , x) < 0. Since x ∈ W+

and ψ < ψ̃, x̂6(0; t̄w, d̄f , x) ≥ 0. It follows then from Lemma A.1 that there exists t0 ∈ [0, t̄[ for which
(13) holds true. As above in the proof of Lemma A.4 it then also follows that x̂4(t0; t̄w, d̄f , x) = ψ̃. This
however contradicts with the fact that by Lemma A.4 t0 ∈ T+(x).

Finally we are ready to provide a description of the boundary of W+ and W− respectively.

Proposition A.6. The following inclusions hold true:{
x ∈ W+

∣∣∣ ∃t ∈ T+(x) s.t. x̂6(t; t̄w, d̄f , x) = 0
}
⊂ ∂W+,{

x ∈ W−
∣∣∣ ∃t ∈ T−(x) s.t. x̂5(t; t̄w, d̄f , x) = 0

}
⊂ ∂W−.

(14)

Moreover, {
x ∈ ∂W+

∣∣∣ ψ < ψ̃
}
⊂
{
x ∈ W+

∣∣ ∃t ∈ T+(x) s.t. x̂6(t; t̄w, d̄f , x) = 0
}
,{

x ∈ ∂W−
∣∣∣ ψ > −ψ̃} ⊂ {x ∈ W− ∣∣ ∃t ∈ T−(x) s.t. x̂5(t; t̄w, d̄f , x) = 0

}
.

(15)
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Remark A.7. Notice that the inclusion in (14) is strict. Indeed, consider x ∈ X with U ∈ [Umin, Umax]
arbitrary and V and r be the steady state lateral velocity and yaw rate corresponding to U and the
constant control input d̄f . It is easy to check that in this case r > 0 and hence t 7→ x̂4(t; t̄w, d̄f , x)
is an increasing function of time. Let ψ = ψ̃ and dr = 1, i.e. x̂6(0; t̄w, d̄f , x) < −1. Then it is clear

that x ∈ W+ and T+(x) = ∅. However, for all ε > 0 small enough, (U, V, r, ψ̃ − ε, dl, dr) ∈ Wc
+. Hence

x ∈ ∂W+.

Proof of Proposition A.6. We show the result only in the case of W+. Similar arguments allow to prove
the other case.

We start by showing (14). Let x̂ ∈
{
x ∈ W+

∣∣∣ ∃t ∈ T+(x) s.t. x̂6(t; t̄w, d̄f , x) = 0
}

. Since x̂ ∈ W+

it suffices to show that for all ε > 0 there exists x ∈ B(x̄, ε) such that x /∈ W+. Fix ε > 0, recall that
x̂ = (Û , V̂ , r̂, ψ̂, dl, d̄r) and set x := (Û , V̂ , r̂, ψ̂, dl, d̄r − ε/2) ∈ B(x̂, ε). Consider next the linear time
varying system with dynamics

f : (t, dr) 7→ x̂2(t; d̄f , Û , V̂ , r̂) +
(
Û + drx̂3(t; d̄f , Û , V̂ , r̂)

)
tan(x̂4(t; d̄f , Û , V̂ , r̂, ψ̂)), (16)

where we omitted the arguments the flows do not depend on. By the definition of x̂6 it is clear that for
all t ∈ R+

˙̂x6(t;x) = f(t, x̂6(t; t̄w, d̄f , x)) and ˙̂x6(t; x̂) = f(t, x̂6(t; t̄w, d̄f , x̂)).

Thus t 7→ x̂6(t; t̄w, d̄f , x) and t 7→ x̂6(t; t̄w, d̄f , x̂) are the flows of the linear time varying system with
dynamics given by (16). Since this is a 1-dimensional system, by uniqueness of solutions, it follows from
d̄r − ε/2 < d̄r that for all t ∈ T+(x) = T+(x̂),

x̂6(t; t̄w, d̄f , x) < x̂6(t; t̄w, d̄f , x̂).

Finally, since there exists t̄ ∈ T+(x̂) such that

0 = x̂6(t̄; t̄w, d̄f , x̂) > x̂6(t̄; t̄w, d̄f , x).

This shows that x /∈ W+ and completes the proof of (14).
It remains to show (15). Let x̄ = (U, V, r, ψ, dl, dr) ∈ ∂W+ be such that ψ < ψ̃. Since by Lemma A.2

the set W+ is closed, it is clear that x̄ ∈ W+. We show that there exists t ∈ T+(x̄) such that
x̂6(t; t̄w, d̄f , x̄) = 0. We argue by contradiction. Thus, assume that

x̂6(t; t̄w, d̄f , x̄) > 0 ∀t ∈ T+(x̄).

By Lemma A.3 there exists K > 0 such that

T+(x) ⊂ B(0,K) ∀x ∈ X1 × R. (17)

This in particular implies that T+(x̄) is compact. Consequently there exists η1 > 0 such that

min
t∈T+(x̄)

x̂6(t; t̄w, d̄f , x̄) = η1. (18)

Next notice that by [2, Condition 3] there exists η2 > 0 such that

V̄ / tan(ψ̃) + η2 = Umin,
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and therefore setting η := min{η1/2, η2/(2r̄)} we obtain

V̄ / tan(ψ̃) + ηr̄ < Umin. (19)

We claim that for all t ∈ R+,
x̂6(t; t̄w, d̄f , x̄) ≥ η. (20)

Assume to the contrary that there exists t̄ ∈ R+ such that x̂6(t; t̄w, d̄f , x̄) < η. Since ψ < ψ̃ it follows
from (18) that x̂6(0; t̄w, d̄f , x̄) ≥ η. From Lemma A.1 we obtain then that there exists t∗ ∈ [0, t̄[ such
that x̂6(t∗; t̄w, d̄f , x̄) = η and

x̂6(t; t̄w, d̄f , x̄) < η ∀t ∈ ]t∗, t̄]. (21)

It follows readily from (21) that
˙̂x6(t∗; t̄w, d̄f , x̄) ≤ 0.

On the other hand, since η < η1 it follows from (18) that t∗ ∈ T+(x̄)c, that is, x̂4(t∗; t̄w, d̄f , x̄) = ψ̃.
Furthermore by [2, Condition 3],

˙̂x6(t∗; t̄w, d̄f , x̄) = U tan(ψ̃) + x̂2(t∗; t̄w, d̄f , x̄) + x̂6(t∗; t̄w, d̄f , x̄)x̂3(t∗; t̄w, d̄f , x̄) tan(ψ̃)

≥ Umin tan(ψ̃)− V̄ − ηr̄ tan(ψ̃) > 0,

where the last inequality follows from (19). This establishes the desired contradiction and thus proves
(20).

Next, the continuous function (t, x) 7→ x̂6(t; t̄w, d̄f , x) is uniformly continuous on the compact set

B(0,K)×B(x̄, 1). One can therefore find an ε > 0 such that for all x1, x2 ∈ B(x̄, 1) with ‖x1 − x2‖ ≤ ε,∣∣x̂6(t; t̄w, d̄f , x1)− x̂6(t; t̄w, d̄f , x2)
∣∣ ≤ η

2
∀t ∈ B(0,K). (22)

Take x ∈ B(x̄, ε) arbitrary. By (17), (20) and (22),

x̂6(t; t̄w, d̄f , x) ≥ η

2
∀t ∈ T+(x).

We conclude that B(x̄, ε) ⊂ W+ which contradicts with the fact that x̄ ∈ ∂W+. This proves that there
exists t ∈ T+(x̄) such that x̂6(t; t̄w, d̄f , x̄) = 0. Applying Lemma A.4 it is clear that actually t ∈ T+(x)
and the proof is complete.
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