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Abstract

To support effective decision making, engineers should comprehend and manage var-
ious uncertainties throughout the design process. In today's modern systems, quan-
tifying uncertainty can become cumbersome and computationally intractable for one
individual or group to manage. This is particularly true for systems comprised of a
large number of components. In many cases, these components may be developed
by different groups and even run on different computational platforms, making it
challenging or even impossible to achieve tight integration of the various models.

This thesis presents an approach for overcoming this challenge by establishing
a divide-and-conquer methodology, inspired by the decomposition-based approaches
used in multidisciplinary analysis and optimization. Specifically, this research focuses
on uncertainty analysis, also known as forward propagation of uncertainties, and sen-
sitivity analysis. We present an approach for decomposing the uncertainty analysis
task amongst the various components comprising a feed-forward system and synthe-
sizing the local uncertainty analyses into a system uncertainty analysis. Our pro-
posed decomposition-based multicomponent uncertainty analysis approach is shown
to converge in distribution to the traditional all-at-once Monte Carlo uncertainty
analysis under certain conditions. Our decomposition-based sensitivity analysis ap-
proach, which is founded on our decomposition-based uncertainty analysis algorithm,
apportions the system output variance among the system inputs. The proposed
decomposition-based uncertainty quantification approach is demonstrated on a mul-
tidisciplinary gas turbine system and is compared to the traditional all-at-once Monte
Carlo uncertainty quantification approach.

To extend the decomposition-based uncertainty quantification approach to high
dimensions, this thesis proposes a novel optimization formulation to estimate statistics
from a target distribution using random samples generated from a (different) proposal
distribution. The proposed approach employs the well-defined and determinable em-
pirical distribution function associated with the available samples. The resulting
optimization problem is shown to be a single linear equality and box-constrained
quadratic program and can be solved efficiently using optimization algorithms that
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scale well to high dimensions. Under some conditions restricting the class of distri-
bution functions, the solution of the optimization problem yields importance weights
that are shown to result in convergence in the Ll-norm of the weighted proposal
empirical distribution function to the target distribution function, as the number of
samples tends to infinity. Results on a variety of test cases show that the proposed
approach performs well in comparison with other well-known approaches.

The proposed approaches presented herein are demonstrated on a realistic appli-
cation; environmental impacts of aviation technologies and operations. The results
demonstrate that the decomposition-based uncertainty quantification approach can
effectively quantify the uncertainty of a multicomponent system for which the models
are housed in different locations and owned by different groups.

Chair, Thesis Committee: Karen E. Willcox I
Title: Professor of Aeronautics and Astronautics

Member, Thesis Committee: Youssef Marzouk
Title: Associate Professor of Aeronautics and Astronautics

Member, Thesis Committee: Douglas Allaire
Title: Assistant Professor of Mechanical Engineering, Texas A&M University
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5.4 Presented here are the fuel consumption results over the three flight

trajectories. The TASOpt row represents an aircraft generated by

and flown in TASOpt. The AEDT row represents the TASOpt air-

craft imported into the AEDT component through the component-to-

component transformation and then flown on the same flight trajectory

as the TASOpt flight trajectory. . . . . . . . . . . . . . . . . . . . . . 141
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Nomenclature

d Number of system variables

dn, Number of inputs to Component m

fm Input-output function associated with Component m

g Generic input-output function

h Radon-Nikodym importance weight

k~m Number of outputs of Component m

neff Effective sample size

Px Proposal density function

py Target density function

t Integration variable

w Importance sampling weights

W; L2 -norm optimal importance sampling weights

Xi ith component of the vector x

x Vector of system variables

XAmt Vector of variables with indices in the set Am

X.7J Vector of variables with indices in the set 1m

xJm Vector of variables with indices in the set Jn

X/m Vector of variables with indices in the set ICm

XOm Vector of variables with indices in the set 0,m,

XSm Vector of variables with indices in the set Sm

XTm Vector of variables with indices in the set 'T

XUm Vector of variables with indices in the set Urn

XV.m Vector of variables with indices in the set Vm
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Yi Vector of inputs to Component m

6 Equality constraint Lagrange multiplier

A Inequality constraint Lagrange multiplier

it Proposal measure

v Target measure

Ti Total sensitivity index of the ith input

W L2-norm distance metric between two distribution functions

IP Probability measure

X Random variable associated with measure p

Y Random variable associated with measure v

Ym Random vector of inputs to Component m

D Variance

DA Variance associated with the set A

D2 L2-norm discrepancy metric

K Kernel function

L Bandwidth parameter in kernel density estimation

M Number of Components which compose the system

Px Proposal distribution function

P Proposal empirical distribution function

PZW Proposal importance weighted empirical distribution function

Py Target distribution function

PV Target empirical distribution function

SA Sensitivity index of set A

Amn Set of indices of the system variables that are a subset of inputs to Component m

B(a, b) Beta distribution with parameters a and b

'Dm Domain of integration for Component m

F a-algebra

IM Set of indices of the system variables that are inputs to Component m

Jm Set of indices of all of the inputs and outputs associated with the first m - 1

components, as well as the indices of the system inputs of Component m
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Km Set of indices in Jm with the exception of those indices in 1,

Mi ith set of components

KJ(p, E) Gaussian distribution with mean p and covariance E

L Lagrangian

Om Set of indices of the outputs of Component m

Pk Set parition [tk, tk+1)

Sm Set of indices of new system inputs to Component m

TM Set of indices of the shared inputs of Component m with any of the previous m - 1

components' inputs or outputs

UM Set of indices of the inputs and outputs of the first m components

U(a, b) Uniform distribution between a and b where a < b

Vm Set of indices of the inputs and outputs of Component m

Q Sample space

HI Generic distribution function

7r Generic density function

r Estimate of a density function, 7r

I Indicator function

1Vector of size n containing entires equal to 1

nf Vector of size n containing entires equal to 0
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Chapter 1

Introduction

To support effective decision making, engineers should characterize and manage vari-

ous uncertainties throughout the design process. Herein, the science of characterizing

and managing uncertainties throughout the design process is referred to as uncer-

tainty quantification [781. Although uncertainty quantification is known to encom-

pass a large scope [109], this research will focus on uncertainty analysis, also known

as forward propagation of uncertainties, and sensitivity analysis. In today's modern

systems, quantifying uncertainty can become cumbersome and computationally in-

tractable for one individual or group to manage. This is particularly true for systems

comprised of a large number of components. In many cases, these components may

be developed by different groups and even run on different computational platforms.

Recognizing the challenge of quantifying uncertainty in multicomponent systems, we

establish a divide-and-conquer approach, inspired by the decomposition-based ap-

proaches used in multidisciplinary analysis and optimization [19, 64, 110, 61].

Motivation for uncertainty quantification of multicomponent systems is given in

Section 1.1. In Section 1.2, the notation for subsequent developments and the problem

statement are presented. The current practices in uncertainty analysis and sensitivity

analysis for a single component are discussed in Section 1.3 and Section 1.4 respec-

tively. The current practices in uncertainty quantification of multicomponent systems

are discussed in Section 1.5. The objectives of this research are stated in Section 1.6,

and an outline of the remainder of the thesis is given in Section 1.7.
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1.1 Motivation for decomposition-based uncertainty

quantification

Multidisciplinary analysis is an extensive area of research, intended to support today's

modern engineered systems which are designed and developed by multiple teams. In

addition to the difficulties associated with the design of such systems, the need to

enhance performance and efficiency often drives the design to its physical limits.

Therefore, the current methodology of modeling a baseline scenario and taking into

account safety factors may no longer be sufficient. Instead, a rigorous characterization

and management of uncertainty is needed, using quantitative estimates of uncertainty

to calculate relevant statistics and failure probabilities. To estimate relevant statistics

and failure probabilities requires an uncertainty quantification of the entire system.

However, uncertainty quantification of the entire system may be cumbersome due to

factors that result in inadequate integration of engineering disciplines, subsystems,

and parts, which we refer to collectively here as components. Such factors include

components managed by different groups, component design tools or groups housed in

different locations, component analyses that run on different platforms, components

with significant differences in analysis run times, lack of shared expertise amongst

groups, and the sheer number of components comprising the system.

Here we present some real world examples illustrating the challenges and out-

comes of designing today's modern engineered systems. Boeing's latest aircraft, the

Boeing 787 "Dreamliner", is an example of a complex system that has been afflicted

with unanticipated costs and delays due to system engineering errors [105, 37]. Gen-

eral Motors electric vehicle, the Chevy Volt, has also seen its assembly cost inflate

to double the initial estimate [1191. NASA's International Space Station and the

Constellation programs each experienced schedule delays and cost overruns due to

factors such as organizational and technical issues [4]. These real world examples

illustrate how our current design methodologies may no longer be adequate to ana-

lyze systems which have become increasingly complex and, therefore, progressively

more difficult to design and manage. By characterizing and managing uncertainty
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in complex systems, such as those presented, we can provide relevant statistics such

as the probability of a schedule delay or cost overrun to further support decision-

and policy-making processes. Government agencies, having acknowledged the impor-

tance of uncertainty quantification in design, have taken up the challenge to address

these problems by launching new research initiatives in complex systems design under

uncertainty [28, 107].

More specifically, in a National Science Foundation workshop on multidisciplinary

design and optimization for complex engineered systems; dealing with uncertainty

was listed as an overarching theme for future research [1071. The workshop also

emphasized the importance of keeping humans in the loop. In the report, it was

stressed that a team was necessary, due to the fact that people invariably specialize

in a single discipline and must, therefore, work as a team to achieve multidisciplinary

objectives. Given today's engineered systems are so complex that they are beyond

the comprehension of a single engineer, even design convergence can become an issue

depending on how the team is organized. These challenges are only heightened by

the fact that globalization has spread the design of the complex engineered system

across the world. These observations suggest there is a lacking but necessary aspect

of system engineering and design that this research addresses, decomposition-based

uncertainty quantification of multicomponent systems. The proposed approach de-

composes the multicomponent uncertainty quantification task amongst the various

components comprising the multicomponent system and synthesizes these local anal-

yses to quantify the uncertainty of the multicomponent system.

1.2 Definitions

Multicomponent system

Illustrated in Figure 1-1 is a feed-forward multicomponent system whereby uncer-

tainty in the system inputs are propagated throughout the system and ultimately to

the system output. Here we formally define the feed-forward multicomponent sys-

tem along with its respective components and introduce the notation required for
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Figure 1-1: The feed-forward multicomponent system presented here illustrates how uncertainty
in the inputs propagate throughout the system and ultimately to the system outputs. Different ar-
chitectures of feed-forward multicomponent systems may also be represented with a similar diagram.

subsequent developments. We take this opportunity to discuss any assumptions and

limitations imposed on our feed-forward multicomponent system.

Definition 1. A system is a collection of M coupled components. Each component

has an associated function that maps component input random variables to component

output random variables. Let x [x1 , x2 ,... ,Xd]T be the vector of system variables,

comprised of the inputs and outputs of each component of the system, where shared

inputs are not repeated in the vector. For component m, where m E {1, 2, ... , M},

let ZE C {1, 2,... , d} denote the set of indices of the system variables correspond-

ing to inputs to component m and let O, C {1, 2,. . . , d} denote the set of indices

corresponding to the outputs from component m. Define dn = 1nI and k, = |rn.

We denote the function corresponding to component m as f. : Rd- -+ Rkm, which

maps that component's random input vector, Xy. : Q -+ d1 , where Q is the prod-

uct sample space of the input random vector, into that component's random output

vector, Xom = f,,(X 1.). A system whose components can be labeled such that the

inputs to the it" component can be outputs from the jth component only if j < i is a

feed-forward system.

Additionally, for each component function, fn, there exists sets {I1, 12,..., I, }

that partition the component input space Rdm, such that fm : I --+ Rk. is strictly one-

to-one and continuously differentiable for each i E {1, 2,. .. , j }. In later developments

we may only be interested in a subset of the components input variables. Let An9 -Im
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with the complementary set A = Im\ Am and cardinality 0 < IAm| I d m, and let

XAm : Q -+ RIA"1 be a subset of Xm with XA,% defining the complementary subset.

Probability framework

Let t E Rd be a generic point and designate entries of t by subscript notation as

follows t = [ti, t2,... , td]T. Let (Q,F, P) be a probability space, where Q is a sample

space, T is a c--field, and P is a probability measure on (Q,7). Then the random

variable Y : Q - Rd is associated with the continuous measure v on Rd, such that

v(A) = P(Y-'(A)) for A E Rd. Define Py(t) and py(t) to be the distribution function

and probability density function of Y evaluated at t, respectively. The distribution

function and probability density function are defined as

Py(t) = v((-oo, t]), (1.1)

and

py(t) - dPy(t) (1.2)
dx

respectively. Likewise, the random variable X : Q -4 Rd is associated with the mea-

sure p on Rd, such that p(A) = P(X-'(A)) for A E Rd. Similarly, define Px(t) and

px(t) to be the distribution function and probability density function of X evaluated

at t, respectively. In addition, we confine the measure v to be absolutely continuous

with respect to measure p.

Definition 2. The measure v is said to be absolutely continuous with respect to

measure p if p(A) = 0 implies v(A) = 0 for all finite sets A E Rd /141.

In Chapter 3 we constrain the measures to have finite support.

Definition 3. A measure is said to have finite support if its support, supp(p) = {A E

Rd I p(A) = 0}, is a compact set [14].

This research does not account for discrete distributions (e.g., probability mass func-

tions) since the absolute continuity condition would require that all proposal random

31



samples be positioned exactly according to the target random samples. To satisfy

this condition would require that we know the target distribution function for all

system variables prior to performing the uncertainty quantification. However, hav-

ing knowledge of the target distribution function prior to performing the uncertainty

quantification nullifies our decomposition-based approach. For this reason we only

consider continuous distribution functions throughout this research.

For a given 0 4 A C {1,..., d}, the marginal density function of XA is given

by pX(tA) = fRd-AI pxA(t)dtAc. Let (Q',F') be a measurable space such that the

component mapping f : Q 2 Q' is measurable F/F'. Then the measure / on F,

defines an output measure pf- on F' by

pf -1 (A') = p(f -A'), A' E F', (1.3)

where f- is the push-back of the component mapping. This implies pf- assigns

a value p(f-1 A') to the set A'. Further, the real-valued component function, f,
is a measurable square-integrable function with respect to the induced measure /

supported on Rd

Upon completing the uncertainty analysis, we may evaluate statistics of interest

such as the moments of a quantity of interest or the probability of an event. The

mean of a quantity of interest, g, is given by

Ex[g] = j g(t)px(t)dt. (1.4)

The variance of the quantity of interest, g, is given by

varx(g) = d (g(t) -- Ex[g]) 2 px(t)dt = Ex[g 2] - Ex[g1 2 . (1.5)

Lastly, the probability of an event A (e.g., A = {t E Rd I g(t) < g}) is given by

Ex[A] = j1I(t E A)px(t)dt, (1-6)
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where U(t E A) is the indicator function,

1, ift EA

0, otherwise.

1.3 Uncertainty analysis

Computational methods for uncertainty analysis of a single component can be clas-

sified into two groups: intrusive and nonintrusive approaches. Intrusive approaches,

also known as embedded projection approaches, introduce a solution expansion into

the formulation of the stochastic problem and projects the resulting stochastic equa-

tion onto the expansion basis to yield a set of equations that the expansion coefficients

must satisfy. The assembly and solution of this stochastic problem requires access and

modification to the existing computational model, which may not always be available

[44, 115, 80, 68, 126, 48]. Nonintrusive approaches, also known as sampling-based

methods, do not require modification of existing computational components and in-

stead treat the components as a "black-box". This research focuses on nonintrusive

approaches due to their broader applicability; that is, they can be applied to a wide

range of models without requiring knowledge of or access to the underlying imple-

mentation details. Within the category of nonintrusive approaches exists a collection

of sampling-based methods for the forward propagation of uncertainties. We list here

the common sampling-based methods for a single component.

Monte Carlo simulation: Given the function g : Rd -+ R, that takes random

inputssi uati ,d]T', we can estimate the mean ofg(( 1 , 2,... , d) using Monte

Carlo simulation as

n = 9(C, , . . . , ),(1.8)

where {{, 2.,... , } is the ith sample realization of the random input to the

function. By the strong law of large numbers, g 2-+ Et[g( 1, 2,... , J)] as

n -+ oc [141. We may use Monte Carlo simulation to estimate other integral

quantities, such as the variance, as well, with almost sure convergence guaran-
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teed by the strong law of large numbers.

Full factorial numerical integration: With this approach, the statistical moments

of the quantity of interest are calculated through a direct numerical integration

using an appropriate quadrature rule [3, 39]. In numerical analysis, a quadrature

rule is an approximation of the definite integral of a function, usually expressed

as a weighted sum of function values at specified points in the domain of inte-

gration.

Projection Methods: With this approach, we express the function via orthogo-

nal polynomials of the input random parameters [44, 68, 126, 48, 1251. The

deterministic coefficients associated with each term of the expansion are evalu-

ated through a (multivariate) integration scheme; via Monte Carlo simulation

or quadrature rule.

Interpolatory Collocation Methods: With this approach, we express the func-

tion as a numerical surrogate model by interpolating between a set of solutions

to the computational model [68, 126, 48, 43, 11, 127, 10, 871.

Other nonintrusive approaches not presented in detail here are expansion-based

methods [118, 441, most probable point-based methods [52, 411, and nonprobabilistic-

based methods [5, 82, 831. Of the sampling-based methods available, we focus on

Monte Carlo simulation. Monte Carlo simulation offers an approach which can more

easily cope with dependent component inputs and high dimensional number of random

inputs. Additionally, by an application of Skorokhod's representation theorem (see,

e.g., Ref. [49]), the estimated mean and variance of any quantities of interest, if they

exist, are guaranteed to converge to the true mean and variance.

To evaluate the performance of our decomposition-based multicomponent uncer-

tainty analysis we will evaluate the full system uncertainty analysis. For the uncer-

tainty analysis of a multicomponent feed-forward system, Monte Carlo simulation

propagates uncertainty through the system's components by propagating realizations

of the random inputs to the system in a serial manner. That is, realizations are
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propagated through the system on a component-by-component basis, requiring com-

ponents with outputs that are inputs to downstream components to be run prior to

running downstream components. This can be problematic if components are housed

in different locations or owned by different groups, due to communication challenges

and the possible transfer of large datasets. Furthermore, any changes to upstream

components (e.g., modeling changes, changes in input uncertainty distributions, etc.)

will require recomputing all downstream uncertainty analyses.

1.4 Sensitivity analysis

Sensitivity analysis investigates the relationship between inputs and output. More-

over, it allows us to identify how the variability in an output quantity of interest

is related to an input in the model and which input sources dominate the response

of the system. Sensitivity analysis can be categorized as local or global. A local

sensitivity analysis addresses sensitivity relative to point estimates of an input value

and is quantified using derivatives of the computational model evaluated at the input

value. A global sensitivity analysis quantifies sensitivity with regards to the input

distribution rather than a point value. In this research we focus on global sensitiv-

ity analysis since we are interested in how the system behaves with respect to the

system input distributions. We list here the common approaches to evaluate global

sensitivity analysis of a single component.

Screening methods: This class of methods consist of evaluating the local sensitivity

analysis whereby each input is varied "one-at-a-time". The sensitivity measures

proposed in the original work of Morris are based on what is called an elementary

effect 1841. The most appealing property of the screening methods is their

low computational costs (i.e. a low required number of computational model

evaluations). A drawback of this feature is that the sensitivity measure is only

qualitative. It is qualitative in the sense that the input factors are ranked in

order of importance, but they are not quantified on how much a given factor is
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more important than others. Such methods include Morris's One-factor-At-a-

Time.

Sampling-based methods: This class of methods utilize Monte Carlo simulation

to investigate the input-output-relationship. These methods include graphical

methods [131, regression analysis [55, 35], and correlation coefficients 155]. Un-

like screening methods, which vary one-factor-at-a-time, these methods vary all

inputs over their entire range.

Moment-independent importance measures: These methods evaluate the in-

fluence of the input uncertainty on the entire output distribution without ref-

erence to any specific moment of the model output. Moment-independent im-

portance measures evaluate the influence the input has on the output using a

distance metric on the output probability density function or output cumulative

distribution function [25, 16, 17].

Variance-based methods: These methods quantify the amount of variance that

each input factor contributes to the unconditional variance of the output. Variance-

based methods offer an approach which captures the influence of the full range

of variation of each input factor and the interaction effects among input fac-

tors. These methods include Sobol' indices [113], high dimensional model rep-

resentation [114], Jansen winding stairs [201, and Fourier amplitude sensitivity

test [102].

Of the global sensitivity analysis methods available, we will focus on variance-

based methods. We perform the global sensitivity analysis using variance-based meth-

ods because these methods are well-studied, are easily interpreted, and are commonly

used in practice. In this research we assume the multicomponent system inputs are in-

dependent. The motivation for the system-level global sensitivity analysis is research

prioritization; which factor is the most deserving of further analysis or measurement?
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1.5 Current practices for uncertainty quantification

in systems

Uncertainty Analysis

The challenges of system uncertainty analysis, illustrated on the left in Figure 1-1, of-

ten lie in integrating the components and in the computational expense of simulating

the full system. Past work has tackled these challenges through the use of surrogate

modeling and/or a simplified representation of system uncertainty. Using surrogates

in place of the higher fidelity components in the system provides computational gains

and also simplifies the task of integrating components [771. Using a simplified un-

certainty representation (e.g., using mean and variance in place of full distributional

information) avoids the need to propagate uncertainty from one component to an-

other. Such simplifications are commonly used in uncertainty-based multidisciplinary

design optimization methods as a way to avoid a system-level uncertainty analysis

(see e.g., [1291 for a review of these methods and their engineering applications). Such

methods include implicit uncertainty propagation [501, reliability-based design opti-

mization [24], moment matching [81], advanced mean value method [62], collaborative

reliability analysis using most probable point estimation [38], and a multidisciplinary

first-order reliability method [75].

Recent methods have exploited the structure of the multicomponent system to

manage the complexity of the system uncertainty analysis. A likelihood-based ap-

proach has been proposed to decouple feedback loops, thus reducing the problem

to a feed-forward system [1041. Dimension reduction and measure transformation

to reduce the dimensionality and propagate the coupling variables between coupled

components have been performed in a coupled feedback problem with polynomial

chaos expansions [7, 8, 91. Multiple models coupled together through a handful of

scalars, which are represented using truncated Karhunen-Lobve expansions, have been

studied for multiphysics systems 1271. A hybrid method that combines Monte Carlo

sampling and spectral methods for solving stochastic coupled problems has also been
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proposed [6, 22]. The hybrid approach partitions the coupled problem into subsidiary

subproblems which use Monte Carlo sampling methods if the subproblem depends on

a very large number of uncertain parameters and spectral methods if the subprob-

lem depends on only a small or moderate number of uncertain parameters. Another

method solved an encapsulation problem, without any probability information; upon

acquiring probabilistic information, solution statistics of the epistemic variables were

evaluated at the post-processing steps [59, 23]. However, all the approaches presented

in this review still require evaluating the system in its entirety. Since the approaches

presented here do not allow for decomposing the system uncertainty quantification,

these approaches do not take advantage of the decomposition-based benefits previ-

ously stated in Section 1.1.

Sensitivity Analysis

As was the case in system uncertainty analysis, previous works have simplified the

system through the use of surrogate modeling and/or a simplified representation of

system uncertainty to perform the system sensitivity analysis. In fact, methods for

the forward propagation of uncertainty in systems can be implemented to evaluate the

quantities of interest required by the system sensitivity analysis. However, performing

a decomposition-based sensitivity analysis of a multicomponent system raises several

challenging issues which we address in Chapter 3.

Past works have tackled decomposition-based sensitivity analysis in the applica-

tion of feed-forward systems. A top-down (i.e., all system variables are independent)

sensitivity analysis strategy was developed to determine critical components in the

system and used a simplified formulation to evaluate the main sensitivity indices

1130]. However, this approach can only be used for designing multicomponent sys-

tems with independent components (i.e., no shared variables as inputs to multiple

components). To overcome the aforementioned limitations, an extended feed-forward

sensitivity analysis method, was developed [74].

In the extended feed-forward sensitivity analysis method, two cases were investi-

gated, dependent on whether there is a linear or nonlinear relation between upstream
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component outputs and downstream component dependent coupling variables. In

the case of dependent input variables, the Sobol' method has to be performed on

all the independent variables and on an artificial subset variable which includes all

the dependent coupling variables. Then, the covariance of the dependent coupling

variables are required to compute the global sensitivity main effect indices. Lastly, in

case of nonlinear dependency, a correction coefficient is used to compute the global

sensitivity main effect indices. The extended feed-forward sensitivity analysis method

is limited to the estimation of the main effect of the entire system and further efforts

are necessary to extend this methodology for interaction effect terms. Our approach,

presented in Chapter 3, avoids working with the correlation between system vari-

ables and instead evaluates the necessary statistics of interest required for the system

sensitivity analysis in a decomposition-based manner.

1.6 Thesis objectives

Based on the motivation and past literature works, there is a need for an uncertainty

quantification methodology to manage uncertainty in the complex settings of today's

modern engineered systems. This research proposes a decomposition-based vision of

the multicomponent uncertainty quantification task, performing uncertainty quantifi-

cation on the respective components individually, and assembling the component-level

uncertainty quantifications to quantify the system uncertainty. We propose a rigor-

ous methodology with guarantees of convergence in distribution. Our decomposition-

based approach is inspired by decomposition-based multidisciplinary optimization

methods [19, 64, 110, 61]. This research specifically considers the problem of quan-

tifying uncertainty through a feed-forward multicomponent system. To summarize,

the high level objectives of this thesis are:

9 to develop a decomposition-based uncertainty analysis methodology for feed-

forward multicomponent systems with rigorous guarantees of convergence in

distribution,
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* to develop a decomposition-based global sensitivity analysis methodology for

feed-forward multicomponent systems, and

9 to demonstrate the decomposition-based uncertainty quantification methodolo-

gies on a real world application problem.

1.7 Thesis outline

The remainder of the thesis is organized as follows. In Chapter 2, we develop the

decomposition-based uncertainty analysis algorithm and discuss its technical ele-

ments. We show that the decomposition-based uncertainty analysis algorithm is

provably convergent in distribution and provide an illustrative example. In Chap-

ter 3, we extend the ideas of Chapter 2 to develop a decomposition-based sensitivity

analysis algorithm. We demonstrate the decomposition-based sensitivity analysis al-

gorithm on the illustrate example presented in Chapter 2. In Chapter 4, we present

an approach to change of measure which overcomes the high dimensional challenges

we encounter in Chapter 2. We show that our new change of measure process, un-

der moderate assumptions, is provably convergent in distribution. In Chapter 5, we

apply the algorithms developed in this research on a real world application prob-

lem; environmental impact of aviation. Additionally, we examine how an individual

component-level global sensitivity analysis can be integrated into the decomposition-

based multicomponent uncertainty quantification process. Finally, we summarize the

thesis contributions in Chapter 6.
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Chapter 2

Decomposition-Based Uncertainty

Analysis

Our approach tackles the complexity of uncertainty analysis in a feed-forward mul-

ticomponent system through decomposition. As illustrated on the right in Figure 2-

1, we decompose the system uncertainty analysis into individual component-level

uncertainty analyses that are then assembled in a provably convergent in distribu-

tion manner to the desired system uncertainty analysis. Many benefits that were

not present in the previous works are gained through decomposing the system un-

certainty analysis. Such benefits include managing the system through divide and

conquer, exploiting team disciplinary expertise, avoiding the challenges of tight anal-

ysis integration among components, and being consistent with many organizational

structures.

In Section 2.1, we provide, in conjunction with a simple example, an overview of

the decomposition-based uncertainty analysis algorithm. The technical elements of

the algorithm are discussed in greater detail in Sections 2.2-2.5. In Section 2.6, we

discuss the convergence analysis and present an a posteriori indicator to assess the

effects of the assumptions underlying the decomposition. The decomposition-based

uncertainty analysis algorithm is demonstrated on an aerospace system application

problem in Section 2.7. Lastly, the challenges facing the decomposition-based uncer-

tainty analysis approach are discussed in Section 2.8.
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Input System Output '.......
------ ------------------ -....

Component 1

Component p 1ne-

Figur e 2-1: The proposed method of multicomponent uncertainty analysis decomposes the problem
into manageable components, similar to decomposition-based approaches used in multidisciphnary

analysis and optimization, and synthesizes the system uncertainty analysis without needing to eval-

uate the system in its entirety.

2.1 Introduction to decomposition-based uncertainty

analysis

As shown in Figure 2-1, we wish to perform system uncertainty analysis by propagat-

ing uncertainty in system inputs to uncertainty in system outputs. We aim to do this

by performing uncertainty analysis on system components in a local "offline phase"

(ahead of time, decoupled from other component analyses) followed by a synthesis of

the component-level analyses in an "online phase". This online synthesis step should

ensure that system uncertainty analysis results are achieved in a provably convergent

manner, while avoiding any evaluations of the system in its entirety. Specifically, our

goal is to develop a decomposition-based uncertainty analysis methodology where the

quantities of interest estimated from our decomposition-based approach converge in

distribution to the true quantities of interest of the integrated feed-forward system.

Our proposed decomposition-based multicomponent uncertainty analysis approach

comprises two main procedures: (1) Local uncertainty analysis: perform a local Monte

Carlo uncertainty analysis on each component using their respectiv6 proposal distri-

butions; and (2) Global compatibility satisfaction: resolve the coupling among the

components without any further evaluations of the components or of the system as a

whole. Figure 2-2 represents the local and global steps of our approach for a generic

component.
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Local Uncertainty Analysis
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Figure 2-2: The process depicts the local uncertainty analysis and global compatibility satisfac-

tion for component m. First, local uncertainty analysis is performed on the component. Second,

global compatibility satisfaction uses importance sampling to update the proposal samples so as

to approximate the target distribution. Finally, an update step accounts for dependency among

variables.

Each local uncertainty analysis is done in a decoupled offline phase. The challenge

created by decomposition is that the distribution functions of the inputs for each

component are unknown when conducting the local uncertainty analysis. Therefore,

we propose an initial distribution function for each component input, which we refer

to as the proposal distribution function. Local uncertainty analysis uses the proposal

distribution function to generate samples of the uncertain component inputs and

propagate them through the component analysis to generate corresponding samples

of component outputs.

In the online phase, we learn the true distribution function of the inputs of each

component. We refer to these true distribution functions as the target distribution

functions. For those component inputs that correspond to system inputs, the target

distribution functions represent the particular specified scenario under which we wish

to perform the system uncertainty analysis. For those component inputs that corre-

spond to coupling variables (i.e., they are outputs from upstream components), the

target distribution functions are specified by the uncertainty analysis results of the

corresponding upstream component(s).

Global compatibility satisfaction is ensured by starting with the most upstream

components of the system and approximating their respective target distribution func-

tions using importance sampling on the corresponding proposal distribution functions.

43



The densities of updated output samples of these components are then represented

using density estimation. We construct joint densities among the inputs and outputs

of these upstream components to account for any dependencies that were not cap-

tured in the marginal densities of each component's outputs. Once this is complete,

downstream components receive their respective target distribution functions and the

process of importance sampling and accounting for dependency is repeated through

the system.

The theoretical analysis presented in Section 2.6 requires that components can

be represented by piecewise functions each of which are one-to-one and continuously

differentiable on sets of finite measure. In addition, the density estimation steps of

the approach will suffer loss of accuracy if the underlying densities are not sufficiently

smooth. This restricts the class of problems for which we can expect good convergence

of the decomposition-based approach. For smooth problems, methods such stochastic

Galerkin and stochastic collocation can yield faster convergence than Monte Carlo

simulation for problems of moderate dimension. In this research, we set up our

mathematical framework using Monte Carlo simulation, due to its broader generality;

while we do not develop the theory here, our general approach of decomposing into

local uncertainty analysis and global compatibility satisfaction could also be combined

with stochastic Galerkin and stochastic collocation methods. We also note that if

importance weights could be computed without requiring density estimation (the

subject of Section 2.4), then our decomposition approach will be applicable to a more

general class of multidisciplinary engineering problems, including those that exhibit

irregular dependencies, steep gradients, sharp transitions, etc.

To describe our decomposition-based approach more concretely, we consider the

specific case of a three-component feed-forward system, shown in Figure 2-3, although

our approach extends to multiple components and other forms of component feed-

forward coupling. The system inputs are (61, 12, 3 )T and G6 is the system output

quantity of interest. The coupling variable 4 is an output of component 1 and an

input of component 3, and the coupling variable 6 is an output of component 2 and an

input of component 3. Thus, the local uncertainty analysis for component 1 involves

44



evaluating fi with sample realizations of the proposal distribution functions of 1

and 2 in order to generate samples of 4. Similarly, the local uncertainty analysis

for component 2 involves evaluating f2 with sample realizations from the proposal

distribution functions of 2 (independently of the samples of 2 drawn for component

1) and 3, to generate samples of 5, and the local uncertainty analysis of component

3 involves the evaluation of f3 with sample realizations from proposal distribution

functions of 4 and 6 to generate samples of G. The key challenges in decomposing

the uncertainty analysis for this system are: (1) the local Monte Carlo simulation

for f3 is performed before the target distribution function of the coupling variables 4

and 6 is known, and (2) the dependency between 4 and 5 due to 2 is not accounted

for in the local analyses.

Input System Output..........------------------- - Com ponent 1 X1l i(X )------ ------ -- _ --- ------

f.4 Component 2 X2 02(X2)

Component 3 X f f3 (X)

Figure 2-3: Three components of a feed-forward system shown from the system Monte Carlo
perspective (left) along with the same components exercised concurrently from the perspective of
the decomposition-based multicomponent uncertainty analysis (right).

Starting from the upstream components, here component 1 and component 2, im-

portance sampling assigns weights to the computed samples so as to approximate the

input target distribution functions of each component using the samples previously

simulated during local analysis from the input proposal distribution functions. The

result is an updated output target marginal distribution function of 4 and (a that

requires no further evaluations of the component 1 or component 2 functions. To ac-

count for the dependency between 4 and 5, we construct the joint density of (4, 5 )T

using a conditioning process that is described in detail in Section 2.5 and again re-

quires no further evaluations of the component functions. We then use importance

sampling for component 3 to yield an updated output target distribution function for
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6. As a result, the system input target distribution functions are propagated down-

stream to quantify the distribution function of the output quantity of interest, here

6, without having to perform a full system-level uncertainty analysis. As shown in

Section 2.6.1, under some mild assumptions on the component functions, the results

of the decomposition-based approach converge in distribution to the true variables of

the feed-forward system.

2.2 Local uncertainty analysis

In this section we shall temporarily drop the subscript variable indicating the compo-

nent of interest to simplify the notation. We define the proposal distribution function

with respect to the proposal probability density function for the inputs as

Px(x) = jpx(t) dt, (2.1)

where x = (x 1 , x2 ,..., Xd)T, px is the proposal density of the input random vector,

X = (X1 , X 2,..., Xd)T, and xj denotes the jth component of the vector x. The do-

main of integration is E) = (-00, x1] x (-00, x 2] x ... x (-00, Xd), t is a dummy variable

of integration, and we assume that the input random variables of each component are

continuous. The local uncertainty analysis uses Monte Carlo simulation to generate

n samples, {x'} 1 , from the proposal distribution function Px, where x' denotes

the ith sample. We propagate those samples through the component, computing the

corresponding component outputs {f(xi)}7= 1.

The proposal distribution function Px represents our "best guess" at describing

the uncertainty in the inputs of component, made before we receive distributional

information from upstream components or system inputs. Choosing an appropriate

proposal distribution is important but can be difficult since the target is unknown at

the time the proposal is specified. The difficulties are that the target density must be

absolutely continuous with respect to the proposal density, and at the same time the

proposal should adequately capture the dependency structure and high probability
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regions of the target. If the condition of absolute continuity is not satisfied, then the

computation of the importance sampling weights (described in more detail in the next

section) will fail. Therefore, it is typical to choose a conservative proposal distribution

function, ensuring that the support of the proposal is sufficiently wide to encompass

the full range of input values expected from upstream components or from system

inputs. If the proposal has appropriate support, but does not adequately capture the

structure of the target, then our convergence results in Section 2.6 still hold, but the

number of samples needed in the offline stage (to achieve a desired accuracy level)

may be prohibitive. The quality of the proposal distribution and its impact on the

uncertainty assessment results are discussed in Section 2.6.2.

2.3 Sample weighting via importance sampling

In keeping with the notation from Section 1.2, we define the target distribution func-

tion of the inputs as

Py(x) = py(t) dt, (2.2)

where py is the target density of Y. We use importance sampling to weight the

precomputed proposal samples, {xz}jl 1 , ensuring that the weighted proposal input

empirical distribution function converges pointwise to the target input distribution

function.

Lemma 1. Let Pj;,(t) be the weighted proposal empirical distribution function for

the inputs, computed using n samples. We write

nI
X;w (t) = w(xi)1I(xi < t), (2.3)

where ll(xt  t) is the indicator function of the event {x' < tj, Vj E {1, 2, ... ,

w(x) op(x) and is subject to the condition that the weights- sum to n, and v is

absolutely continuous with respect to p. Then

lim P;W(t) = Py(t), (2.4)
n-+oo
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for all continuity points t of Py(t).

Proof. See, e.g., Ref. [108].

Lemma 1 implies that the weighted proposal input empirical distribution function

converges to the input target distribution function. By applying Skorokhod's repre-

sentation theorem and assuming that each f is bounded and discontinuous on sets

of zero measure, it is straightforward to show (see, e.g., [49]) that the corresponding

empirical distribution of the component outputs converges to the distribution func-

tion of the target outputs. Thus, all that is required to ensure that we can change

from proposal to target distribution functions for each component, without further

model evaluations, is the ability to estimate the proposal and target input densities

pointwise to provide the sample weights. We discuss how we accomplish this in the

next section.

Algorithm 5 describes the importance sampling procedure. This process is shown

notionally in Figure 2-4. The left plot on Figure 2-4 shows the contours, in solid, of

an example proposal density and samples from that density as dots. Target density

contours are shown on the same plot as the dashed curves. Importance sampling

provides a weight for each red sample, where the relative weights of the samples are

reflected by the size of the blue dots on the right plot of Figure 2-4.

We note here that if a poor proposal distribution function is selected then the

importance sampling algorithm may encounter sample impoverishment and therefore

result in a poor convergence rate. Therefore, it is desirable to select a conservative

proposal distribution function to account for the unknown target distribution function

at the local uncertainty analysis step. Another possible source of error arises when

the statistic of interest is strongly influenced by a region of low proposal probability.

Since the proposal probability density function appears in the denominator of the

importance weights, then the estimator of the statistic of interest, when appropriately

weighted, may result in an unbounded variance. To prevent this from occurring, the

recommended practice is to use, in place of the proposal distribution, a heavy tailed

multivariate student's t distribution instead of a light tailed multivariate Gaussian
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distribution 197].

Algorithm 1: Importance Sampling for component m.

Data: Target input density py, proposal distribution Px and density px.

Result: Sample importance weights, {wz}tL 1 .

Sampling:

Generate n samples, {x 1, x2, ... , x"}, i.i.d. from Px;

Importance Sampling:

for i E 1,.. I., n} do

Assign to sample x' the weight a 2 oc Q;
I pX(xi),

end

4 4

-4 --- 4-

2 - - - .2*.

0 e. 0

-4 -2 2 4 -4 -2 0 2 41 1

Figure 2-4: The importance sampling process uses the realizations (red dots on left figure) gen-
erated from a proposal distribution Px(t1,i2) (corresponding density shown as red solid contour
on left figure) to approximate a target distribution Py( 1, 2) (blue dash contour on left figure), by
weighting the proposal realizations, (blue dots on right figure).

2.4 Density estimation for estimating importance weights

Algorithm 5 computes importance weights that are the ratio of the target density

to the proposal density for a given sample. Since we employ here a sample-based

approach to uncertainty propagation, we require a means of estimating proposal and

target densities from a set of samples. In particular for some continuous random
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variable E with distribution function fl( ) and a density r( ), we require that for any

density estimate, ^"(n),

liM r() = ( (2.5)
fl-+OO

at all points of continuity of the density ir( ). For this we use kernel density estima-

tion,

~fr(,) nLdZK L, (2.6)

where L > 0 is a bandwidth parameter with the property that lim L = 0, and K is
n-+oo

a kernel function satisfying

0 < K(t) < oc, (2.7)

J K(t) dt = 1, (2.8)
Rd

K(t) dt = 0, (2.9)

JRd K(t) 1t1 2 dt < oo, (2.10)

where t E R' and | is the Euclidean norm. Then, lim frfl( ) = 7r( ) at every point
n-+oo

( of continuity of 7r(-) 191, 321. The Gaussian kernel function and mean integrated

squared error bandwidth parameter selection criteria are implemented throughout all

examples in this research 1511.

If the set of points of continuity of 7r(.) is of measure 1, then in the limit as n -+ oo,

7r" () is a density of the distribution function H( ). To ensure this criterion, we

require that the inputs to a given system be absolutely continuous random variables.

Further, as discussed in Ref. [491, the component functions, fi, must be such that

there are sets {I1,I2,...I} that partition the component input space Rl-, such

that fn : Ii -+ Rk- is strictly one-to-one and continuously differentiable for each set

i E {1, . . . , j}. This constraint ensures that the output probability density function

is also an absolutely continuous random variable.
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2.5 Accounting for dependency among variables

The weighting of samples via importance sampling in the global compatibility step

of our multicomponent uncertainty analysis approach ensures that we achieve the

target marginal distribution functions of a given component's inputs. However, the

dependencies among variables, such as 4 and 6 in the system shown in Figure 2-

3, are not captured. These dependencies must be recovered in order to achieve the

correct results.

For example, consider again the system presented in Figure 2-3. The dependency

between 4 and 6 caused by the common dependence on 6 can be accounted for by

considering the target density of (4, )T and the dependency structure as follows

[49],

py (4, f) ( , 4, s)d< = j PY ( , 4) -py(66 ) 42(

/ py ( , 4) -PY ( , ) d 2
PY()

Here, py(2, 4) is the target density associated with input 2 and output 4, which

was constructed via importance sampling for component 1. Likewise, Py(42, 5) is

the target density associated with input 6 and output 5, which was constructed via

importance sampling for component 2. We construct py( 4, 5) using Equation 2.11,

which uses the the system's inherent dependence structure to yield the correct target

input distribution function to component 3.

To generalize the concept, consider the construction of the target density of the

inputs to the first m components of an M-component feed-forward system, where

the inputs to component i cannot be outputs of component j unless j < i, Recall

from Definition 1 that x = (xI, x 2, ... , Xd)T is the vector of system variables, Im C

{1, 2, ... , d} is the set of indices of the system variables corresponding to inputs to

component m, and 0
m C {1, 2,..., d} is the set of indices corresponding to the

outputs from component m. We further define Sm C {1, 2, ... ,d} to be the set

of indices of new system inputs to component m, where new system inputs refer
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to those inputs that are not output from any component, are not inputs to any

previous component, and are assumed independent. Then, let Vm = Im U Om, which

is the set of indices of the inputs and outputs of component m, let U, = UT 1Vm,

which is the set of indices of the inputs and outputs of the first m components,

and let Tm = (Ul-'Vi) n T,, which is the set of indices of the shared inputs of

component m with any of the previous m - 1 components' inputs or outputs. We also

define J, = Um- 1 U Sm, which is the set of indices of all of the inputs and outputs

associated with the first m - 1 components, as well as the indices of the system

inputs of component m, and let Km = Jm\ Im. By constructing the target density

of the variables with indices in the set Jm, we correctly capture the dependency

among the inputs to component m. We denote by xJ, the vector of system variables

corresponding to those indices in the set Jn (and similarly for the other sets defined

above).

For the example system given in Figure 2-3, with m 3, we have that x

( , ,3,4, 6, 6)'. The indices in each of the sets for m = 1, 2, and 3 are given in

Table 2.1.

Table 2.1: Index sets for the system presented in Figure 2-3.

M =1 m =2 m=-3
11 = {1, 2} 12 = {2, 3} 13 = {4, 5}
01={4} 02={5} 03= {6}

S = {1, 2} S2 = {3} S3 {0}
V1 = {1, 2, 4} V2 = {2,3, 5} V3 = {4,5, 6}
U, = {1, 2,4} U2 = {1, 2,3, 4, 5} U.3 = {1, 2, 3, 4, 5, 6}

T1 = {0} T2 = {2} T3 = {4, 5}
J1 ={1, 2} J2 = {1,2,3,4} j3 = {1, 2,3,4, 5}
1C ={0} K2 = {1,4} E3 = {1, 2,3}

For this example, the target densities required for each component are py(xj,) =

PY (1, 2), py(x 2) = Py(1, 2, 3, 4), and py(x 3 ) = PY (6, 2, 3, 4, s). The target

densities, py(xim), contain the correct dependence structure for the inputs, x.m,

to component m. We write the target density of these inputs as py(xlm) for each

component m. The evaluation of the input target density, py(x ), at proposal
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input samples, xjm, for each component m, ensures that we can properly weight the

proposal samples to each component of the system according to Algorithm 5.

Lemma 2. The target density of the inputs and outputs of the first m -1 components

and the inputs to component m, where m > 3, is given by

py(x) = PY(XV)py(xs), (2.12)
r11=2 py(X-F)

where if S, = {0}, then py(xsm) = 1.

Proof.

JjfQi1py (xv) _y_(_v2 _y____1)-1 y(xs) =py (xv)PY)XV 2) py (x.sm) (2.13)
- (py(xX py(xE) py(XTm1) Xm)

= PY (XVv) II'k=3 Py(XV py(xsm) (2.14)
PYV1py(x )M1py()

HM-1
= pY(Xu 2 1-3PY(XV)y(xs) (2.15)

111-3 PY(xT,)

= py(xu_ 1 )Py(xsm) (2.16)

Spy (X), (2.17)

where Equation 2.15 follows from the definition of a conditional probability density

(see, e.g., [49]) and Equation 2.17 follows because the system inputs of component m

are considered independent from all other system variables. L

Once we have the density py(xJm), we can evaluate the input target density,

py(xj,), required by component m with the correct dependency among the inputs.

We note here that for a system with m = 1 component there is no dependency

structure to resolve. For m > 2, the input target density for component m is given

by

py(x:m) = JUPP(XIm) py (xim)py (xJ. IxKm)dxm, (2.18)

where supp(XKr) is the support of the random vector Xpm. We note here that Equa-

tion 2.18 is the expected value of the conditional density, py(xJmIxjm) with respect
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to py(xKrn). The density py(xvm) is obtained similarly to py(xJm) using the densi-

ties in Equation 2.12 with the variables in x-. marginalized out. The target input

density, py(xlm), only needs to be evaluated at the proposal samples as specified

in Algorithm 5. A procedure for evaluating this density at the proposal samples,

using Monte Carlo simulation to evaluate Equation 2.18 and Lemma 2 to construct

py(xJmIxm), is given in Algorithm 2. Algorithm 2 avoids the challenge of estimat-

ing high-dimensional densities with kernel density methods by assembling the large

densities py(xJm) and py(xm) using the smaller dimensional component densities

py (xv,) and py (xT). As a result, the largest dimension estimated with kernel density

methods is that of the component with the largest cardinality, M I.

Algorithm 2: Accounting for dependency for inputs to component m, where m > 3.

Data: Target densities py(xv,) for i = 1,... , m - 1 and proposal samples

Result: Target density py(x1 m) evaluated at the proposal samples {xt}iL 1 .

for i = 1: N do

Initialize py(xm) = 0;

for s = 1 : S do

J.= xx"

for j = 1: (m - 1) do
Generate sample x, from the density py(xvj) conditioned on the

known set x'.-

x = XSr U xV.

end

Generate sample x' from py(xsm) conditioned on the known set x .

x8 = XSm U XL.

Evaluate py(x4 ) = py(x ) + py(x- 1 )/py(x-m) with Equation 2.12;

end

end

We note here that for m = 2, the input target density may be obtained in a similar

fashion to what is done in Algorithm 2. In this case, the innermost for-loop is modified
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so that samples are taken from the target density, py(xV,), and the new system input

density, py(xs 2 ).

2.6 Convergence analysis & a posteriori indicator

This section addresses the convergence properties of the decomposition-based multi-

component uncertainty analysis approach, describes an a posteriori indicator to assess

proposal quality, and presents a simple example to demonstrate convergence.

2.6.1 Convergence theory

We prove here that the decomposition-based multicomponent uncertainty analysis

approach leads to the convergence in distribution of all of the variables associated

with a given feed-forward system.

Theorem 1. Let fm, for m = 1, 2, . . . , M, be the functions comprising an M-

component feed-forward system, where the input spaces of the functions can be par-

titioned such that on each partition, the functions are one-to-one and continuously

differentiable. Let the system inputs be absolutely continuous random variables. Then

the target random variables for all system variables estimated via the decomposition-

based multicomponent uncertainty analysis procedure converge in distribution to their

respective true target random variables as the number of samples tends to infinity.

Proof. For each component m = 1, 2, ... , M, local uncertainty analysis using n sam-

ples drawn from the proposal distribution functions, Px(x.m), results in proposal em-

pirical distribution functions, Px(x2m). Define the set M1 as the indices of the com-

ponents with no dependence on upstream components, M 1 = {m E {1, 2, ... , M} :

1m n (UY 10,1) = 0}. The target distribution functions, Py (x.), for each component

m E M 1 are therefore known. We estimate the densities y(xi.) for m E M 1 from

samples of the target distribution functions using a kernel density estimation method
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that is strongly uniform convergent [321. Then, for each m E Mi,

limi " (xm) = py (x.m), (2.19)
fl-+oo

for all points of continuity of the target density py(x1 m). Since all inputs to the

components in the set M 1 are absolutely continuous random variables, the measure

of the set of discontinuous points of py(xm) is zero. Eq. (2.3) defines the weighted

empirical distribution function P ;(xzm) and by Lemma 1 we have

lim P:.(xI) = Py(X.m). (2.20)
n-+oo

Let Y be a random variable with distribution function P .,, then Y d x-m. Then,

for each set in the partition of the input space of f, we have by Skorokhod's rep-

resentation theorem, fm(Y) 4 fm(xy.). Since the boundaries of the sets of the

partition comprise a set of measure zero, this convergence applies over the complete

domain of the function.

Then, by Lemma 2, we can obtain samples from the joint distribution function of

the inputs and outputs for all components in M1. We then define M 2 as the indices

of those components with no dependence on upstream components other than those

components in M 1. That is, M2 = {m E {1, 2, ... ,M} : In (UM1 0i) = 0}. The

target distribution functions of all inputs for components m E M2 are now available;

thus the analysis described above for M1 applies to M2 . We proceed by defining in

turn M 3 , M4 ,..., Mk, where Ui 1 Mk = {1, 2, ... , M}, and obtaining samples from

the distribution functions of all of the inputs and outputs for all components in each

Mi. From the samples generated for the components with indices in Mk we can

construct the empirical distribution function of all system variables. By the strong

law of large numbers, this empirical distribution function converges pointwise to the

true distribution function of all system variables.

The rate of convergence of our decomposition-based uncertainty analysis depends

on several elements: the rate of convergence of the underlying Monte Carlo sam-
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pling, the rate of convergence of the kernel density estimation, and the quality of the

proposal distribution functions relative to their corresponding targets. As already

discussed in Section 2.2, choosing a good proposal distribution is particularly im-

portant for achieving satisfactory convergence rates; a poor choice of proposal can

lead to needing a prohibitive number of samples in the offline phase. While one can

provide only qualitative guidance for proposal selection as discussed in Section 2.2,

Section 2.6.2 presents a quantitative metric that compares proposal and target dis-

tributions for all inputs and coupling variables, thus highlighting a posteriori when a

poor proposal choice may have compromised accuracy.

We further note here that, though we have shown convergence in distribution of

all variables associated with a feed-forward system, for many uncertainty analysis

tasks we may care only about statistics such as the mean and variance of a quantity

of interest. Generally, if we have a function g : R' -+ R, that takes random in-

puts (1, 2, .6 . ., ), we can estimate the mean of g(1, 2,. ) using Monte Carlo

simulation as

g ,(2.21)

where (, T.. , ) is the ith sample realization of the random input to the function.
a.s

By the strong law of large numbers, -+ E[g( 1, 2, . . , ,)] as n -+ oo. We may use

Monte Carlo simulation to estimate other integral quantities, such as the variance,

as well, with almost sure convergence guaranteed by the strong law of large num-

bers. In our decomposition-based approach to uncertainty analysis, if the functions,

fi, corresponding to each component in the feed-forward system are also bounded

and discontinuous on sets of zero measure, then, by an application of Skorokhod's

representation theorem (see, e.g., Ref. [49}), the estimated mean and variance of

any quantities of interest will converge to the true mean and variance. Thus, our

decomposition-based multicomponent uncertainty analysis methodology can perform

typical uncertainty analysis tasks in a provably convergent manner.
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2.6.2 A posteriori indicator

Selection of an adequate proposal distribution function should use expert opinion

and/or previous knowledge from past analyses. However, a poor proposal distribution

may detrimentally affect the convergence performance of the distributed uncertainty

assessment approach. In the general case, we cannot analyze a priori the effects of a

given proposal distribution (if we had such information, we would use it to select a

better proposal distribution); instead, we use quantitative indicators to determine a

posteriori if the results are satisfactory.

Drawing from sequential Monte Carlo methods, we evaluate the quality of our

proposal distributions once the importance weights are known, using the effective

sample size,
1

f eff-Zs (W(xi)) 2 '(.2

where w(x) is the importance weight associated to proposal sample x' 163, 73, 341.

The effective sample size can range in value from nff = 1 to nff = N. A value of neff =

N indicates that the proposal and target distributions are equivalent, while a value

of neff = 1 indicates an extremely poor proposal distribution where only one sample

bears any weight in the weighted empirical distribution. The effective sample size is

thus a suitable measure of the degeneracy of a given proposal distribution relative to

a given target distribution. However, the effective sample size in Equation 2.22 does

not account for the statistic of interest. To account for the statistic of interest, the

effective sample size should use in place of the importance weights in Equation 2.22,

the adjusted importance weights [401,

I f(xi) py (xi)/px(xi)Wi = (2.23)
K=fa f(xi)|py (xi) /px(xi)

To assess the quality of a distributed uncertainty assessment result, we recommend

computing the effective sample size for each component once its target distribution

is known. If a component's effective sample size is below a user-specified threshold,

this indicates that sample impoverishment has occurred to a potentially detrimen-
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tal degree, and we recommend reevaluating the local uncertainty analysis for that

component. Upon completing the local uncertainty analysis of the component in

question, the global compatibility step is computed again and the component's new

effective sample size is evaluated. In the reevaluation step, the component's input

target distribution can be used in place of the poor proposal distribution-of course

this reevaluation breaks the strictly offline/online decomposition of our approach, but

this recourse is necessary to provide some robustness. A second approach would be to

use the moments from the component's input target distribution to reassign the pro-

posal distribution as a heavier tailed distribution such as the multivariate student's

t distribution. This is a desirable approach if the system input target distributions

are expected to change throughout the course of the design process. The threshold

for neff is a user choice; we investigate its effect with a simple example in the next

section. Guidance can also be found in the importance sampling literature [701.

2.6.3 Convergence example

The following example lays out a step-by-step application of the approach and demon-

strates the convergence in distribution for the system shown in Figure 2-3. The

component functions are:

fl: 4 = 1 +2

f2: 6 = 6 + 3

fh: G = 4 +6.

The first phase of the approach is to conduct the offline analysis for each local com-

ponent, which requires selecting proposal distributions for each component's inputs.

In this example, the proposal distributions selected are Gaussian with conservative

variance estimates. For component 1 we use .A ~ f(-0.5,1.5) and 2 ~ .(1.5, 2.0).

For component 2 we use 2 ~ K(-1.0, 2.0) and 3 - .A(-0.5,2.5). For component

3 we use 4 - .M(1.5, 5.0) and (3 ~ .(-1.5, 4.5). (Note that the proposal distribu-

tion for 2 in the local analysis for component 1 is not necessarily the same as the
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proposal distribution for 2 in the local analysis for component 2.) Based on these

proposal distributions, we conduct a local uncertainty analysis for each of the three

components. In each case, we use a Monte Carlo simulation with n ranging from

100 to 1000 samples. Each Monte Carlo simulation results in a set of samples of the

component outputs ( 4 for component 1, 6s for component 2, and 6 for component

3). For each component, we store the input and output sample data sets.

The next phase of the approach is the online analysis, which uses those samples

pre-computed in the offline phase and does not require additional evaluations of any of

the components. The first step in the online analysis is to specify target distributions

for all system inputs, in this case 1, 6, and 3. These target distributions represent

the particular scenario for which we wish to analyze the system. In this example, we

specify all three system inputs to have standard Gaussian distributions: 1 - .A(0, 1),

2 ~ N(0, 1), and 3 - fi(0, 1). We then begin with the upstream components, here

component 1 and component 2. Given the newly specified target distributions and the

proposal distributions assumed in the offline phase, for each component we compute

the importance weights using Algorithm 1. We apply these importance weights to

the corresponding samples of component outputs, here 4 and 6. This gives updated

estimates of the component output distributions. The next step is to resolve the

dependency structure between 4 and 6, induced by the shared input variable 2. We

achieve this using Algorithm 2, which evaluates the joint target density py(4, 6) at

the input proposal samples of component 3. The last step of the online phase is to

compute the importance weights for component 3, using the newly acquired target

density py( 4 , 6) evaluations from Algorithm 2. Applying these importance weights

to the pre-computed samples of 6 leads to the final updated estimate of the system

output.

For this particular scenario, we can compute the true system output distribution

analytically as a Gaussian distribution, 6 - K(0, 6). We compare the numerical

results from our decomposition approach to this analytical solution. The convergence
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in distribution is demonstrated with the Cramer von-Mises criterion,

S= j [I (f) - Py( 6)] 2 dPy( 6), (2.24)

where Pjw((6 ) and Py($6) are the weighted empirical and analytical distribution

functions of '6, respectively. The Cramer von-Mises criterion is estimated using Monte

Carlo simulation, where samples of '6 are drawn from the analytical distribution

Py().

Figure 2-5 presents the averages over 100 independent simulations of an all-at-once

system Monte Carlo uncertainty analysis and our decomposition-based approach. The

decomposition-based results implemented the kernel density estimation method and

used 25 samples, S, to resolve the dependency among variables in Algorithm 2. The

result shows that for the same number of overall samples per component, n, we incur

a larger error than the system-level Monte Carlo simulation. This error is due to

Algorithm 5. Specifically the target measure needs to be absolutely continuous with

respect to the proposal measure, which leads to a conservative choice of proposal den-

sity. This in turn means that there exist proposal samples that have negligible impor-

tance weight ("wasted" samples). The closer the proposal distribution to the target

distribution, the smaller this offset. This is the price we pay for decomposition-it

is important to emphasize that our goal is not an improvement in computational

efficiency, but rather the ability to manage system complexity and to analyze uncer-

tainty in systems for which an integrated Monte Carlo simulation approach may not

be tractable or feasible. Furthermore, our approach can perform the local uncertainty

analysis of each component concurrently. This could lead to significant further run

time improvement compared to the system Monte Carlo uncertainty analysis, which

can perform uncertainty analysis on downstream models only after their respective

dependent upstream components' uncertainty analyses are complete.

Figure 2-6 demonstrates the effects of changing the proposal distribution on the

convergence of the decomposition-based approach for this simple example. Here we

consider modifying the proposal distribution of component 2 while keeping the pro-
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Figure 2-5: The results indicate the output of interest, 6, Cramer von-Mises criterion converges
with the number of samples. The system Monte Carlo weighted empirical distribution function uses
w =4. The decomposition-based multicomponent weighted empirical distribution function uses
weights computed via Algorithm 1.

posal distributions of component 1 and component 3 the same as the previous analysis,

with n = 256. The proposal distribution for component 2 is a bivariate Gaussian dis-

tribution with zero mean and diagonal variance set to 1.0, 2.5, 5.0, and 10 representing

a perfect, good, moderate, and poor proposal distribution, respectively. These four

cases result respectively in values of neff = 247,158, 90, and 48. As the proposal distri-

bution improves, the ratio neff/n increases (for this example n is fixed), which in turn

leads to improved estimation of the outputs of interest as shown by the decreasing

Cramer von Mises criterion in Figure 2-6.

2.7 Application to a gas turbine system

In this section we present a demonstration of the decomposition-based uncertainty

analysis approach for a gas turbine blade application. We compare the results of our

method with all-at-once Monte Carlo system uncertainty analysis.
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Figure 2-6: The results show the implications of selecting a poor proposal distribution for compo-
nent f2 with n = 256. As neff approaches n, indicating a better proposal distribution, the accuracy
of our estimate improves.

2.7.1 Gas turbine system setup

Our application problem consists of four components, each representing a disciplinary

analysis: blade heat transfer, blade lifetime, engine performance, and an economic

model. The functional relationships and random variables are shown in Figure 2-7.

This application is representative of an organizational multidisciplinary environment

where different groups are responsible for different aspects of the gas turbine design

and assessment. The specific objective of our analysis is to quantify the effects of

uncertainties throughout the gas turbine design process on the output of interest,

here the economics of the product. We consider the uncertain system inputs shown

in Table 2.2. The distributions shown in the table are the target distributions used

for our analysis (i.e., they represent the particular scenario of interest in the sys-

tem uncertainty analysis). These target distributions are considered unknown when

conducting the local uncertainty analysis for each of the four components.

Heat transfer model The blade heat transfer model simulates a cooled gas turbine

blade in hot gas path flow using finite element analysis. The uncertain inputs to this

subsystem are shown in Figure 2-7. We consider three blade passages, each with

its own independent coolant temperature variable. Thus there are eight uncertain
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Figure 2-7: The gas turbine application problem contains four components, each

representing a disciplinary analysis: heat transfer, structures, performance, and eco-

nomics.

inputs to this component. External heat transfer along the pressure and suction side

surfaces is computed as

htc(() = hTE + (hLE - hTE) e CXP( - 4* ( c) 2 ), (2.25)

where ( is the chordwise spatial coordinate and c is the blade chord length, here taken

as c = 0.04 [m]. The output of the heat transfer model is bulk metal temperature,

Tbulk [K]. The relationship between the input and output variables is computed using

a finite element method to solve the heat equation. The blade profile and mesh along

with the random variables are shown in Figure 2-8.

The local uncertainty analysis for this model is conducted using the proposal

distributions shown in Table 2.3. Note that for our particular demonstration we

have chosen the proposal variances conservatively to ensure adequate support in the

proposal samples, as discussed in Section 2.3.
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Table 2.2: Gas turbine system input uncertainty distributions where U(a, b) represents

a uniform distribution between the lower limit a and upper limit b.

Variable Name Description Units Distribution

Tei First Passage Coolant Temperature K U(590, 610)
Tc 2  Second Passage Coolant Temperature K U(640, 660)
Tc3  Third Passage Coolant Temperature K U(690, 710)

k Blade Thermal Conductivity W/m/K U(29, 31)
hLE Leading Edge Heat Transfer Coefficient W/m2 /K U(1975, 2025)

6 hTE Trailing Edge Heat Transfer Coefficient W/m2 /K U(975, 1025)
rh Coolant Mass Flow Rate kg/sec U(0.108, 0.132)

gT External Gas Path Temperature K U(1225, 1275)
q LMP Larson-Miller Parameter - U(2.45-10 4, 2.55-104)

60 Fperf Performance Factor - U(0.85, 0.95)

611 Fecon Economic Factor - U(0.9, 1.1)

hLE k hTE

Figure 2-8: The gas turbine blade profile and mesh, along with the random input

variables.

Lifetime model The lifetime model estimates the expected time until blade failure

assuming a Larson-Miller 196] nickel super alloy stress-to-failure scenario. As shown in

Figure 2-7, the inputs to this subsystem are bulk temperature, TbIk, and the Larson-

Miller failure parameter, LMP. The output is expected time until failure, tfajl [hr].

The relationship between the input and output variables is given by

tfail = exp(LMP/Tulk - 20). (2.26)

The input proposal distributions assumed for the local uncertainty analysis of this

component are given in Table 2.4.

Performance model A high-fidelity gas turbine performance model would account

for compressor coolant flow extraction, leakage losses, and mixing losses which is
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Table 2.3: Heat transfer model input proposal uncertainty distributions.

Variable Name Description Units Distribution

T1 i First Passage Coolant Temperature K A((595, 75)
Tc2  Second Passage Coolant Temperature K .A(645, 75)
Tc 3  Third Passage Coolant Temperature K K(705, 75)

4 k Blade Thermal Conductivity W/m/K P1(29, 1.5)
6 hLE Leading Edge Heat Transfer Coefficient W/m 2 /K P1(2025, 1500)

6 hTE Trailing Edge Heat Transfer Coefficient W/m2 /K .A(1000, 500)
mh Coolant Mass Flow Rate kg/sec Ar(0.12, 10-4)

_ _ T External Gas Path Temperature K X(1260, 450)

Table 2.4: Blade lifetime model input proposal uncertainty distributions.

Variable Name Description Units Distribution

60 LMP Larson-Miller Parameter - Ar(2.5-104, 2.105)
12 T&,Ik Bulk Metal Temperature K Ar(865, 400)

beyond the scope of this work. Instead, a simplified low-fidelity model is implemented

to evaluate the maximum power. The performance model rewards high external hot

gas path temperatures and penalizes coolant flow usage. As shown in Figure 2-7,

the inputs to this subsystem are external gas temperature, Tas, performance factor,

Fperf, and coolant mass flow, ni. The performance factor, Fer, is introduced to

account for the effects on engine performance of randomness associated with other

gas turbine components. The output of the performance model is engine performance,

Peng, defined as

Peng = Ferf - (ro - N - ) -C - To - (Tg/To - 2 - T/TO + 1), (2.27)

where T is the inlet compressor temperature, rho is the inlet compressor flow rate, N

is the number of gas turbine blades, and C, is the specific heat at constant pressure.

These parameters are treated deterministically and set to the values T = 300 [K],

ro = 430 [kg/sec], N = 90, and C, = 1003.5 [J/kg/K]. The input proposal distri-

butions assumed for the local uncertainty analysis of this component are given in

Table 2.5.
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2.5: Performance model input proposal u

Variable Name Description Units Distribution

7 rh Coolant Mass Flow Rate kg/sec AV(0.115, 10-1)

G Tg External Gas Path Temperature K AJ(1240, 500)
610 Fperf Performance Factor - X(0.9, 7.5 - 10-3)

Economics model The economics model simulates the revenue from the operating

gas turbine. The model rewards a high-performance gas turbine engine and penalizes

a gas turbine engine that introduces risk of failure. As shown in Figure 2-7, the

inputs to this subsystem are expected time until failure, tfail, engine performance,

Peng, and economic factor, Fe. The economic factor, Fecon, is introduced to account

for randomness associated with other gas turbine components not represented in the

models. The output is revenue, reco, defined as

=recon =Fecon ' tfail - Peng * Co, (2.28)

where co is the cost of energy which is treated deterministically and set to the value

co = 0.07 [$/kWh]. The input proposal distributions assumed for the local uncertainty

analysis of this component are given in Table 2.6.

Table 2.6: Economics

Variable Name
61 Fecon

13 tfail

14 Peng

model input proposal

Description
Economic Factor
Blade Lifetime

Engine Performance

uncertainty distributions.

Units Distribution
- K(1.0, 0.01)

year .A(425, 6-104)
MW A(120, 150)

2.7.2 Uncertainty analysis

In the "offline phase", the local uncertainty analyses are carried out for each component

individually, using the input proposal distributions specified in Tables 2.3- 2.6. Each

component uses n independent samples in its local Monte Carlo simulation. (Note

that the number of samples does not need to be the same across components.) Output
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samples for each component are stored in a database.

The "online phase" considers a system uncertainty analysis for the system input

distributions shown in Table 2.2. Global compatibility satisfaction begins by consid-

ering the Heat Transfer and Performance components, which have only system inputs

and thus require no information from upstream disciplines. Using Algorithm 5 and

kernel density estimation, we obtain target densities py(12, 7, 8) and PY( 13, 7, 8).

The same procedure is applied to the Lifetime component using the recently ac-

quired density py( 12) to obtain the target density py(614, '12). Using target densities

py(12 i, ,), PY (13, 7, 8), and PY( 14, 12) along with Algorithm 2 with S = 200

samples, we obtain the desired target density py(13, 64) evaluated at the Economic

model's proposal samples. The global compatibility satisfaction procedure is then

performed on the Economics model to obtain the system output of interest, revenue,

with target density py(6i). The Cramer von-Mises convergence plots for variables

62, 63, $14, and 65 averaged over 100 independent simulations are shown in Figure 2-

9. The true distribution is defined by the empirical distribution function generated

using a system Monte Carlo simulation with 106 samples.

The system output of interest distribution function using the decomposition-based

uncertainty analysis approach is given in Figure 2-10. For comparison, the proposal

distribution function and the system Monte Carlo uncertainty analysis distribution

function are also shown on Figure 2-10. The results show that the decomposition-

based approach propagated, in the online phase, the target system input uncertainty

distributions through the system to obtain an adequate representation of the system

output of interest distribution. We emphasize that this online phase required no

additional evaluations of any of the component models. Our decomposition-based

approach therefore provides a quantitative means of calculating the system output of

interest relevant statistics and failure probabilities.

The small discrepancy between the decomposition-based uncertainty analysis ap-

proach and the system Monte Carlo uncertainty analysis approach is due to the errors

introduced by the finite number of samples used in the density estimation step, the

Monte Carlo approximation used in Algorithm 2, and the sample impoverishment in-
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Figure 2-9: The Cramer von-Mises convergence plots are shown for the intermediate

variables 12, 13, and 14 as well as for the system output of interest, revenue, 15.

The solid lines are the result obtained from a system Monte Carlo simulation. The

dashed lines are the result obtained using our decomposition-based multicomponent

uncertainty analysis.

troduced by the requirement that target distributions be absolutely continuous with

respect to their proposal distributions. The sample impoverishment error can be min-

imized by using more appropriate proposal distributions. However, it is not always

possible to correctly predict the range of the target distribution. This is one of the

prices to pay for decomposition.

2.7.3 Flexibility of decomposition-based uncertainty analysis

A benefit of our decomposition-based approach is that if any system input distribu-

tions are modified, yet remain absolutely continuous with respect to their proposal dis-

tribution, then the system output of interest distribution function can be re-computed

with no additional component analyses. For example, if the system input variables

69



- System Monte Carlo Distribution
- - - D-B Multicomponent Target Distribution
- - Economic Model Proposal Distribution

0
V.4

C)

L 0.6
C/
0

C50.2-

-100 -50 0 50 100 150 200 250

Revenue ($10 )' 415

Figure 2-10: The system output of interest, revenue, distribution function using n =

8192 samples is shown in millions of dollars. The solid line is the result obtained from

a system Monte Carlo simulation. The dashed line is the result obtained from the

decomposition-based multicomponent uncertainty analysis. The dash-dot line is the

result obtained from the local uncertainty analysis of the Economics model.

5, 8, and 9 are modified from those in Table 2.2 to those in Table 2.7, then the

results given by the system Monte Carlo uncertainty analysis are invalid. However,

our decomposition-based approach can, with no additional evaluations of any of the

component models, evaluate the system output of interest distribution function as

shown in Figure 2-11. For comparison, the previous system Monte Carlo uncertainty

analysis distribution function and a new system Monte Carlo uncertainty analysis

distribution function, which required evaluating the entire system again, are also

shown on Figure 2-11. The results show the decomposition-based approach, without

re-evaluating any component, approximated the distribution function accurately.

Table 2.7: Updated gas turbine system input uncertainty distributions.

Variable Name Description Units Distribution

5 hLE Leading Edge Heat Transfer Coefficient W/m2/K U(2025, 2075)

T External Gas Path Temperature K U(1240, 1280)
LMP Larson-Miller Parameter - U(2.425-104, 2.525.104)

Likewise, a modification to a component would require the system Monte Carlo
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Figure 2-11: The system output of interest, revenue, distribution function using n =
8192 samples is shown in millions of dollars. The solid line is the result obtained
from an updated system Monte Carlo simulation which required evaluating the entire

system again. The dashed line is the result obtained from the decomposition-based

multicomponent uncertainty analysis using the online phase only. The dash-dot line

is the result from the previous Monte Carlo uncertainty analysis.

uncertainty analysis approach to recompute the samples associated with the mod-

ified component and any components that depend on the modified component. In

contrast, our decomposition-based uncertainty analysis approach would only have to

perform the local uncertainty analysis on the modified component and those com-

ponents for which the target distribution is no longer absolutely continuous with

respect to the proposal distribution. For example, if the Heat Transfer component

modified the heat transfer enhancement in the cooling channels from a factor of 2.5

to 2.25, then the target density py( 12) would still be absolutely continuous with

respect to the Lifetime model proposal density px(62) as shown in Figure 2-12. As

a result, the decomposition-based approach would not require the Lifetime model

or the Economics model to perform a local uncertainty analysis whereas the system

Monte-Carlo uncertainty analysis approach would. Instead the decomposition-based

approach evaluates the system output of interest distribution shown in Figure 2-12

using only the online phase.
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Figure 2-12: The bulk metal temperature, 12, is shown on the left. The results shows

that the proposal distribution (dash-dot line) of the bulk metal temperature of the

Lifetime model supports the target distribution (dashed line) coming from the Heat

Transfer model. The system Monte Carlo uncertainty analysis results, solid line, re-

quired evaluating the the Heat Transfer, Lifetime, and Economics model, whereas

the decomposition-based multicomponent uncertainty analysis results were obtained

using the online phase only. The revenue, p15, in millions of dollars is shown on the

right. The solid line is the result obtained from a system Monte Carlo uncertainty

analysis. The dashed line is the result obtained from the decomposition-based multi-

component uncertainty analysis using the online phase only. The dash-dot line is the

result obtained from the previous Monte Carlo uncertainty analysis.

2.8 Pitfalls of decomposition-based uncertainty anal-

ysis

The performance of our decomposition-based uncertainty analysis approach is largely

influenced by how well we can perform the change of measure (e.g., approximating

v using samples drawn from p). In Section 2.3, we accomplished the change of

measure with the ratio of probability density functions where the probability density

functions were constructed using density estimation. However, density estimation is

particularly challenging in cases of high dimension [106, 53, 1201. As a result, in this

research we have investigated methods to overcome this challenge. In Chapter 4, we

present a novel approach to the change of measure problem which entirely avoids
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the need for density estimation. Our approach allows us to perform the change of

measure in dimensions which were previously not possible using density estimation.

In Chapter 5, we use the component global sensitivity analysis to determine which

inputs to the component are most important for the change of measure. This allows

us to reduce the dimension associated with the change of measure to sizes which are

feasible.
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Chapter 3

Decomposition-Based Global

Sensitivity Analysis

In this chapter we perform a decomposition-based global sensitivity analysis of the

feed-forward multicomponent system. Our approach utilizes the decomposition-based

uncertainty analysis algorithm presented in Chapter 2 to perform the variance-based

global sensitivity analysis in a decomposition-based manner. The purpose of con-

ducting a decomposition-based global sensitivity analysis is to identify key system

inputs that significantly impact the output of interest variation while incorporating

the benefits of a decomposition-based approach previously stated in Section 1.1.

This chapter presents a review of the variance-based global sensitivity analysis

method by I.M. Sobol' and sets notation for subsequent developments in Section 3.1.

Following that discussion we present the challenges associated with decomposition-

based global sensitivity analysis and develop our decomposition-based global sensitiv-

ity analysis approach in Section 3.2. Lastly, in Section 3.3, our decomposition-based

global sensitivity analysis algorithm is demonstrated on an aerospace system appli-

cation problem.
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Figure 3-1: The proposed method for multicomponent global sensitivity analysis utilizes the
decomposition-based uncertainty analysis algorithm presented in Chapter 2 to evaluate the statistics
of interest necessary for the variance-based method of I.M. Sobol'. The objective of a variance-based
global sensitivity analysis method is to apportion the output of interest variance across the system
inputs and is depicted here using the pie chart.

3.1 Variance-based global sensitivity analysis

In this section we review the variance-based global sensitivity analysis method by

I.M. Sobol' and set notation for subsequent developments [112, 111, 94, 66, 71]. The

objective of performing a variance-based global sensitivity analysis is depicted on

the left in Figure 3-1, where the pie chart representing the variance of the system

output is decomposed using the variance-based global sensitivity analysis into the

contributions from the system inputs. The outcome of a global sensitivity analysis

permits a ranking of system inputs that can be used in different developments; here

we are interested in the prioritization of the system inputs so that we may allocate

future research efforts. As stated in Section 1.4, we assume the system inputs are

independently distributed which allows us to implement the variance-based global

sensitivity analysis method by I.M. Sobol'. This derivation follows from the work of

Homma and Saltelli 11031.

3.1.1 Formulation

We present the variance-based global sensitivity analysis formulation for a single

component, denoted by f. However, f could represent the entire system, considered as

an integrated single component, as illustrated on the left in Figure 3-1. As previously

mentioned, let the system inputs be independently distributed, that is, we may express
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the system's input distribution as a product-type distribution, Py(t) = H_ Py(ti).

Since f is a square-integrable function with respect to the induced measure t, we

can express it as a finite hierarchical expansion in terms of inputs with increasing

dimensions [561. This expansion is given by the compact form

d d d

f(t) = fo + E fi(ti) + E E fijI(ti, ti) + + f{1,2,...,d}(t),
i=1 i=1 j>i (3.1)

= > fA(tA),
A ;{1,...,d}

where fo is a constant, f{i} is a function of only Xyl , fp,5} is a function of only Xy} and

X 3}, etc. The summation in Equation 3.1 comprises of 2 d subcomponent' functions,

with each function depending on a group of variables indexed by a particular subset of

{,... , d}, including the empty set. This expansion can be made unique by requiring

all nonconstant subcomponent functions fA to integrate to zero with respect to the

marginal density of each random variable in A [111], that is

jfA(tA)PY (ti)dti = 0, i E A = 0. (3.2)

This constraint, which we refer to as the strong annihilating constraint, ensures that

each nonconstant subcomponent has zero mean,

Ey[fA] = 0, (3.3)

and any two distinct subcomponents within the expansion are orthogonal,

Ey[fAfA] = 0, (3.4)

where 0 A {1,.., d}, 0 # {1,..., d}, and j $ A.

Integrating Equation 3.1 with respect to the marginal distribution PYAC, that is

over all variables except A, and using Equation 3.2 yields the subcomponent func-

'Not to be confused with the components which comprise the system.
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tions [114, 66],

fo = J f(t)py (t)dt,
JRd

fA(xA) = f(xA, tAc) 11 py(ti)dti - ( f5(x)).
J R~~~IiE.4c ACA

Applying the expectation operator to f and recognizing the strong annihilating con-

straint we obtain the mean,

Ey[f] =j f(t)py (t)dt = fo. (3.6)

Similarly, applying the expectation operator to (f - Ey[f]) 2 we obtain the variance

which we denote by D,

D = JRd (f(t) - Ey[f]) 2py(t)dt = f(t)2py(t)dt - fo2. (3.7)

Given the decomposition of f in Equation 3.1 and recognizing the strong annihilat-

ing constraint (i.e., orthogonality between any two distinct subcomponent functions)

the expectation operator applied to f2 results in,

[ f(t)2py(t)dt = f2 + DA, (3.8)
O AC{1,2,...,d}

where the partial variances are given by

DA = j fA(t)2py(t)dt. (3.9)

Combining Equation 3.7 with Equation 3.8 implies

d d

D = Dp+ + D -+ + Dj1,2,...,d DA, (3.10)
i=1 i,j=l #AC{1,2,...,d}

which was notionally depicted on the left in Figure 3-1.
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The global sensitivity indices are defined as

SA = DA (3.11)
D

where the sum of all global sensitivity indices is unity. Global sensitivity indices with

only a single subscript, (e.g., S{li), are called main effect indices. Inputs with large

main effect indices are known as the "most influential factors", or the inputs which,

on average, once fixed, would result in the greatest reduction in variance. Global

sensitivity indices with multiple subscripts, (e.g., Syj,31), are called interaction effect

indices. Summing the main effect index of {i} along with all the interaction effect

indices that include input {i} results in the total effect index, r, which is defined as

T{i = S{i + E S{i,A}. (3.12)
f4AC{1,2,...,d}\{i}

Total effect indices quantify how influential an input is on the output of interest

variance. If an input has a negligible total effect index (i.e., 'T{j < 1), then this is a

necessary and sufficient condition for {i} being a noninfluential input with respect to

the output of interest variation [1031.

3.1.2 Computing sensitivity indices

The main and total effect indices can be computed via Monte Carlo simulation as

follows [103], where hat quantities denote an estimate of the corresponding true quan-

tities. For d inputs, the calculation of sensitivity indices requires (d +2) Monte Carlo

simulations (each with n model evaluations) if both the main effect and total effect

indices are desired [103]. The estimates for the mean and variance are computed by,

A = f(y)
(3.13)

b= !]f(yi)2 f02,
ni=1
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where yZ = [yJ, --- yl]T is a vector of random samples drawn from their respective

target distributions. To compute the main effect index for A = {i} would require

evaluating the previous n model evaluations with the random samples yi for all

j E {1, ... , n} having been resampled from their respective target distributions. The

main effect index is evaluated as follows:

s{i} = 1 , Y-11Yfizz +1i ,... , QI]) -fe, (3.14)

where denotes the sample which has been resampled from its respective target

distribution. Similarly, to compute the total effect index for A = {i} would require

evaluating the initial n model evaluations with the random samples yA for all j E

{1,... , n} having been resampled from its respective target distribution. The total

effect index is evaluated as follows:

i = f(yrs) f([yl,..,yg Qg .,y] f (3.15)

3.2 Decomposition-based global sensitivity analysis

From a system-level perspective, the objective is to identify which of the system inputs

are the most influential with respect to the variance of the system output of interest.

To rank the influential inputs in terms of importance we must evaluate the main

effect index, Equation 3.14, for each system input. However, since we cannot assemble

the system, we may not directly evaluate the main effect indices using Monte Carlo

simulation [103]. Instead, we must evaluate Equation 3.14 using a decomposition-

based approach. We rely on the decomposition-based uncertainty analysis algorithm

presented in Chapter 2 to quantify the system's main effect indices. We assume the

system inputs are independently distributed, therefore we can apply the variance-

based method by I.M. Sobol'. This section provides the procedure to evaluate, using

the decomposition-based uncertainty analysis algorithm, the main effect indices of

the feed-forward multicomponent system.
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3.2.1 Formulation

In Section 3.1, we derived the main effect index and presented an approach to es-

timate this quantity using Monte Carlo simulation. Here we shall express the main

effect index with respect to the ith input variable by combining Equation 3.9 with

Equation 3.5 and the strong annihilating constraint as,

Dfil varyi (Ey~ [f I Y4)
S ,s = = .(3.16)

D vary(f)

Similarly, sensitivity indices of higher-order subcomponent functions can also be ex-

pressed in this fashion. Take for instance the sensitivity index associated with the

interaction term fli,3i,

1 varfyy }(Eyj,yjc[f I Y]) (3.17)
vary(f)

where i / j.

Since the equations above require evaluating the expectation of f conditioned on

random variables we cannot directly implement a decomposition-based methodology.

Instead, we overcome this aforementioned challenge by evaluating the expectation

of f conditioned on finite measures and not on random variables. For example, in

Equation 3.16, instead of conditioning on the random variable Y2 which has zero

measure, we condition over a range which encompasses Y2 and by construction has

a nonzero measure. By relaxing the conditional dependence in this way, we may

evaluate the expectations contained within these equations shown above using our

decomposition-based uncertainty analysis algorithm. To construct these conditional

sets of finite measures we partition the input space into a finite number of bins [1031.

3.2.2 Algorithm

Here we present the algorithm for evaluating the main effect indices of a multicompo-

nent system in a decomposition-based approach. Afterwards, we discuss the extension

of this algorithm to evaluate interaction effect indices. The algorithm presented here
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requires that the "offline phase" of the decomposition-based uncertainty analysis algo-

rithm presented in Chapter 2 has been completed (i.e., that local uncertainty analyses

have been performed for each component of the system).

To evaluate the main effect index for the it system input we first discretize

the range of the system input into a set of finite partitions {[tk, tk+1) K 1 where

K is the total number of partitions and the partitions are not overlapping (i.e.,

[t k,tk+1) n [tk+1,tk+2) - 0). Beginning with the first partition (i.e., k = 1), we

restrict the input's target measure to be non-zero only within the said partition and

zero elsewhere. The ith system input's new target measure is then given by,

v(A) iAE i,k-
i(A) = iAE , (3.18)

0 otherwise

where P,k = [tk, tk+1). By defining the input's new target measure according to Equa-

tion 3.18 we are approximating the conditional constraint contained in Equation 3.16.

After defining the input's new target measure we can now formulate this problem as

a decomposition-based uncertainty analysis. This allows us to evaluate the statistics

of interest, here an expectation, while satisfying our conditional constraint. For ex-

ample, the conditional expectation presented in Equation 3.16 is now expressed as,

EJiy- [in (3.19)

where Yi is associated with the continuous measure i; in Equation 3.18.

Note, to evaluate these statistics of interest we only require the "online phase"

of the decomposition-based uncertainty analysis algorithm where the ith input target

measure is provided by Equation 3.18. We emphasize that this procedure, which

utilizes the global compatibility satisfaction step in Chapter 2, requires no further

evaluation of the components. An equivalent procedure to the one performed here,

that is adjusting the system's input target distribution function and reevaluating

the system uncertainty analysis, was previously demonstrated in the flexibility of

our decomposition-based uncertainty analysis in Section 2.7. Next, this procedure of
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restricting the input's target measure and performing a decomposition-based uncer-

tainty analysis is repeated for each partition. Upon evaluating, for each partition,

the expectation of the output of interest we may at last evaluate the variation over

these K expectations. Numerically this discretization approach approximates Equa-

tion 3.16 by

ZE= 1 Py(Yi E Pi,k)(Elf ycj [f] - {o},i)2
Si vary (f (3.20)

where f{o},j is given by

K

-jgo,= PY(Yi C Pi,k)E{- yc[f]. (3.21)
k=1

Here the hat quantities denote an estimate of the corresponding true quantities. By

the strong law of large number, as the number of partitions goes to infinity (i.e,

K -+ oc) we obtain Equation 3.16. However, increasing K will require being able

to evaluate the decomposition-based uncertainty analysis algorithm on smaller and

smaller partitions. Therefore, in practice, K should be selected with care since the

number of proposal samples within each partition decreases (i.e., poorer approxima-

tion of Epy ycI[f]) with increasing K. We demonstrate this issue through an example

in Section 3.3.

To evaluate all the main effect indices of the system requires Kds decomposition-

based uncertainty analysis evaluations where ds is the total number of system input

variables. The algorithm to evaluate Equation-3.20 is given in Algorithm 3.
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Algorithm 3: Decomposition-based global sensitivity analysis.

Data: Number of partitions K and the decomposition-based uncertainty

analysis results (i.e., proposal samples, target measures, and vary(f)).

Result: Main effect indices S{fi for all i E {1,... , ds}.

for i = 1: ds do

Determine sets Pi, [tk, tk+1) for k c {1,2,...,

for k = 1: K do

Adjust the ith system input target measure via Equation 3.18;

Perform a decomposition-based uncertainty analysis;

Evaluate and store the statistic of interest, E [f 1;
end

Evaluate the mean and main effect index in Equation 3.20;

end

We may also quantify higher-order indices through a similar approach. For exam-

ple, evaluating Equation 3.17 for any two distinct system inputs requires partitioning

the input space into K2 partitions, where for each partition, a decomposition-based

uncertainty analysis is performed. This procedure needs to be repeated for all possible

combinations of two distinct system inputs (i.e., (ds)). Evaluating these interaction

effect indices and higher-order indices is possible but computationally expensive.

3.3 Application to a gas turbine system

This section demonstrates the decomposition-based global sensitivity analysis ap-

proach on a gas turbine blade application. We compare the results from our method

to the all-at-once Monte Carlo system global sensitivity analysis.

3.3.1 Gas turbine system setup

This application problem is a continuation of the gas turbine system presented in

Section 2.7. The objective of our global sensitivity analysis is to quantify the main
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effect indices of the system inputs with respect to the system output of interest, here

the economics of the product. By quantifying the main effect indices we may guide the

allocation of future research efforts aimed at reducing the system output of interest

variability.

As was the case for the decomposition-based uncertainty analysis presented in

Section 2.7, here for the "offline phase", each component individually performs a local

uncertainty analysis using the input proposal distributions specified in Tables 2.3-

2.6. Each component uses n = 10, 000 independent proposal samples in its local

Monte Carlo simulation. The number of proposal samples for this study was deemed

adequate in Section 2.7 for the decomposition-based uncertainty analysis. Output

samples for each component are stored in a database. For the "online phase", here

Algorithm 3, we consider the uncertain system inputs provided in Table 2.2.

To evaluate the main effect index for the ith system input we first partition the

ith system input range into K bins. For this study we used K = 10 partitions

where each partition encloses an equal target probability (i.e., v(P:,i) = v(P,j) for all

i, j E{,..,K)

3.3.2 Global sensitivity analysis

The main effect indices of the gas turbine blade application are provided in Figure 3-

1. Our results are compared to the all-at-once Monte Carlo system global sensitivity

analysis, Equation 3.14, using n = 100, 000 samples. The results provided in Figure 3-

1 demonstrate that our decomposition-based global sensitivity analysis algorithm can

accurately identify the most influential system input variables.

Table 3.1 presents the performance of the decomposition-based global sensitivity

analysis algorithm with respect to the number of partitions and number of proposal

samples. The performance is evaluated by,

ds

= Z iS1 - S{f 1 , (3.22)
i=1

where S{g~ is given by the all-at-once Monte Carlo global sensitivity analysis approach
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Figure 3-2: The decomposition-based main effect indices (DB-MSI) are plotted against the all-at-

once Monte Carlo main effect indices (SLMC-MSI). The results demonstrate that the decomposition-

based approach quantifies the main effect indices accurately with respect to the standard all-at-once

Monte Carlo approach.

and Sf} is given by our decomposition-based global sensitivity analysis approach. The

results indicate that the accuracy of our estimate improves with increasing number

of bins and increasing number of proposal samples as expected.

Figure 3-3 presents two forms of error which might arise when the decomposition-

based global sensitivity analysis algorithm performs inadequately. On the left are the

results using K = 2 partitions and n = 10, 000 proposal samples. Here the summation

of the main effect indices is greater than unity which indicates a failure in our analysis

since the sum of all global sensitivity indices is unity and all variance-based sensitivity

indices presented here are by definition nonnegative. On the right are the results

using K = 2 partitions and n = 5,000 proposal samples. Here the decomposition-

based sensitivity analysis incorrectly characterizes T,2 as an influential system input

variable. Clearly, the latter of the two failures is more difficult to identify since it

cannot be assessed using strict variance-based global sensitivity analysis conditions.

These two forms of failure arise due to two interacting effects. These effects in-
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clude using a small number of partitions (i.e., small K) and having a small effective

sample size per partition (i.e., small n). Using too few partitions results in inaccu-

rately estimating Equation 3.16 using the approximate main effect index presented in

Equation 3.20. However, having a small effective sample size results in inaccurately es-

timating the expectation in Equation 3.20 using the decomposition-based uncertainty

analysis algorithm. These two issues are inversely related; a high number of partitions

implies a low effective sample size per partition and vice versa. As demonstrated in

Section 2.6, we can gradually increase the number of partitions while simultaneously

using an a posterior indicator, such as the effective sample size, to provide confidence

in our results.

Table 3.1: The performance of the decomposition-based global sensitivity analy-

sis algorithm as quantified by Equation 3.22 is presented. The results suggest the

decomposition-based global sensitivity analysis degrades with decreasing number of

partitions and decreasing number of proposal samples.

K=10 K=5 K=2
n = 10000 0.1645 0.1921 0.4976
n = 5000 0.1807 0.2246 0.4165
n = 2000 0.3074 0.5001 0.5679
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Figure 3-3: The decomposition-based main effect indices (DB-MSI) are plotted against the all-at-

once Monte Carlo main sensitivity indices (SLMC-MSI). The plot on the (left) implements K = 2

partitions and n = 10, 000 proposal samples. The plot on the (right) implements K = 2 partitions

and n = 5, 000 proposal samples. These results show two scenarios for which the decomposition-

based global sensitivity analysis algorithm performs inadequately. On the (left) our approach sug-

gests the sum of the main effect indices are greater than unity. On the (right) our approach erro-

neously suggests T12 is an influential system input.
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Chapter 4

Optimal L2-norm empirical

importance weights

To estimate statistics from a target distribution one may apply standard Monte Carlo

simulation, using random samples that are generated from the target distribution [98].

However, if one only has available random samples generated from a proposal distri-

bution, then evaluating statistics from a target distribution given random samples

generated from a proposal distribution is acknowledged as the change of measure.

This problem arises in a host of domains such as information divergence, particle fil-

tering, and importance sampling as previously presented in Section 2.3 (see e.g., [116]

for a fuller discussion of applications). If both proposal and target distributions are

known and satisfy additional conditions, then the Radon-Nikodym Theorem provides

a solution [14]. In this chapter we consider the scenario whereby the distributions

from which the random samples are generated are unknown; that is, we have available

the samples but no explicit description of their underlying distributions.

In Section 4.1, we present the current practices for the change of empirical measure

and introduce our approach. Section 4.2 sets nomenclature, formalizes the objective

of this chapter, and presents the proposed optimization formulation. In Section 4.3,

we present the numerical formulation and examine properties of the optimization

statement. In Section 4.4, we prove that the proposed approach achieves conver-

gence in the L 1 -norm for multidimensional distributions and weak convergence for
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one-dimensional distributions. In Section 4.5, we examine the analytic solution to the

optimization statement for the case of a one-dimensional distribution problem. Sec-

tion 4.5 also presents a numerical solution to the optimization statement and discusses

techniques that extend our approach to large-scale applications. In Section 4.6, we

demonstrate the properties of the proposed approach on a one-dimensional distribu-

tion problem. Section 4.6 also compares our approach to previous approaches on an

importance sampling problem over a range of parameters, evaluates the performance

of the optimization algorithms, and examines the relationship between discrepancy

theory and the proposed approach when the proposal and target are distributed ac-

cording to the uniform distribution.

4.1 Introduction to empirical change of measure

In this section we set the notation for the subsequent developments, establish the

problem statement, and review the current practices. The section concludes with a

description of our proposed approach.

4.1.1 Definitions and Problem Setup

In our setting, we assume the proposal measure y has finite support and is accessible

to us only through sampling; that is, we are provided with random samples of the

random variable X but we cannot evaluate Px or px explicitly. Let {x1, x2  
., X n}

be random samples of X, where n is the number of random samples. The objective

is to estimate statistics from the target measure v given random samples {x1, x2,

... , x"n} generated from the proposal measure p. The challenge with this objective,

recognized as a change of measure, is that the proposal measure t is accessible to us

only through sampling.

Although the Radon-Nikodym Theorem is still valid (if the underlying distri-

butions satisfy the appropriate conditions), it is indeterminable because we cannot

compute the Radon-Nikodym derivative (i.e., the ratio of the target probability den-

sity function to the proposal probability density function), herein referred to as the
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probability density ratio. To complete the change of measure, an importance weight

proportional to the probability density ratio needs to evaluated and associated with

each random sample. However, the importance weights cannot be computed directly

in the usual way, since the probability density ratio is indeterminable. In this chapter

we present an approach that overcomes this challenge by formulating and solving a

scalable optimization problem to determine the importance weights. We first discuss

several previously proposed solutions to this problem.

4.1.2 Current Practices

The previous approaches summarized here all assume that the random samples are

generated from an unknown distribution (see e.g., [1161 for a detailed discussion of

these approaches). As a result, these approaches seek to estimate the probability

density ratio from the random samples. The approach implemented in Section 2.4 is

a commonly used approach which estimates the unknown probability density function

from the random samples [1061. By estimating the proposal and target probability

density functions, we can then estimate the probability density ratio. The solution

to the change of measure problem then follows from the Radon-Nikodym Theorem

along with the estimated probability density ratio. However, estimating the unknown

probability density function from the random samples is difficult and is particularly

challenging in cases of high dimension as pointed out in Section 2.8 [106, 53, 1201.

In practice, this challenge can be overcome if the random samples are known to be

generated from a parametric distribution family, in which case a parametric density

estimation method can be employed.

As a result, other approaches have avoided estimating the probability density

function and instead estimate directly the probability density ratio using the random

samples. The kernel mean matching approach matches the moments using a universal

reproducing kernel Hilbert function [58, 47]. The probabilistic classification approach

computes the probability density ratio by applying Bayes' Theorem [93]. The impor-

tance estimation filtering approach minimizes the Kullback-Leibler divergence metric

between the estimated and actual probability density ratios [116]. The unconstrained
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least squares importance filtering approach minimizes the L2 -norm between the esti-

mated and actual probability density ratios [60]. The direct density ratio estimation

with dimension reduction solves the previous approach on a lower-dimensional space

[117]. These approaches share in common multiple attributes. They each present a

means of computing the probability density ratio using the random samples. They

each represent the probability density ratio using a set of basis functions, thereby

constraining the solution to exist within a specified basis representation. Finally,

these approaches require tuning parameters, which one can choose using a variant of

cross-validation.

4.1.3 Proposed Approach

Our approach avoids estimating or working with the unknown distribution function

or its probability density function. Instead, we work with the well-defined and deter-

minable empirical distribution function associated with the random samples. Specif-

ically, our approach, illustrated in Figure 5-1, formulates and solves an optimization

problem to determine a set of empirical importance weights that minimize the L2 -

norm between the weighted proposal empirical distribution function and the target

distribution function. In the example in Figure 5-1, the target is the beta distribu-

tion function, 3(0.5, 0.5), and the proposal random samples are generated from the

uniform distribution function, U(0, 1). The core idea of our approach is to compute

importance weights associated with the proposal random samples that transform the

weighted proposal empirical distribution function to the target distribution function.

We also constrain the importance weights to define a probability measure. This

requires that these importance weights are non-negative and that the empirical prob-

ability measure assigns a unit value to the entire probability space.

The approach proposed in this chapter shares resemblance to the recent construc-

tive setting of the density ratio estimate [121]. That work minimizes the regularized

L2 -norm between the weighted proposal empirical distribution function and the em-

pirical target distribution function, where the importance weights are defined on a

set of basis functions. Those importance weights are shown in [121] to converge in
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Figure 4-1: The proposed approach minimizes, with respect to empirical importance

weights associated with the proposal random samples, the L2 -norm between the

weighted proposal empirical distribution function and the target distribution func-

tion. In this example, we generated n = 100 random samples from the proposal

uniform distribution function, l(0, 1). The results show our weighted proposal em-

pirical distribution function, labeled "L20 Weighted Proposal", accurately represents

the target beta distribution function, B(0.5, 0.5).

probability to the Radon-Nikodym derivative, as the number of proposal and target

random samples tend to infinity. Our approach does not use a basis function repre-

sentation of the importance weights, since we are only interested in evaluating the

importance weights at the random sample locations (i.e., we associate one weight with

each random sample). We also do not include regularization, since this modifies the

solution and introduces smoothness that may not be desirable. Instead, we rely on

the optimization solvers to exploit the structure of the problem. Avoiding regulariza-

tion allows us to avoid tuning parameters, yet our formulation maintains convergence

in the L 1 -norm of the weighted proposal empirical distribution function to the target

distribution function, as the number of random samples tends to infinity. Moreover,

our optimization approach can be implemented at large scale (both high dimensional

distribution functions and a large number of random samples). Our approach has an

analytic closed-form solution in the case of a one-dimensional distribution problem,

which has a connection to the trapezoidal integration rule and achieves convergence
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almost everywhere of the weighted proposal empirical distribution function to the

target distribution function, as the number of random samples tends to infinity. Our

approach is also shown to relate to discrepancy theory.

4.2 Optimization Statement

In this section we formulate our solution to the change of measure objective by casting

the change of measure problem as an optimization statement. In introducing the

optimization statement we assume that the target distribution function and target

probability density function are known.

The typical approach to overcome the change of measure challenge, and the ap-

proach implemented in Section 2.4, is to apply density estimation to the random

samples {xi x 2 }.. , x', yielding an estimate of the proposal density px. However,

density estimation in high dimensions is notoriously difficult, and state-of-the-art ap-

proaches often perform poorly for high-dimensional problems. Therefore, we approach

the change of measure challenge in a different way-using instead the well-defined

proposal empirical distribution function,

P (t) = i (xi < t), (4.1)
n

i=1

where I(xi < t) is the maximum convention Heavyside step function defined as

R(x< t)= 1, ifXi < ti, Vi E {1,2,...,d} (4.2)
0, otherwise.

Here we have used the subscript and superscript notation for the empirical distribution

function, P , to identify the measure of the random samples from which it is built, yt,

and the number of random samples, n. The strong law of large numbers (SLLN) states

that the estimator P converges to the proposal distribution function Px defined as

Px(t) = p((-oo,t]), (4.3)
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as n tends to infinity almost everywhere (a.e.) for all continuity points t of Px(t)

[14].

To accomplish the change of measure objective, we propose to compute a set of

importance weights, defined here as empirical importance weights, to transform the

proposal empirical distribution function into the target distribution function. We in-

troduce n empirical importance weights, denoted by the vector w = [w1 , W2 , ... , Wn]

Each empirical importance weight wi is associated with a random sample x". We use

the notation

PX; (t) = wJ(xi < t) (4.4)
i=1

to represent a weighted empirical distribution function that is composed of n random

samples generated from the measure p and weighted by w. The empirical impor-

tance weights are dependent on the random samples, {xi, x2 
. n }; however, for

simplicity we do not show the dependency in the notation.

We now cast the change of measure objective as an optimization statement. The

objective is to minimize, with respect to the empirical importance weights, the dis-

tance between Pj.,, defined in Equation (4.4), and the target distribution function,

Py. The criterion selected is the L2-norm distance metric. Thus, the L2-norm ob-

jective function is defined as

W2(w) = j .. j (P (t) - Py(t)) 2 dt, (4.5)

conditioned on the scaled empirical importance weights being a probability measure.

That is, w satisfies the non-negativity box-constraint, wi > 0, V i C {1, 2, ... ., n}, and

the single equality constraint, 1Tw = n, where 1,, E R' is a vector with all entries

equal to 1. The optimization statement that determines the empirical importance

weights associated with the proposal random samples for the change of measure is

95



thus stated as follows:

arg min w 2(w)
W

s.t. Wi > 0, V i {1,2,. . . , n} (4.6)

1Tw = n.

In the above optimization statement, we have assumed that the target distribution

Py is known explicitly. However, our approach can be applied to the case where the

target measure is represented only through random samples of the random variable Y.

In that case, we replace Py in Equation (4.5) with the target empirical distribution

function Py", where m is the number of random samples of the random variable Y.

In the following development, we work mostly with the formulation defined in Equa-

tions (4.5) and (4.6); when applicable we introduce the target empirical distribution

function into the optimization statement.

4.3 Numerical Formulation

This section describes how the optimization statement (4.6) can be formulated as

a single linear equality and box-constrained quadratic program. Afterwards, we ex-

amine the properties of the optimization statement using the Karush Kuhn Tucker

(KKT) conditions.

4.3.1 Single Linear Equality and Box-Constrained Quadratic

Program

Upon substituting Equation (4.4) into Equation (4.5) and, without loss of generality,

confining the support of p to the unit hypercube, we obtain

2(W) ... w]I(x < t) - Py (t dt. (4.7)
2 jO 0 nYt)47
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This expression can be expanded as follows:

1~w = . . . f , ni < t))
'(W - / 1:WiRi(X L)

2JO n 0 n =(4.8)

-PY~t) W , (x t) + (Py (t)) 2dt.
i=1

The third term in the integrand of Equation (4.8) is independent of the optimiza-

tion parameter and thus can be discarded from the optimization statement without

affecting the optimal solution w. We now examine the first term and second term

individually and formulate their respective numerical representations.

The first term of the integrand in Equation (4.8) can be represented as

w(x 5 t) dt

n n =9)

w wj ... 1 (x' < t)(xi < t) dt
i=1 j=1

-~~~Hx <.~~w~J lit)f(4j < t) dtk

i=1 j=1 k=1

n n d

1 2 E dtk = wT Hw,
i=1 j=1 k=1 Z

where zj = max(x4, 4I) and x4 is the kth entry of random sample x'. Note that

H E R,", is a reproducing kernel and by definition a positive definite matrix (see

e.g., [89] for a review of this analysis). Additionally, the H matrix is the Hadamard

product of d individual matrices. To obtain the Hadamard construction of H, we

define the matrix corresponding to the single dimension k, Hk, where the (i, j)h

entry of Hk is
1

Hl. = dtk, (4.10)
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and k E {1, 2,... , d}. Then the (i, j)h entry of H can be defined as

d

Hi = as
k=1

which allows us to construct matrix H as

H = 2 (H1 0 H2

n
o ) 

H),

(4.11)

(4.12)

where "o" represents the Hadamard product.

The second term of the integrand in Equation (4.8) can be represented as

I 1
2Py(t)

0 n

i

A 1 1'0n 1
n

w b,

where the ith entry of b c Rn is

0 (4.13)

1
bi= - ... Py(t) dt. (4.14)

If the target distribution function, Py, is unknown and instead we have m random

samples of the random variable Y, yi, y 2, ... , ym}, then the ith entry of b is

bi = ....I -I (y < t) dt.
l2 d m =_

(4.15)
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Our modified optimization statement is now

'r= arg min Co 2(w)

s84. wj 2 0, Vic EIII . .. , n} (4.16)

T
1nw = n,

where

02(W)= (wTHw - 2wTb). (4.17)

Solving (4.16) yields the optimal empirical importance weights * that minimize our

original L2 -norm distance metric while satisfying the requirement of */n forming a

probability measure.

4.3.2 Karush Kuhn Tucker Conditions

The Lagrangian of the optimization statement (4.16) is

L(w, 6, A) = (WTHw - 2wTb) + 6(,w - n) - ATw, (4.18)

where 6 E R and A E Rn are the equality and inequality constraint Lagrange mul-

tipliers, respectively. The optimal solution to (4.16) satisfies the following KKT

conditions:
6*6, A)

= = H - *-b+61,-A

w% > 0, V iE {1, 2, .. ,n}

A> 0 V i E {1, 2,...n (4.19)

1TW =n

6 is sign unrestricted

)yb, = 0 ViE {1, 2,..., n}

where 1, E Rn and 0, E R are vectors with all entries equal to 1 and 0 respectively.

Since the optimization statement is a strictly convex quadratic program with linear

constraints, one may show that the solution * of (4.19) is the global solution to (4.16)
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[18]. This implies that for all n the following inequality holds,

(PY(t) - PM(t))2 dt < (Py(t) - P,(t)) 2 dt. (4.20)
J A JA(Yt A

where W = [WI, 02, .-. . , n]T is any set of importance weights that satisfies the con-

straints of the optimization statement (4.16).

The active set method is one numerical method that solves (4.16), and has been

shown to converge and terminate in a finite number of steps [67]. This method

employs an iterative approach that splits the solution space into an active set, A =

{i : wi = 0}, and a passive set, P = {i : wi > 0}. The active and passive sets are

updated iteratively until the KKT conditions are satisfied. At each iteration, the

method solves an optimization problem for the passive set importance weights that

has a closed-form solution. We use this closed-form solution to derive an analytic

solution for the special case d = 1 (Section 4.5.1); however, our general numerical

results employ optimization methods that are more amenable to large-scale problems,

as described in Section 4.5.2. Before discussing the optimization solution strategies

in detail, we first analyze the convergence properties of our approach.

4.4 Convergence

This section demonstrates that our approach, based on (4.16), exhibits convergence

in the L1-norm as the number of random samples tends to infinity. To demonstrate

convergence in the L1-norm we require the Radon-Nikodym derivative, which we

recall in this section. The section concludes with the convergence theorem and proof.

The Radon-Nikodym Theorem states that

v(A) = jh dp (4.21)

for any measurable subset A C F, where the measurable function h : Rd a R is

called the Radon-Nikodym derivative and is defined by the probability density ratio,

h = py/px (14]. In our problem setting, the Radon-Nikodym derivative exists but
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is unknown. Let {h(x 1 ), h(x2 ), . . . , h(x"I)} be the Radon-Nikodym derivatives corre-

sponding to proposal random samples {x1 , x2 ,... , x'}. To construct a probability

measure, define the Radon-Nikodym importance weights as h(x') = h(x)/Ih where

h = _E h(x). If weighted by h = [h(x 1), h(x2 ),..., h(Xn)T, the Radon-Nikodym

importance weighted empirical distribution function,

" = n h(xi)I(xi < t), (4.22)

converges to the distribution function Py by the SLLN as n tends to infinity almost

everywhere for all continuity points t of Py(t).

We now present the convergence proof using our empirical importance weight vec-

tor *. We emphasize that Theorem 2 given below does not imply that the empirical

importance weights converge pointwise to the Radon-Nikodym importance weights

as the number of random samples tends to infinity. The proof establishes that the

sequence of functions {P;.*, P ,, ... }, defined by Equation (4.4), as the number of

random samples tends to infinity converges to the target distribution function in the

L 1-norm.

Theorem 2. Let Py be the distribution function of v and {x, x 2 , .. . , xn} be random

samples generated from the finite support probability measure it where v is absolutely

continuous with respect to y. Then there exists a set of empirical importance weights

w = [z12, W2 - ,nT satisfying (4.16) such that

lim j Pz,(t) - Py (t)| dt = 0. (4.23)

where A = {t E Rd I px(t) > 01.

Proof. We begin by applying the Radon-Nikodym importance weights h, which satisfy

the constraints in the optimization statement (4.16). As stated previously, by the

SLLN we have

lim P gO) "Py(t), (4.24)
n-of o

for every continuity point t of Py(t). Since there exists an integrable function dom-
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inating P" g(t) < 1 for all t E A and n, we can apply the dominated convergence

theorem to obtain convergence in the L1-norm:

lim Py(t)
n_ 0o JA A t

- P" g(t) dt = 0.

Using the inequality Py(t)

on the L2-norm,

- Pq (t) 1, for all t c A and all n, we obtain a bound

(Py(t) - P7'i (t))
2 dt j I Py(t) - Pj 1 (t) dt.

Combining Equation (4.26) with Equation (4.25) we show convergence in the L2 -

norm:

limL(Py(t) - P"(t))2 dt = 0. (4.27)

Since fi satisfies the constraints of the optimization statement (4.16), we use Equa-

tion (4.20) to show that

j(PY(t) - PR,.(t)) 2 dt < (Py(t) - P" (t)) 2 dt. (4.28)

This result coupled with Equation (4.27) states that convergence of PZ . to Py in

the L2 -norm implies convergence of P, to Py in the L2-norm,

lim (PY(t) -n -- oo J A

By the Cauchy-Schwarz inequality,

L IPy(t) - P ,(t)I dt

(Py(t) - PR,'(t))2

P dt = 0. (4.29)

dt) . (j(1)2 dt) (4.30)

)1/2
< M. (P ( - pR,,(t))2

where M < oc. Coupling this statement with (4.29), we show convergence in the

102

(4.25)

(4.26)



Ll-norm,

lim L Py (t) - P ,,(t) dt =0. (4.31)
n-+oo A A431

D

For the one-dimensional case (i.e., d = 1), Equation 4.31, is the Kantorovich

or L-Wasserstein distance metric 145]. Convergence in the L-Wasserstein distance

metric under our stated assumption, that the set A is finitely supported, establishes

weak convergence. Weak convergence, or convergence in distribution, for this work

establishes that

liM p ;,,, t) "a- py (t),( .2
n-(oo

for every continuity point t E A of Py(t) where A = {t E R I px(t) > 0}.

In Theorem 2, we required that the proposal measure have finite support. This

constraint was necessary in order to invoke the dominated convergence theorem, Equa-

tion 4.25, and the Cauchy-Schwarz inequality, Equation 4.30. However, this constraint

can be an artifact of the theorem and future work may one day show similar conver-

gence without constraining the proposal measure to have finite support. In practice

and as demonstrated in Section 4.6, this constraint does not need to be strictly en-

forced since we work with a finite number of samples. Further, one may approximate

unsupported distributions using their respective truncated distributions.

Corollary 3. Let {y1, y 2, ... I ym} be m random samples generated from the proba-

bility measure u and {x1, x2 , ... , x"n} be n random samples generated from the finite

support probability measure p where v is absolutely continuous with respect to Y. Then

there exists a set of empirical importance weights V = 1, &2,--- , n] satisfying

(4.16) with vector b defined by Equation (4.15) such that

lim v ,(t) -PVf e(t) I dt = 0. (4.33)
min n,m-oo 'A

where A = {t E Rd I px(t) > 0}.

Proof. Application of SLLN and the dominated convergence theorem we can establish

that the estimator Pg converges in the L-norm to the target distribution function
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Py, noted as

lim i J Py (t) - Pg (t)I dt = 0. (4.34)
Min(m)-+o JA

By Theorem 2 in combination with Equation (4.34) and the triangle inequality

we define a bound on the quantity of interest and conclude the proof [100],

II (t) - Pg(t) I dt
A (4.35)
< PA'(t) - Py(t)I dt + j Py(t) - P (t)I dt.

A JA

4.5 Solving the Optimization Statement

In this section we examine the solution to the optimization statement (4.16). We be-

gin by presenting the analytical solution to the optimization statement for d = 1 as

this solution provides a better understanding of the optimization statement. The sec-

tion concludes with the general solution to the optimization statement by numerical

methods. Here we introduce methods that extend our approach to large-scale appli-

cations and demonstrate how to incorporate a target empirical distribution function.

4.5.1 Analytic Solution for R

For the case when d = 1, we present the analytic solution to (4.16) and demonstrate

that this solution satisfies the KKT conditions (4.19). Note that for this case the

random variable is one-dimensional, but the dimension of the optimization problem

is still n, the number of proposal random samples. Without loss of generality, let

the random samples of X : Q -÷ R, {x',x 2 ,... ,Xn}, be ordered such that x' <
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xi+1 , V i E {1, 2,. . . , n - 1}. Using Equation (4.12), the matrix H is

1
H = 2

(1

(1

(1

(1

- x1)

- x2)

- X3)

(1

(1

(1

- x2)

X2)

- x3)

(1

(1

(1

_ x3)

- x3)

-x3)

. . . (1

. . . (1

. . . (1

... (1 - xn)

Similarly, using Equation (4.14), the vector b is

1
n

f 1PyM(t)

PY(t)

dt

dt

f Py(t) dt

(4.37)

Then the solution to (4.16) is

(4.38)

n n

and
2

(X2nX 1 ) XI

3

n Xx~

Py (t) dt +

Py (t) dt

Py(t) dt

n

- >_1lwi

- ~n-2 v

(4.39)

(4.40)

This solution can be derived using the active set method j67]; we omit the details of the

derivation here for brevity, but show that this solution satisfies the KKT conditions

(4.19).
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- n")

-- n)

-- n)

- X n) (I -- X") (I - Xn)

n
n

x,-, Py(t) dt
Xn-Xn-1) 
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First, it can be seen that the empirical importance weights (4.40) are by construc-

tion non-negative, since Py is a monotonically non-decreasing function. Thus, in this

d = 1 case, the non-negativity constraints on the importance weights do not play a

role in constraining the optimal solution and all the corresponding Lagrange multipli-

ers are zero, A, = 0, V i C {1, 2,. .. , n}. This result means that the complementarity

conditions are satisfied. Second, summing the terms in (4.40), it is easy to show that

the equality constraint 1Tw = n is satisfied. Lastly, we show that Hk = b - 61n

holds for each row entry j E {1, 2,... , n}. That is, we show

1 - i + 1 ?n(1 -n-)

n2 n K2 Z i(1 - i) + n2 =1 i=i+1 (4.41)
1 1-1 x -n
- Py(t) dt- (- fjPy(t) dt+ .
n xi n x n n

By substituting the empirical importance weights (4.40) into the left-hand side of

Equation (4.41) and simplifying, we obtain,

S-- - n-1 ( ) (1 - xn)

i=1 i=j+1 (4.42)

= Py(t) dt + -.
TI xjo n

We obtain Equation (4.41) upon adding and subtracting bn to Equation (4.42),

- xnPy(t)dt +-1(1-n) + bn- bn
1 x (4.43)

1 Xn z-
=- Py (t) dt -- Py (t) dt +.

n xi n x n n

Since the KKT conditions are satisfied, (4.38)-(4.40) represent the solution to the

optimization problem (4.16) for d = 1.

If instead we are given a target empirical distribution function represented by m

random samples {y1 , y 2, . . , ym} generated from v, then the optimal solution remains

the same, with Py in (4.39)-(4.40) replaced by Py".
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We conclude this subsection with a demonstration of Theorem 2 using the empir-

ical importance weights defined in (4.40). That is, we show that

limc~ =R*t "Py (t), (4.44)n-*oo

for every continuity point t C A of Py(t) where A = {t E R I px(t) > 0} has

finite support. Given v is absolutely continuous with respect to yL, let i = {j C

{1, 2, . . , n - 1} i t E [xi, xj+1 )} where t is a continuity point of Py (i). We expand

PZK(i) using the empirical importance weights from (4.40):

. = iE(Xi < ) = / Py (t) dt. (4.45)

Given that Py is monotonically non-decreasing and using Equation (4.45), we obtain

the following inequality:

Py(xi) _< PY(i), PZ.;(i) < PY(xi+1. (4.46)

Since the target distribution is continuous at t, this ensures for every 6 > 0 there

exists a 6 > 0 such that IPy(x) - Py(i)I < c for all points x c A for which Ix -ti < 6.

Now, since v is absolutely continuous with respect to ft, there exists a finite n which

is sufficiently large that we can find an i = {Ij C {1, 2,... , In - 1} I E [xi, x+ 1 ] }

that yields Ix' - il 5 6 and Ix'+ 1 - l 6. This implies lPy(x') - Py(i)l < E and

|Py(xi+l) - Py(i)| < c. Lastly, by Equation (4.46) and application of the triangle

inequality, we obtain

IP (t) - Py(f)I

< |PY(xi) - Py(Xi~')I (4.47)

_ Py(x") - Py( IPy( ) - (xi+1)

< 26,

which yields the desired result for every continuity point i E A of Py(i) as n tends to
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infinity.

4.5.2 Optimization Algorithm

Here we focus on the optimization statement for the general case when d > 1 and

examine algorithms that extend our approach to large-scale applications (i.e., a large

number proposal random samples, n). The challenge with solving the optimization

statement (4.16) when d > 1 is that the matrix H is not analytically invertible as

was the case for d = 1. As a result, we rely on a numerical optimization routine to

solve (4.16).

The optimization statement in (4.16) is classified as a single linear equality and

box-constrained quadratic program. A popular application which falls into this

class of problems is the dual form of the nonlinear support vector machine opti-

mization statement [120]. That application resulted in algorithms to extend single

linear equality and box-constrained quadratic programs to large-scale applications

[92, 31, 72, 131]. For this work we have selected two large-scale optimization algo-

rithms that exploit our problem structure: the Frank-Wolfe algorithm [42] and the

Dai-Fletcher algorithm [31].

The Frank-Wolfe algorithm is well-suited for solving (4.16) since the objective is

a differentiable convex function and the constraints are a bounded convex set. The

core idea behind the Frank-Wolfe algorithm is to approximate the objective with a

linear function and then take a step in the descent direction. The Frank-Wolfe algo-

rithm is particularly attractive because it has well-established convergence rates, low

computational complexity, and can generate sparse solutions. The pseudo algorithm

describing the Frank-Wolfe algorithm tailored to the optimization statement (4.16) is

given in Algorithm 4. Note that the step length a can be chosen to be the determin-

istic value 2/(2 + k), where k is the iteration number, or alternatively a can be chosen

such that it minimizes the objective function of (4.16) at that particular iteration.

The computational complexity of the Frank-Wolfe algorithm per iteration is low since

it requires only a rank-one update to the gradient vector at each iteration. With the

structure of our problem, this update can be computed very efficiently.
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Algorithm 4: Frank-Wolfe Algorithm for solving (4.16).

Data: Random samples x, vector b, initial feasible solution wo, and

termination criteria.

Result: Empirical importance weight vector '.

Initialization: w = o

a =H,

g = a - b,

for k = 1, 2, ... do
- Steepest descent direction: f = arg minieG{1,2,...,.}(9i),

1, if i= f

0, otherwise
- Set + = +a( w - W), where a c [0, 1],

- a= (1-)a + aH(.,),

- g a - b,

if (termination criteria satisfied) then
I Exit

end

end

As a second option, we examine the Dai-Fletcher optimization algorithm. The

general idea of the Dai-Fletcher algorithm is to construct the Lagrangian penalty

function
1

L(w; 6) (WTHw - 2wTb) - 6(1,T - n), (4.48)

where J is the equality constraint Lagrangian multiplier. Then for any fixed 6, the

box-constrained quadratic program [30],

W(6) = arg min L(w; 6)
W (4.49)

s.t. W e 0, V i E i1, 2,r.c.l . , n},

is solved. Next, J is adjusted in an outer secant-like method to solve the single
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nonlinear equation,

r() = 1T*(6) - n = 0. (4.50)

That is, Equation (4.50) enforces that the solution of (4.49) satisfies the equality

constraint (i.e., exists in the feasible region). In summary, for each iteration of the

Dai-Fletcher algorithm, a box-constrained projected gradient-based algorithm is used

to compute a new solution for (4.49). This solution is projected into a feasible region

using a secant projection approximation method, thereby satisfying Equation (4.50).

A summary of the Dai-Fletcher algorithm is given in Algorithm 5.

Algorithm 5: Dai-Fletcher Algorithm for solving (4.16).

Data: Random samples x, vector b, initial solution wo, and termination

criteria.

Result: Empirical importance weight vector w.

Initialization: * = wo

for k = 1, 2, ... do
Compute gradient of (4.48),

Take a steepest descent step,

Project into feasible region by (4.50),

-Possibly carr u a" lnM serch

Calculate a Barzilai-Borwein step length,

Update the line search control parameters,

if (termination criteria satisfied) then
I Exit

end

end

The termination criteria in Algorithm 4 or Algorithm 5 may incorporate a maxi-

mum number of iterations and a minimum tolerance associated with the gradient of

the objective function in (4.16) or the Lagrangian penalty function, Equation (4.48),

respectively. Although Algorithm 4 and Algorithm 5 may in some cases terminate
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prior to locating the global optimal solution, by construction they generate a sequence

of feasible iterates. In Section 4.6, we evaluate the performance of these two algo-

rithms over a range of parameters. The remainder of this section discusses numerical

techniques to extend our approach to large-scale applications and to incorporate the

target empirical distribution function.

The largest computational expense in Algorithm 5 is in the calculation of the

matrix-vector product, Hw. The matrix-vector product, Hw, is also required in

Algorithm 4, but since it only needs to be evaluated once, it has less impact on the

computational performance of Algorithm 4. In the circumstance where the matrix H

is small, the matrix can be assembled and stored for computations; however, large-

scale applications (many samples) may prohibit assembly of the matrix H. In these

cases, one option is to use the Frank-Wolfe algorithm and avoid repeated matrix-

vector products altogether. Since in some cases the Dai-Fletcher algorithm may yield

improved convergence rates, another option is to exploit the structure in the problem

to reduce the numerical complexity of the matrix-vector product calculations. In

particular, we recognize that since active set empirical importance weights are zero,

they do not contribute to the matrix-vector product. As a result, only the columns

of matrix H associated with passive set empirical importance weights are required

for the matrix-vector product calculation. Thus, the numerical complexity of the

gradient evaluation is O(n|Pjd2+n!P|), where the first term captures the construction

of matrix H, the second term captures the matrix-vector product, and JP denotes

the cardinality of the passive set. In addition, efficient algorithms which rely on

the divide-and-conquer technique have been developed and applied successfully to

Equation (4.9) 12, 54]. Lastly, one may take advantage of parallel routines to divide

and conquer the matrix-vector product [132, 85].

Solving the optimization problem also requires evaluating the vector b. Here

we will describe two special circumstances for which the vector b can be directly

evaluated: an independently distributed target distribution function and a target

empirical distribution function. For an independently distributed target distribution

function we can define the target measure 1/ as the product of d individual measures,
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v = 9 v ... 0 vd, where vi is the 2th target measure on R. Then the resulting target

distribution function can be expanded using a product series as Py (t) = ]Jk PY, (tk).

The vector b, Equation (4.14), can then be evaluated as a Hadamard product over

each dimension:

If the target distribution function is unknown and is instead estimated by the target

empirical distribution function given m random samples {y1 , y2 ,. , m} generated

from v, then there also exists an approach to directly construct the vector b. The

approach requires expanding Equation (4.15) as follows:

f1 f1 1  1

bX =Py ... dtx fX 2P)(it) dt,
b m 0= .0 d (4.52)

=Hkv,

and noting the similarities with the matrix-vector product eiw. Here we define v E

mas the importance weights of the target random samples (i.e., v = 1, Vi E

{1, 2,..., m}). Additionally, we define an entry of matrix H E h as

apa = 1xdtk, (4.53)

nm E10 m

where 43 = maz(xi, y(). The vector b is then computed by the matrix-vector

product (4.52).
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4.6 Applications

In this section we apply the proposed approach to a number of numerical experiments.

In the first application, we demonstrate the properties of the proposed approach on

a one-dimensional distribution problem. For the second application, we compare

the proposed approach to previous approaches on an importance sampling problem

over a range of parameters. The last application examines the relationship between

discrepancy theory and the proposed approach when the proposal and target are

distributed according to the uniform distribution. We also use this opportunity to

evaluate the performance of the Frank-Wolfe algorithm and Dai-Fletcher algorithm.

4.6.1 One-Dimensional Numerical Example

This analysis revisits the problem presented in Figure 5-1. However, instead of us-

ing the analytic empirical importance weights (4.40), as was done in Figure 5-1, this

example uses the Frank-Wolfe algorithm with a step length ce = 2/(2 + k) and pre-

mature termination to obtain sparse solutions (recall that the Frank-Wolfe algorithm

updates only one weight at each iteration). To initialize the Frank-Wolfe algorithm

(i.e., wo), we choose an empirical importance weight vector with entries equal to

ri, if i=ef
0o'i = (4.54)
0, otherwise

where t E {1, 2, . . ., n} is selected uniformly at random. The results of this numerical

experiment using n = 100 proposal random samples are presented in Figure 4-2. The

top and bottom plots show the results after 25 and 100 iterations, respectively, of the

Frank-Wolfe algorithm.

These results illustrate that the proposed approach produces accurate represen-

tations of the target distribution function. Since the support of the proposal distri-

bution function is finite, we can guarantee weak convergence by Theorem 2 (i.e., L-

Wasserstein distance metric); permitting the Frank-Wolfe algorithm to run for more

iterations would recover the analytic empirical importance weights (4.40). However,
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the sparse empirical importance weights, shown on the top plot of Figure 4-2, are

already a good approximation and may be advantageous if one wishes to evaluate

computationally expensive statistics with respect to a complex or unknown target

distribution function. That is, with the proposed approach, we have demonstrated

one can approximate a target distribution function using a small set of optimally

weighted proposal random samples. These results also illustrate that the proposed

approach naturally accounts for clustering of the proposal random samples and other

deviations from the original proposal distribution function. In the next section we

compare our approach to previous approaches over a range of multiple-dimensional

distributions with the application of the target empirical distribution function.

4.6.2 Importance Sampling

Importance sampling is a commonly used technique for estimating statistics of a

target distribution given random samples generated from a proposal distribution.

In this importance sampling example, the target and proposal probability density

functions are py ~ M(0, I) and px - K(1/v/d, I), respectively, where I C R',d

is the identity matrix. Since these measures have infinite support, although our

approach is still applicable as demonstrated in this application, we cannot guarantee

weak convergence. For this example we assume we do not known py or px; but, are

provided with proposal random samples {x1, x2 ) I I } and target random samples

{y1 , y2 , ... , y'}. To compare our approach to other existing approaches, we assume

the target distribution function is unknown and instead estimate it using the target

empirical distribution function.

To assess the performance of the various approaches, we consider the statistic

E j]I(t E A)py(t) dt, (4.55)

where A = {t C Rd I (t, 1) > dI} is the event of interest. Regardless of dimension,

the solution to Equation (4.55) is given by E = (D(-1) where 4D is the standard

normal cumulative distribution function. We will estimate Equation (4.55) using the
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Figure 4-2: Performance of our optimal empirical importance weights determined

using the Frank-Wolfe algorithm with step length a = 2/(2 + k) and premature

termination. This example uses n = 100 proposal random samples generated from a

uniform distribution function, U(0, 1). The target distribution function is the beta

distribution function, B(0.5, 0.5). Terminating the Frank-Wolfe algorithm after 25

iterations (top) results in a sparse empirical importance weight vector. Terminating

the Frank-Wolfe algorithm after 100 iterations (bottom) results in a dense solution

and as a result a more accurate representation of the target distribution function.
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following weighted Monte Carlo integration rule:

n

En= dxCE A), (4.56)

where w is obtained using one of the approaches described below. Note that although

we may estimate Equation (4.55) using the available target random samples, our

goal here is to assess the estimate En obtained using the weighted proposal samples.

Thus, the available target random samples are used only in determining the empirical

importance weights, but do not contribute to our estimate of E.

Our numerical experiment compares the following approaches:

1. L2-norm Optimal Weight (L20): Our optimal empirical importance weights

are obtained by solving the optimization statement developed in this chapter

(4.16). For d = 1, we use analytic empirical importance weights (4.40) where

Py is replaced by the target empirical distribution function Py". For d > 1,

we use the Dai-Fletcher algorithm and terminate after 2 max(n, m) iterations

where n and m are the number of proposal and target random samples, respec-

tively. For the implementation of the Dai-Fletcher algorithm, we compute the

matrix H once for each case considered and store it for use at each optimization

iteration.

2. Kernel Density Estimation (KDE): The kernel density estimation [106]

approach is applied to approximate py and px, denoted by Py and Px, from

their respective random samples. We compute the Radon-Nikodym importance

weights by approximating the Radon-Nikodym derivative with Py/Px. The

KDE uses Gaussian kernels where the kernel bandwidth is selected using the

minimal mean squared error.

3. Ratio Fitting (uLS): The unconstrained Least Squares Importance Fitting

[60] approach is applied to approximate h = py/px. Here h is represented by
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the linear model,
b

I(t) = (t), (4.57)

where b is the number of basis functions, {# } 1 are the basis functions, and 3 =

(,.. b)T are the parameters to be learned. The parameters are obtained

by solving the following optimization statement,

= arg min -J (I(t) - h(t))2py(t) dt + YOT ,1

s.t. #i > 0, V i E {Il. .. , b},

where 'y is the regularization parameter. The basis functions are Gaussian kernel

models centered at the target random samples. The Gaussian kernel variance

and regularization parameter are selected based on a 5-fold cross validation.

Note that although the unknown Radon-Nikodym derivative appears in the ob-

jective, it is not explicitly evaluated.

4. Divergence Fitting (KLD): The Kullback-Liebler (divergence) importance

estimation [116] approach applies the linear model in Equation (4.57). The

parameters are obtained by solving the following optimization statement,

=arg min Py (t)log ~ dt + AT1
Jh(t)

n b

s.t. #O#xi) = n
i=1 j=1

s.t. /Jj >0, ViE {1,. . .. , b},

where the equality constraint ensures that h defines a probability density func-

tion. The basis functions are Gaussian kernel models centered at the target

random samples. The Gaussian kernel variance and regularization parameter

are selected based on a 5-fold cross validation. Note that although the unknown

Radon-Nikodym derivative appears in the objective, it is not explicitly evalu-
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ated.

The four approaches presented above are tested on the following four scenarios:

1. n = 210, m = 2 0 and d = {1, 2, 5, 10},

2. n=210,m= 212 and d = {1, 2, 5, 10},

3. n = 212, m = 210 and d = {1, 2, 5, 10},

4. n = 212, m = 2 12 and d = {1, 2, 5, 10}.

For all scenarios, the results are the average over 100 independent trials and the

quality of the results is quantified by

rn = E (4.58)
E

Table 4.1 presents the results for each scenario. The quality of the result, Equa-

tion (4.58), contains two sources of error. The first source of error stems from how

well the target empirical distribution function approximates the target distribution

function. The second source of error stems from how well the proposal empirical

distribution function, when weighted by the importance weights discussed above, ap-

proximates the target empirical distribution function.

The results presented in Table 4.1 allow us to differentiate the impact of these

sources of error on our proposed approach. Comparing the results in scenario {n =

210, m = 210} to scenario {n = 210, m = 212} we observe that increasing the number

of target random samples improves the accuracy of the estimate for d < 5. For

d = 10, the results do not improve, which indicates that we do not have enough

proposal random samples to accurately represent the target empirical distribution

function. This conclusion is confirmed by comparing scenario {n = 210, m - 212} to

scenario {n = 212, m = 212}. By increasing the number of proposal random samples

we improve the accuracy for d = 10. Comparing the results in scenario {n = 210, m =

210} to scenario {n = 212, m = 210} we observe an improvement for d = 10 but similar
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Table 4.1: The error metric re, Equation (4.58), measured as a percentage, for the
four methods and all four scenarios. Results are averaged over 100 independent tri-
als and the term in parentheses is the corresponding standard deviation. Bold text
indicates the best estimate for all the methods not including importance sampling
(IS). The importance sampling results use the unknown proposal and target proba-
bility density functions to define the density ratio. The importance sampling results
are provided here in order to compare to the standard solution using the unknown
probability density functions. The results demonstrate that the proposed approach
(L20) outperforms the previous approaches.
increasing dimensions and decreasing number
however, less so than the other approaches.

The proposed approach degrades with
of proposal and target random samples,

{ Low: n = 210, Low: m = 210}
' ' '= d=1

d=1
IS 4.79(3.56) 5.45(4.32) 5.27(3.66) 4.34(3.22)

L20 4.77(3.52) 5.51(3.96) 7.97(6.44) 37.7(11.0)

KDE 5.72(3.82) 17.1(7.83) 48.9(11.9) 84.1(13.5)

uLS 7.92(7.14) 14.3(9.88) 31.5(9.94) 173(24.4)

KLD 19.2(8.33) 10.6(6.82) 41.8(21.3) 111(14.1)

{Low: n = 210, High: m = 212}
d =1 d = 2 d = 5 d =10

IS 4.79(3.56) 5.45(4.32) 5.27(3.66) 4.34(3.22)
L20 3.27(2.31) 3.41(2.23) 6.84(4.79) 35.8(9.48)

KDE 4.79(3.19) 14.7(5.13) 47.2(10.4) 74.3(12.0)

uLS 5.93(6.18) 16.3(10.9) 29.4(10.1) 175(11.2)

KLD 18.0(9.68) 12.0(11.9) 47.0(23.0) 112(13.2)

{High: n = 212, Low: m = 2101
d =1 d = 2 d = 5 d =10

IS 2.60(1.75) 2.84(2.02) 2.61(1.74) 2.46(1.84)
L20 5.40(4.11) 6.47(4.82) 7.82(5.82) 7.78(5.05)

KDE 5.83(4.46) 11.7(6.75) 48.0(9.35) 83.1(8.85)

uLS 10.4(7.85) 11.2(8.37) 33.6(9.66) 176(5.35)

KLD 18.8(9.55) 10.4(7.31) 43.7(24.5) 112(9.08)

{High: n = 212, High: m = 212}
d =1 d = 2 d = 5 d = 10

IS 2.60(1.75) 2.84(2.02) 2.61(1.74) 2.46(1.84)
L20 2.81(2.23) 3.12(2.05) 6.67(4.52) 6.72(4.88)

KDE 2.98(2.51) 10.0(4.16) 45.0(5.93) 73.6(6.51)

uLS 6.25(5.77) 8.20(6.83) 32.7(9.25) 176(5.14)

KLD 19.0(9.51) 11.9(10.9) 45.9(21.7) 114(10.2)
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results for d < 5. This indicates the proposal can accurately represent the target

empirical distribution function; however, the target empirical distribution function

may not accurately represent the actual target distribution function. Comparing the

results in scenario {n = 212, m = 210} to scenario {n = 212, m = 212} we observe

that increasing the number of target random samples produces a reduction in the

standard deviation. This is because increasing the number of target random samples

improved the target empirical distribution function estimate of the target distribution

function and as a result improved the accuracy of the quantity of interest. We also

note that the dependencies between the error metric defined in Equation (4.58) and

the number of proposal and target random samples are not as obvious for the other

three approaches.

The results presented here have also demonstrated that for the proposed method

to perform the change of measure as expected, it is important that the target em-

pirical distribution function accurately represents the target distribution function.

However, selecting an adequate number of proposal and target random samples to

obtain satisfactory results will require quantifying the rate of convergence for our pro-

posed method. Although not performed in this thesis, guidance for quantifying the

rate of convergence can come from inequalities such as the multivariate Dvoretzky-

Kiefer-Wolfowitz inequality [124].

4.6.3 Uniform Distribution and the L2 -norm Discrepancy

In this example we present the relationship between our proposed approach and dis-

crepancy theory [33]. To illustrate this relationship, the proposal and target distri-

butions are the uniform distribution on the unit hypercube. We also take this oppor-

tunity to evaluate the performance of the Frank-Wolfe algorithm and Dai-Fletcher

algorithm over a range of parameters.

Substituting the uniform distribution function, Py(t) = ] H_1 ti, for the target
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distribution function in Equation (4.8), we obtain

n n d

22(2) = li'zb H (1 - max(xi, xj))
i=1 j=1 k=1 (4.59)

i=1 k=1

where we use C to denote our L2-norm distance metric in the special case of a uniform

target distribution. If the proposal random samples are uniformly weighted (i.e.,

zj = 1, V i G {1, 2, .. . , n}), then Equation (4.59) relates directly to the L 2-norm

discrepancy. The L2-norm discrepancy is defined as

D2 = V/2(n), (4.60)

and is sometimes referred to as Warnock's formula [79, 123].

In the following numerical study, we compare the ratio between the weighted

L2-norm discrepancy that results from using (4.59) with our optimal empirical im-

portance weights and Warnock's formula (4.60),

2 =*) = C .(4.61)
D2 CO(In)

We investigate two scenarios: proposal random samples drawn from a pseudo-random

(PR) sequence and from a randomized Sobol' low discrepancy (i.e., quasi-random,

QR) sequence [86]. A pseudo-random number generator combines randomness from

various low-entropy input streams to generate a sequence of outputs that are in prac-

tice statistically indistinguishable from a truly random sequence, whereas a quasi-

random number generator constructs a sequence of outputs deterministically such

that the output produces a small discrepancy.

121



For the case d = 1, the analytic empirical importance weights (4.40) are

X2 _ 1

X 3 -X 1

1 
(4.62)

2

Xn X n-2

2 n _ X-1

Table 4.2 presents the results for the d = 1 case. Shown are the ratios r (in percent-

ages), averaged over 100 independent trials. The results illustrate that the optimal

empirical importance weights consistently reduce the L2-norm discrepancy with re-

spect to the uniformly weighted proposal random samples (i.e., r < 1). The reduction

is more pronounced for the pseudo-random samples than the quasi-random samples.

This is expected because quasi-random samples are constructed to reduce the dis-

crepancy among the samples.

Table 4.2: The ratio of discrepancy computed using our optimal empirical importance
weights and uniform importance weights, Equation (4.61) measured as a percentage.
Shown are results for the d = 1 case, averaged over 100 independent trials. The term
in parentheses is the corresponding standard deviation. n is the number of proposal
random samples.

n = 28  n = 210  n = 21
PR 12.2(4.80) 6.96(2.45) 3.38(1.17)
QR 86.4(6.48) 86.7(6.10) 85.9(6.86)
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Since we have available the analytic representation of the empirical importance

weights (4.62), we can also see that the resulting weighted Monte Carlo integration

rule for an integrable function g is

g(t) dt = lim tiig(i)
/=1

=lim 1((x2 + X)g(x 1 ) + Z(xi+i - Xi-- 1)g(xi) (4.63)

+ (2 _ X" - Xn--l)g(X"),

which was previously shown to be the trapezoidal integration rule t128].

For the general case d > 1, the empirical importance weights are computed us-

ing the Frank-Wolfe algorithm with an optimal step length a, and the Dai-Fletcher

algorithm. For all simulations presented the Dai-Fletcher algorithm computes the

matrix H once and stores it. The Frank-Wolfe algorithm using a deterministic step

length a halves the computational time compared to using an optimal step length,

but leads to poor results early in the optimization process. We selected a maximum

number of iterations as the termination criterion for both algorithms. The maximum

number of iterations were selected such that both algorithms have similar computa-

tional run times.1 The purpose of this study is to evaluate our proposed approach

and to compare the computational performance of the Frank-Wolfe algorithm to the

Dai-Fletcher algorithm over a range of parameters. These parameters include the

number of proposal random samples n, the initial solution wo, and dimension d. The

initial solution for all simulations is uniform importance weights (i.e., wo = 1,). Fig-

ures 4-3, 4-4, and 4-5 show the results averaged over 100 independent trials for d = 2,

d = 5, and d = 10, respectively.

As was the case for d = 1, these results illustrate that the optimal empirical impor-

tance weights consistently reduce the L2-norm discrepancy with respect to uniformly

weighted proposal random samples. Again, the reduction is more pronounced for the

lIntel® Xeon® E5410 (2.33GHz) processor & 6 GB RAM
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Figure 4-3: Discrepancy reduction for d = 2. Both algorithms

discrepancy (i.e., r < 1) in both scenarios. The Frank-Wolfe

more quickly than the Dai-Fletcher algorithm.

0.3

reduce the L2-norm
algorithm converges

pseudo-random samples than the quasi-random samples. In general, if the proposal

random samples are drawn from a pseudo-random sequence, then increasing n leads

to further decrease in the discrepancy (r decreases further); however, if the proposal

random samples are drawn from a quasi-random sequence, then increasing n leads to

less discrepancy reduction (r shows less decrease). This can be explained since the

pseudo-random proposal samples have poor (high) initial discrepancy and including

more proposal samples gives our approach more degrees of freedom over which to op-

timize. Conversely, the quasi-random proposal samples already have low discrepancy;

including more samples in this case makes it more difficult for the optimization to
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Figure 4-4: Discrepancy reduction for d = 5. Both algorithms reduce the L2-norm

discrepancy (i.e., r < 1) in both scenarios. The Frank-Wolfe algorithm converges

more quickly than the Dai-Fletcher algorithm, although the final results are similar.

find a lower-discrepancy solution.

The results generally show that the Frank-Wolfe algorithm converges more quickly

for cases using pseudo-random samples, while the Dai-Fletcher exhibits better perfor-

mance for quasi-random samples. This suggests that the Frank-Wolfe algorithm may

be preferred when the initial proposal empirical distribution function is far from the

target distribution function, while the Dai-Fletcher algorithm is a better choice when

the initial empirical importance weights are already close to optimal. Examining the

results with increasing dimension d (i.e., increasing condition number of matrix H

1122]), illustrates that both algorithms require more computational time to converge.

125



Pseudo-Random - -- D-F: n = 28

d = 10 - - - D-F: n = 210
0.95 - - - D-F: n = 212

- F-W: n = 2
8

- F-W: n = 21
0

0.9 - F-W: n = 212-

0.85

0.81

0.7'

C u70 2 4 6 8 10 12

Computational Time [sec]

Quasi-Random - - - D-F: n = 2 8
0.98 d = 10 - - - D-F: n = 210

0.96 - - - D-F: n = 21

-F-W: n = 28

0.94 -- -F-W: n = 210-
C1--- F-W: n = 2 1

0.92%

0.9 --- - -- -- - -- -- -- -- --------- -- - --

0.88-

0.86r-

0.834-

0 .8 2

00 2 4 6 8 10 12

Computational Time [sec]

Figure 4-5: Discrepancy reduction for d =_ 10. Both algorithms reduce the L2-norm

discrepancy (i.e., r < 1) in both scenarios. The Dai-Fletcher algorithm converges

more quickly the Frank-Wolfe algorithm, although the final results are similar.

This is expected since both algorithms implement gradient descent techniques whose

convergence rates are expected to depend on the condition number of H.

The results presented in Figure 4-6 demonstrate our approach on a large-scale

application problem. In this example we extended the results presented in Figure 4-4

using the Frank-Wolfe algorithm to proposal sample sizes n = [8192, 32768,131072].

The computational times presented do not include the time required to evaluate the

initial gradient (i.e., initial matrix-vector product; a = Hw). The results suggest

our approach scales well with large number of samples. Numerical strategies such

as divide-and-conquering methods and parallelization can be implemented to further
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Figure 4-6: Discrepancy reduction for d = 5 and a large number of samples. The

Frank-Wolfe algorithm reduces the L2-norm discrepancy (i.e., r < 1) in both scenarios

for a large-scale application problem (i.e., large n). The results presented are the

average over 100 simulations.

improve the computational run times.

From these results, we recommend using the Frank-Wolfe algorithm when the

dimension d is small or when the initial proposal empirical distribution function is

far from the target distribution function. Otherwise, we recommend the Dai-Fletcher

algorithm if the dimension d is large or if the initial proposal empirical distribution

function is close to the target distribution function. If the number of proposal samples

n is so large such that the matrix H cannot be stored, then we recommend using the

Frank-Wolfe algorithm since the Dai-Fletcher algorithm will require constructing the
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matrix H on the fly at each iteration, which will drastically increase computational

time.
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Chapter 5

Environmental Impacts of Aviation

The Federal Aviation Administration (FAA) is responsible for setting national avia-

tion strategies and policies, including but not limited to aviation regulations and en-

vironmental policies. To support the FAA in effective decision- and policy-making we

must evaluate an aircraft's fuel consumption, emissions, and performance. However,

these quantities of interest are inherently uncertain since they are largely dependent

on other uncertain variables such as aviation technologies and operations. Therefore,

it is important that these quantities of interest come with an assessment of the asso-

ciated uncertainties. In this chapter we quantify the uncertainty of an aircraft's fuel

consumption performance using our decomposition-based uncertainty quantification

approach.

In Section 5.1, we introduce the problem statement and motivate the need for

decomposition-based uncertainty quantification. In Section 5.2 and Section 5.3 we

present the aircraft technology component and aviation environmental impacts com-

ponent, respectively. We discuss the interface between the aircraft technology com-

ponent and the aviation environmental impacts component in Section 5.4. A demon-

stration on how a component-level global sensitivity analysis can be integrated within

our decomposition-based uncertainty quantification framework to reduce the number

of component-to-component interface variables is given in Section 5.5. Lastly, in Sec-

tion 5.6 we present the uncertainty quantification results using our decomposition-

based approach and compare it the all-at-once Monte Carlo simulation approach.
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5.1 Introduction to environmental impacts of avia-

tion

The aviation sector is projected to be one of the fastest growing contributors to an-

thropogenic greenhouse gas emissions [69]. If left unconstrained, aircraft emissions

are projected to quadruple by 2050 [1]. As a measure to manage the climate impact

of aviation, the Committee for Environmental Protection (CAEP) under the Inter-

national Civil Aviation Organization (ICAO) and supported by the FAA, adopted

a 2% annual efficiency improvement goal for aviation through 2050 [2]. To satisfy

this fast paced fleet-wide improvement requires significant enhancements to aviation

technology, sustainable fuels with low C02 emissions, and efficient operational pro-

cedures [101].

To meet these demanding requirements, CAEP assembled a panel of indepen-

dent experts with varying backgrounds to establish long-term technology goals for

aviation fuel consumption [29]. Within their study they investigated future aviation

technology scenarios, which represented varying regulatory pressure to reduce fuel

consumption. The future aircraft technology scenarios were then applied in analysis

tools as "technology packages" to assess the technology improvement on aircraft fuel

consumption. Due to resource limitations the independent experts were unable to

address the following issues;

" the impact of interdependencies between technologies due to the lack of model

integration, and

" the impact of uncertainties in aviation technology on fuel consumption and

implications on policy assessment.

In this chapter we address these topics by performing a system-level uncertainty quan-

tification using a conceptual-level aircraft design tool and an aviation environmental

impacts tool. The system of interest consists of the Transport Aircraft System OP-

Timization (TASOpt) [36] component and the Aviation Environment Design Tool

(AEDT) version 2a [99] component as depicted in Figure 5-1. A decomposition-based
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uncertainty quantification approach is warranted in this application since these com-

ponents are housed in different locations and owned by different groups. The system

output of interest is fuel consumption performance (i.e., fuel energy consumption per

payload-range) and is defined as,

(5.1)PFEI Zi W ueiih fuel

Ei Wpay,iRtotal,i

where the summation is over number of missions, Wjuei,i is the total fuel consumption

of the ith mission, Rtotaii is the total range of the ith mission, Wpay is the payload

weight of the ith mission, and hjuei is the specific heating value of Kerosene.

Boeing 737-800 Mission Trajectories
Template Input File

-------------------------- I

TASOp~t
Uncertainty -p

Input Parameters I Initial weight guess -_
Epol~c q-me I AEDT Aircraft CoefficientsP011c Trita IMTOW. Static Thrust, COEi'F C02 LID,(pol.hc TT4 ,TO Surface spans, areas I MLDW. Min Weight, CL CAsi AV N,

fpoh TT4 CR ITC1 TC2, Payload Weight. CL CAS2 AV IN.D D~h ITC I iT3.: TC4. DES CAS, CIL MACH AV IN.Epou II Str Loads, Shears, Moments TC5 ' DES MACH, CR CAs1 AV IN.
TDL TDH, Re Weight, CR CAS2 AV IN,

Ustrut Structural gauges I DES ALT, Mass Gradient. CR MACH AV IN.U TASPF, FENV VMO. DE CASI AV IN.
Ti ,' P I TRD. FENV MMO, DE CAS2 AV IN,

T1eb FPR Volumes and Weights I CFI.CF2, FENVALT, DEMACH AV IN,
SCF3 CF4, FENV HMAX, CL CASE HI IN,Ocp O RCFCR, FENV TEMP. CL CAS2 HI IN,

Oskin E Drag, Engine size + weight CE C Wig ATrea, CL MACH HI IN,
Ebend CF C, COEFF CLO, CR CAS1 HI IN,

Trajectory, Fue WeightA C, BUFF GRAD, CR CAS2 HI IN.
Pnkn raecor. ue Wigt I CSG C, VSTALL TO, CR MACH HI IN,

Pskin CE T, COEFF COO TO, DE CAS1 HI IN,
Pbend hCR Total Weight converges? No CF T, COEFF CD2 TO, DE CA52 HI IN,
PcobCe mz e COA T. VSTALL IC. DE MACH HI IN,
Peap C,mas CGB T, COEFF COO IC, CL CAS1 LO IN,

Pweb CL CA 1, CA 2. COEFF CD2 IC, CL CAS2 LO IN,
Configuration CA 3, CA 4 VSTALL CR, CL MACH LO IN,

Pstrut CI CD 1. CD 2, COEFF CODo CR, CR CAS1 LO IN.
CD 3, CD 4, COEFF C02 CR, CR CAS2 LO IN,
CR 1 CC 1. VSTALL AP, CR MACH LO IN,

Mission DOE for Missions CB 1, CR 2, COEFF COO AP, DE CAS1 LO IN.
Latin Hypercube Range, Altitude, Velocity COEFF CD2 AP, DE CAS2 LIN

Range Mach Number, CL, CD, I CB 3. COEFF COO LD, MIN FUEL BURN
Payload Weight Weight, Thrust, Fuel Burn

TO Altitude ---------------------
TO Temperature TASOpt to AEDT Transformation
Cruise Altitude Performance

Take Off AoT I Coefficients via Regression
Cut Back AoT F,,r, . = TC -(t - + TC )
Decent AoT I""
Landing AoT I

Figure 5-1: System-level uncertainty quantification of the toolset

AEDT
o AEDT Standard Input File

Fleet Airport
Database Database

Run Simulation

Fly Aircraft

Calculate Emissions

Calculate
Fuel Energy Consumption

per Payload Range

Uncertainty Output

PFEI

consists of quanti-

fying how uncertainty in aircraft technologies and operations impact the uncertainty

in the outputs of interest, here the aircrafts fuel consumption performance. The de-

scriptions for the TASOpt input variables and AEDT input variables are provided in

Appendix A and Appendix B, respectively.
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5.2 T]ransport Aircraft System Optimization

The TASOpt component is an aircraft performance tool which allows users to eval-

uate and size future aircraft with potentially unconventional airframe, aerodynamic,

engine, or operation variables using low-order physical models implementing funda-

mental structural, aerodynamic, and thermodynamic theory. TASOpt uses historical

based correlations only when necessary, in particular only for some of the secondary

structure and aircraft equipment. The TASOpt component takes as input aircraft

technology and operational variables and can either optimize an aircraft over a spec-

ified set of constraints or resize an aircraft to meet a desired mission requirement.

The aircraft configuration selected for this study is the Boeing 737-800W shown in

Figure 5-2. This aircraft operates in the short to medium range while seating approx-

imately 180 passengers.

- Z - o7
S.----- ------H------

BOEING UGGEL 737-500W
BOEING UGOEL 73 88.2

Figure 5-2: Boeing 737-800W airframe configuration. Schematic taken from [26].

5.2.1 TASOpt Inputs

Table 5.1 contains the 27 uncertain TASOpt random input variables selected for this

study and their respective distributions. The description of the TASOpt random
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input variables are provided in Appendix A. These input variables represent the

technological and operational variables of an aircraft which were considered to be

uncertain in the design phase. The uncertainty associated with the technology input

variables captures our lack of knowledge due to material properties and measurements.

The uncertainty associated with the operational input variables captures the designer

lack of knowledge in the design phase of an aircraft. Given a single realization vector

containing the 27 input variables in Table 5.1, the baseline aircraft's first mission

profile and technology variables are populated. The baseline aircraft is created using

TASOpt's optimization capabilities to best represent the Boeing 737-800W aircraft

configuration (e.g., see Figure 5-1 "Boeing 737-800 Template Input File").

Table 5.1: TASOpt random input variables and their respective distributions.

Input Units Distribution Input Units Distribution
6pol,Ic [ [0.936, 0.938] Tmetal [K] U[1172,1272]
Epol,hc U [0.903, 0.904] TT4 ,TO [K] U[1783, 1883]
Cpol,lt [ [0.870, 0.872] TT4 ,CR [K] U[1541, 1641]
Cpol,ht [ [0.875, 0.877] Stc [- U[0.094,0.096]
Ustrut [psi] U[28500, 31500] Of [-I U[0.315, 0.325]
Tweb [psi] U[19000, 21000] FPR [-] 1[1.60,1.62]
Ccap [psi] U[28500,31500] OPR [-] U[24.2, 28.2]
Uskin [psi] U[14500,15500] Ecap [psi] U[9.5e6, 10.5e6]

Obend [psi] U[28500, 31500] Estrut [psi] U[9.5e6, 10.5e6]

Pstrut [kg/rn3] U[2672,2726] hCR [ft] U[34000, 36000]

Pweb [kg/m3 U[2672,2726] CL,max 1-] U[2.2, 2.3]

Pcao [kg/m 3] U[2672,2726] CL 1-0.576, 0.578]
Pskin [kg/m 3 U[2672,2726] Mach [-] U[0.77, 0.79]
Pbend [kg/m3 ] U[2672,2726] - - -

5.2.2 TASOpt Outputs

With the aircraft's first mission profile and technology variables populated, the TASOpt

component then sizes the sampled aircraft configuration such that it satisfies the first

mission profile. Next we quantify the sampled aircraft's performance by flying an

additional 99 mission profiles which are generated using a Latin hypercube design of
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experiments. The Latin hypercube design of experiments populates the 12 mission

input variables contained in Table 5.2. For any mission variable (e.g., Range) we

generate 99 realizations from the uniform distribution (i.e., U(a, b)) using the Latin

hypercube random sampling scheme and the parameters provided in Table 5.2. This

process allows, for example, the Range to sweep between 750 [nmij and 3250 [nmi].

Lastly, the aircraft's configuration, operational procedure, and performance over

multiple flight segments and atmospheric conditions are quantified using 100 variables.

These TASOpt output variables which characterize the aircraft's configuration, op-

erational procedure, and performance are described in Section 5.4, where we discuss

the coupling between TASOpt and AEDT.

Table 5.2: The performance of each sampled aircraft configuration is evaluated using a
Latin hypercube design of experiments. Presented here are the TASOpt mission input
variables and their respective uniform distribution parameters (i.e., U(a, b)). Param-
eters containing an asterisk are also TASOpt random input variables. Therefore, the
parameters represent differences from their respective realization (i.e., U(x - a, x + b)
where x is the variables sample realization).

Input Units a b
Range [nmij 750 3250
Wmax [lbs] 165 265
hTo [ft] -4000 4000
AT [K] -12.5 12.5
hcR [ft] -4000* 4000*

CL,max [-] -0.05* 0.05*
OTO [deg] 39 41

OeC [deg] 2.8 3.2
eDE,1 [deg] -3.2 -2.8

EDE,5 [deg] -3.2 -2.8
CL - -0.025* 0.025*

Mach [-J -0.02* 0.02*
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5.3 Aviation Environmental Design Tool

The AEDT component is a suite of integrated aviation environmental impact tools.

AEDT provides users with the ability to assess the interdependencies among aviation-

produced fuel consumption, emissions, and noise. For cruise conditions the AEDT

component implements the EUROCONTROL's Base of Aircraft Data (BADA) [90]

which uses an energy-balance thrust model and thrust specific fuel consumption mod-

eled as a function of airspeed. The BADA fuel consumption model has been shown

to work well in cruise, with differences from airplane reported fuel consumption of

about 5% [90]. For terminal conditions (e.g., departure/arrival flights until 10,000

[ft] above ground level), the AEDT component implements a set of energy-balance

equations to support a higher level of fidelity in fuel consumption modeling.

5.3.1 AEDT Inputs

The AEDT component characterizes an aircraft using 100 input variables and de-

picted in Figure 5-1 as the "AEDT Aircraft Coefficients". The descriptions of the

AEDT random input variables are provided in Appendix B. These input variables

characterizes the aircraft's configuration and operational procedure, and defines the

aircraft performance over multiple flight segments and atmospheric conditions. To

initialize the AEDT component we first create a duplicate of the Boeing 737-800W

aircraft within the AEDT fleet database. Any TASOpt generated aircraft may re-

place the 100 aircraft input variables in the temporary Boeing 737-800 AEDT fleet

database through the component-to-component transformation process discussed in

Section 5.4. The objective of the component-to-component transformation process is

to ensure that the temporary AEDT aircraft characterized through these 100 input

variables is a suitable representation of the TASOpt generated aircraft.

5.3.2 Flight Trajectories

For each randomly generated aircraft we must quantify its respective environmen-

tal impacts. To do so we fly each sampled aircraft over a set of deterministic flight
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trajectories using the AEDT component. The flight trajectories for this study were

selected from a 2006 representative day flight scenario database [88]. Using the repre-

sentative day, the flights associated with the Boeing 737-700 aircraft were extracted

as possible flight trajectories since the Boeing 737-800W was not comprehensively

represented in the 2006 day flight scenario. Of the 900 possible flight trajectories

(e.g., departure-arrival airport combinations) only 20 representative flight trajecto-

ries were selected due to limited computational resources. The 20 flight trajectories

are presented in Table 5.3 and illustrated in Figure 5-3. For computational purposes,

these flight trajectories are approximated by a great circle path from the departure

airport to the arrival airport and were generated by the TASOpt component using

the baseline aircraft configuration with the TASOpt random input variables set to

their respective means.

Table 5.3: Presented here are the 20 representative flight trajectories (i.e., departure,
arrival, and range) flown by the Boeing 737-800W in the TASOpt-AEDT uncertainty
quantification study.

Depart Airport Depart Runway Arrival Airport Arrival Runway Range [nmi]
KDTW 04L KPVD 21 535
KIAH 26L KLAX 24L 1197
KLGA 22 KMEM 27 835
KDTW 04L KSFO 28R 1801
KPDX 28R KLAX 24L 725
KMIA 08L KDEN 35R 1482
KPDX 28L KABQ 08 964
KJFK 31R KLGB 16L 2138
KIAD O1R KORD 28 511
KPHX 26 KMSP 35 1106
KBWI 28 KFLL 09L 806
KPHX 26 KFLL 09L 1710
KMCO 35L KDCA 01 662
KIAH 26L KBOS 27 1387

KMCO 17R KMKE 07R 928
KSJC 30R KIAD 19L 2082
KSFO 28L KPHX 25L 565

KDFW 35L KSFO 28R 1270
KPHL 09R KFLL 09L 864
KCLE 24L KSFO 28R 1874
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Figure 5-3: Illustrated here are the 20 representative flight trajectories flown by the

Boeing 737-800W in the TASOpt-AEDT uncertainty quantification study.

5.4 TASOpt-AEDT Interface

In this section we summarize the transformation between the TASOpt outputs (i.e.,

aircraft configuration and performance) and the AEDT inputs. For a detailed discus-

sion on this component-to-component transformation we refer to the ACDL Report

[REF]. The objective of the component-to-component transformation is to deter-

mine the AEDT input variables such that the AEDT aircraft performs similar to

the TASOpt generated aircraft. In this section we also validate the component-to-

component transformation by comparing for similar scenarios (i.e., aircraft and flight

trajectories) the fuel consumption, fuel burn rate, and net corrected thrust from the

TASOpt component and from the AEDT component.

5.4.1 Transformation Procedure

The TASOpt component outputs the aircraft's configuration variables,
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Maximum Takeoff Weight

Empty Weight

Maximum Fuel Weight

Wing Area

Maximum Thrust

The TASOpt component also outputs data characterizing the aircraft's perfor-

mance. For each mission the aircraft performance is provided on 15 flight segments

(i.e., 3 takeoff, 5 climb, 2 cruise, and 5 descent segments). In total TASOpt outputs

1,500 (i.e., 100 missions by 15 segments) individual performance data points. Each

performance data point contains the variables,

Range

Altitude

True Airspeed

Mach Number

Lift Coefficient

Drag Coefficient

Aircraft Weight

Thrust

Fuel Burn Rate

Angle of Attack

Total Temperature at Engine Inlet

Total Pressure at Engine Inlet

Of the 100 mission profiles flown by TASOpt the first 50 are flown under interna-

tional standard atmosphere (ISA) conditions while the remaining 50 are flown under

non-ISA conditions. The component-to-component transformation procedure relies

on linear and nonlinear regression routines over the appropriate mission segments to

extract the AEDT aircraft performance coefficients from the TASOpt aircraft per-

formance data. We present here an example of how to extract the AEDT thrust
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coefficients TCC, TCc2 , and TCc3 during the high altitude climb segment under ISA

conditions. These AEDT aircraft performance coefficients are related to the TASOpt

outputs thrust, F, and altitude, h, by,

h
F = TCc1 (- h + TCc 3 - h 2 ). (5.2)

TCc2

Since we are concerned with the high altitude climb segment under ISA conditions we

only use the TASOpt performance data contained in missions 1 through 50 and flight

segments 5 through 8. With the TASOpt performance data collected we perform a

linear regression to obtain the AEDT coefficients from Equation 5.2. A similar proce-

dure to that shown here is performed for the all 100 AEDT random input variables.

5.4.2 Validation

In the validation study we compare the fuel consumption, fuel burn rate, and net cor-

rected thrust between an aircraft generated by and flown in the TASOpt component

to that aircraft imported and flown in the AEDT component. The flight trajectories

for this study are great circle flight paths from Boston to Atlanta, Boston to Denver,

and Boston to Los Angeles. The objective of this validation study is to determine

if the component-to-component transformation has suitably represented the TASOpt

generated aircraft in the AEDT fleet database. Presented in Figure 5-4 are the results

produced by the TASOpt component and the AEDT component for the Boston to

Atlanta flight. The results demonstrate that the fuel burn rate and net corrected

thrust computed by TASOpt and AEDT agree well throughout most the the flight.

The largest discrepancy, which occurs in the arrival segment, can be accounted for by

the difference between how AEDT 2a and TASOpt model an arrival procedure. In

AEDT 2a the aircraft engines are assumed to be idle which is an unrealistic modeling

assumption and has been corrected in AEDT version 2b. As a result AEDT 2a has

a visibly lower fuel burn rate than TASOpt in the arrival segment. The Boston to

Denver and Boston to Los Angeles flight trajectories produced similar results.
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Figure 5-4: Validation study of the TASOpt component to AEDT component trans-

formation for the Boston to Atlanta great circle flight. The results illustrate that the

fuel burn rate (FBR) and net corrected thrust (NCT) match well throughout most

of the flight trajectory.

The total fuel consumption and relative error for each flight trajectory are given

in Table 5.4. The results indicate a good comparison between the components, in-

dicating that the component-to-component transformation performed well. Of the

three trajectories, the flight from Boston to Denver performed the worst however;

this discrepancy can be attributed to the flight trajectory's range. The AEDT 2a

component assumes a constant takeoff weight which is dependent only on the flight

trajectory range whereas TASOpt evaluates the takeoff weight continuously. As a re-

sult, the Boston to Denver flight which has a range of 1520 [nmij is on the lower end

of the AEDT takeoff profile spectrum (i.e., 1500-2499 [nmi]). This causes the AEDT

component to set a takeoff weight which is significantly larger than the corresponding

TASOpt takeoff weight. As a result, the aircraft belonging to the AEDT component's

requires more fuel than the corresponding aircraft belonging to the TASOpt compo-

nent. The Boston to Atlanta and Boston to Los Angeles flights have flight trajectory

ranges of 850 [nmi] and 2300 [nmi] respectively which resulted in a better agree-
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Table 5.4: Presented here are the fuel consumption results over the three flight tra-
jectories. The TASOpt row represents an aircraft generated by and flown in TASOpt.
The AEDT row represents the TASOpt aircraft imported into the AEDT component
through the component-to-component transformation and then flown on the same
flight trajectory as the TASOpt flight trajectory.

Boston-Atlanta Boston-Denver Boston-Los Angeles
Fuel 1lb] % Rel Error Fuel [lb] % Rel Error Fuel [lb] % Rel Error

TASOpt 5015.6 - 8715.3 - 13186.4 -
AEDT 5284.7 5.37 9737.4 9.62 13594.4 3.09

ment between the AEDT takeoff weight and the TASOpt takeoff weight. In turn this

resulted in a better agreement between the TASOpt and AEDT fuel consumptions.

5.5 Dimension Reduction

The difficulty with performing a decomposition-based uncertainty quantification of

the system illustrated Figure 5-1 lies in the 100-dimensional component-to-component

transformation. The reason is because, as stated in Section 2.8, the high-dimensional

component-to-component transformation requires a challenging high-dimensional change

of measure. Although in Chapter 4 we improved the dimensional scalability of the

change of measure problem, the dimension of this component-to-component transfor-

mation remains beyond our capabilities. As a result, we make here the assumption

that many of the AEDT input variables are expected to have an insignificant impact

on the system output of interest distribution. If our assumption is valid it implies

that we can discard most of the AEDT input variables when performing the change

of measure procedure. Discarding an AEDT input variable from the change of mea-

sure procedure implies that we do not require that its distribution function weakly

converges to its respective target distribution function. In this section we quantify

the influence of the AEDT input variables on the system output of interest and use

this information to determine which of the AEDT input variables should take part in

the change of measure procedure.

141



5.5.1 Problem Setup

To quantify the influence of the AEDT input variables on the system output of interest

we perform a component-level global sensitivity analysis of the AEDT component.

However, a component-level global sensitivity analysis of the AEDT component is

complicated by the fact that the TASOpt output variables are dependent. This de-

pendency structure renders the classical ANOVA dimensional decomposition (ADD)

of the AEDT component inapplicable since the primary assumption in Section 3.1 is

that the input variables are independent. Fortunately, recent efforts have investigated

dependently distributed global sensitivity analysis and ADD [21, 57, 71, 76, 65, 95].

In this section we follow the ADD implementation of Rahmen [95], construct an ADD

of the AEDT component, and use this information to identify the influential AEDT

random input variables. The ADD construction of the AEDT component is termed

generalized ADD to differentiate it from the classical ADD presented in Section 3.1.

Before constructing a generalized ADD of the AEDT component we first reduce

the dimension of the AEDT random input variables using engineering judgment. This

primary reduction in dimension is illustrated in Figure 5-5. The rationale behind this

primary dimension reduction is that the quantity of interest (i.e., fuel consumption

performance) is largely dependent on the takeoff and cruise segments of the flight

trajectory. All AEDT coefficients not present in this set do not take part in the

change of measure procedure of the decomposition-based uncertainty quantification

approach. This implies that although we still treat these variables as uncertain,

we do not require that their distribution functions weakly converge to their target

distribution functions from the upstream TASOpt component.

With the primary dimension reduction completed the task now is to generate a

generalized ADD of the AEDT component in Figure 5-5. In order to generate the

generalized ADD we must first select a distribution for the 50 AEDT random input

variables. The distribution selected is a multivariate Gaussian distribution since it

simplifies the construction of the generalized ADD (e.g., Hermite polynomial basis)

and can be easily parameterized in high-dimensional applications such as this. This
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Figure 5-5: We partitioned the AEDT input variables into two sets; an influential set

and a noninfluential set. The distribution function of the AEDT inputs in the second

set are not required to converge weakly to the target distribution function.

multivariate Gaussian distribution is a guess of the unknown target distribution.

Whether this distribution is adequate for ranking the inputs in order of influence

and if an a posterior error check exists are topics that require further research. The

probability density function of this distribution is expressed by

p-(t) =(27r)-4(1EI)-Iexp (- tT t) , (5.3)

where E. = Eg [YYT] is the covariance matrix. Here we use the notation Y to

emphasize that this is a guess to the unknown target distribution. To construct the

multivariate Gaussian distribution, Equation 5.3, necessary for the generalized ADD

we used 10,000 target samples from the upstream TASOpt component. The reason

for this step is because we did not have adequate experience or prior knowledge of

this system to guess the target distribution.
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5.5.2 Generalized ANOVA Dimensional Decomposition

Similar to the classical ADD the square-integrable multivariate function f admits a

unique, finite, hierarchical expansion

f (t) = Af(ta), (5.4)
AC{1,...,d}

in terms of subcomponent functions fA of input variables with increasing dimen-

sions [95]. However, unlike the subcomponent functions in the classical ADD, the

subcomponent functions in the generalized ADD cannot be derived from the strong

annihilating conditions. This is because the orthogonal properties that stem from the

classical ADD cannot be duplicated when the random variables are dependent. Yet,

the subcomponent functions fA can be obtained from a similar approach by weak-

ening the annihilating conditions (see Rahman [95] for a thorough discussion of the

generalized ADD).

Given the subcomponent functions of the generalized ADD, subsequent evalua-

tions of their second-moment characteristics, including global sensitivity indices, can

be readily computed. Applying the expectation operator on the generalized ADD

results in the mean

Ey [f(t)] = f{01. (5.5)

Applying the expectation operator again, this time on (f(t) - p)2, along with the

weakened annihilating conditions results in the variance [95]

a.2 = Ey[(f(t) - )2] = E y[fA]+ >3 Ey[fAf.]. (5.6)
D#AG{1,...,d} 05A,.A {1,...,d}

AgAgA-

The first sum represents variance contributions from all nonconstant subcomponent

functions. In contrast, the second sum, which is not present in the classical ADD, con-

tains covariance contributions from two distinct nonconstant subcomponent functions

that are not orthogonal-a ramification of imposing the weak annihilating conditions

appropriate for the generalized ADD.
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For input variables involving dependent probability distributions, a triplet of

global sensitivity indices is defined. The three |Al-variate global sensitivity indices of

fA are denoted by SA,,, SA,c , and SA, and defined by the ratios

SAV = E , (5.7)

OOAC{1,.. d} Ey[fAfL]

SAc = I 
2  (5.8)

SA = SA,v + SAc. (5.9)

The first two indices, SA,v and SA,c, represent the normalized versions of the variance

contribution from fA to g 2 and of the covariance contributions from fA and all fa,

such that A Z A Z A, to 0.2 . They are termed the variance-driven global sensitivity

index and the covariance-driven global sensitivity index, respectively, of fA. The

third index, SA, referred to as the total global sensitivity index of fA, is the sum

of variance and covariance contributions from or associated with fA to o. 2 . Since

0 -# A C {1, ... , d}, there exist 2d - 1 such triplets of indices, which also sums to

unity,

S SA= SA,v + 5 SA,=1. (5.10)
O.AC{1,...,d} OOAC{1,...,d} OOAC{1,...,d}

From the definitions, the variance-driven sensitivity index SA,, is a nonnegative, real

valued number. It reflects the variance contribution from tA to the total variance of

f. In contrast, the covariance-driven sensitivity index SA,c can be negative, positive,

or zero, depending on the correlation between tA and tA. It represents the variance

contribution from tA by the interaction to tA, when A Z A A, due to the depen-

dence structure. An individual index SA may exceed unity or be negative, but the

sum of all these indices is always equal to unity. When the random variables are in-

dependent, the covariance-driven contribution to the total sensitivity index vanishes,

leaving behind only the variance-driven sensitivity contribution. The global sensitiv-
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ity indices, whether derived from the generalized or classical ADD, can be used to

rank variables in order of influence on the output of interest variance, fix unessential

variables, and reduce dimensions of large-scale problems.

5.5.3 Results

Following the generalized ADD implementation of Rahmen [951, a generalized ADD

of the AEDT component was constructed. The generalized ADD hierarchical ex-

pansion given by Equation 5.4 was terminated upon capturing 99% of the output

of interest variance, Equation 5.6. The generalized ADD of the AEDT component

is composed of subcomponent functions which are first-order basis functions (i.e.,

A = {i}) with at most first-order polynomials (i.e., ffi (t) = mit + bi). With the sub-

component functions in hand we compute the absolute maximum allowable variation

(i.e., ISA,vl + SACI) due to each AEDT random input variable. Using this criteria we

rank the AEDT random input variables in decreasing order of influence as illustrated

in Figure 5-6. These results reinforce our assumption that only a small subset of the

50 AEDT random input variables has an influence on the system output of interest

variation.

The sensitivity matrix for the first 15 most influential AEDT input variables vari-

ables is illustrated in Figure 5-7. The quantities on the diagonal entries are the

variance-driven sensitivity indices and are all nonnegative. The quantities on the

nondiagonal entries are the covariance-driven sensitivity indices and can be any real

valued number. The remaining inputs not presented here do not have a significant

impact on the output of interest variation. Note, in this study we have ranked the

influence of an input variable on the output variation, which is not guaranteed to be

the same if we were to rank the influence of the input variable on the output distri-

bution [171. This is an important observation since we are interested in quantifying

the output of interest distribution.
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Figure 5-6: This plot presents the absolute variance- and covariance-driven sensitiv-

ity indices from each of the 50 AEDT random input variables on the AEDT fuel

consumption performance variance. This plot illustrates that the absolute variance-

and covariance-driven sensitivity indices decays very rapidly and that 15 AEDT ran-

dom input variables capture almost all of the AEDT fuel consumption performance

variance.

5.6 Uncertainty quantification

In the previous section we identified 15 AEDT random input variables which are

expected to have the greatest influence on the AEDT output of interest variation.

From these results the remaining noninfluential AEDT random input variables are

not incorporated into the change of measure procedure of the decomposition-based

uncertainty quantification approach. As before, this implies that although we still

treat these variables as uncertain, we do not require that their distribution functions

weakly converge to their target distribution functions from the upstream TASOpt

component. The final reduced system layout for the decomposition-based uncertainty

quantification study is illustrated in Figure 5-8.

The proposal distribution for the AEDT component is selected to be the distribu-
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Figure 5-7: Sensitivity matrix of the 15 most influential AEDT random input variables

impacting the AEDT fuel consumption performance variance.

tibn used for the construction of the generalized ADD in Section 5.5 but with three

times the covariance term. The proposal covariance term was multiplied by a fac-

tor of three to ensure the unknown target distribution from the upstream TASOpt

component is supported by the AEDT input proposal distribution.

5.6.1 Uncertainty Analysis

The uncertainty analysis results are presented in Figure 5-9 and Figure 5-10. The re-

sults illustrate the system output of interest distribution function under three different

scenarios. The first scenario is the outcome of running the AEDT component under

the proposal distribution assumption. The second scenario is produced by performing

an all-at-once uncertainty analysis of the system illustrated in Figure 5-1 using Monte

Carlo simulation. The last scenario is the result of performing a decomposition-based

uncertainty analysis of the system illustrated in Figure 5-8.
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Figure 5-8: We partitioned the AEDT input variables into two sets; an influential

set and a noninfluential set. The noninfluential set contains AEDT input variables

which were deemed not to influence the cruise and takeoff segments as well as input

variables which were labeled as noninfluential by the AEDT component global sen-

sitivity analysis. The influential set contains AEDT random input variables which

were labeled as influential by the AEDT component global sensitivity analysis.

These results demonstrate that our decomposition-based uncertainty analysis of

the reduced system in Figure 5-8 accurately predict the results from the standard ap-

proach, the all-at-once Monte Carlo simulation of the full system in Figure 5-1. This

implies that we not only performed the change of measure across the 15 dimensional

interface between the TASOpt component and the AEDT component accurately but

that we successfully identified the 15 influential AEDT random input variables. If

either one of these procedures had performed poorly (i.e., a poor change of mea-

sure or a failure in identifying the influential AEDT random input variables) we

may not have accurately captured the target distribution using the decomposition-

based uncertainty analysis approach. Therefore, by reducing the dimensions of the

component-to-component interface we illustrated that our decomposition-based un-

certainty analysis approach can be extended to calculate the relevant statistics and

failure probabilities of complex and high-dimensional systems.
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Figure 5-9: The AEDT fuel consumption performance distribution is shown here using

the AEDT output proposal distribution, all-at-once Monte Carlo uncertainty analysis,

and the decomposition-based uncertainty analysis. These results suggest that our

decomposition-based uncertainty analysis performed adequately which implies the

change of measure across the 15 AEDT random input variables was successful and that

the correct 15 AEDT random input variables were selected by the AEDT component-

level global sensitivity analysis.

5.6.2 Global Sensitivity Analysis

The next step in the uncertainty quantification is to identify which of the system in-

puts have the largest influence, on average, on the system output of interest variation.

The results of the system-level main sensitivity indices are presented in Figure 5-11.

The results demonstrate the system-level main sensitivity indices computed using the

all-at-once Monte Carlo simulation approach of the system illustrated in Figure 5-1

and the decomposition-based approach of the system illustrated in Figure 5-8. These

result confirm that our decomposition-based sensitivity analysis algorithm can accu-

rately quantify the main sensitivity indices of the system in Figure 5-1. As previously

mentioned, the decomposition-based sensitivity analysis algorithm hinged on the fact

that we could evaluate the decomposition-based uncertainty analysis. The main sen-
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Figure 5-10: The AEDT fuel consumption performance probability density function is

shown here using the AEDT output proposal probability density function, all-at-once

Monte Carlo uncertainty analysis, and the decomposition-based uncertainty analysis.

These results complement the distribution function results provided in Figure 5-9

and suggest that our decomposition-based uncertainty analysis performed adequately

which implies the change of measure across the 15 AEDT random input variables was

successful and that the correct 15 AEDT random input variables were selected by the

AEDT component-level global sensitivity analysis.

sitivity indices also suggest that the output of interest variation is mostly dominated

by a handful of aircraft technological and operational variables. That is, by improving

our understanding of these TASOpt random input variables through research we can

reduce the variation of the system output of interest which is beneficial for decision-

and policy-making.
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Figure 5-11: The system-level main sensitivity indices are shown here using the all-

at-once Monte Carlo global sensitivity analysis and the decomposition-based global

sensitivity analysis. These results suggest that our decomposition-based global sen-

sitivity analysis performed adequately and that only a handful of technological and

operational system input variables have a significant influence, on average, on the

system output of interest. A description of the system inputs are provided in Ap-

pendix A
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Chapter 6

Conclusions

In this chapter we provide a summary of the work done to meet the thesis objec-

tives, enumerate the thesis contributions, and discuss future research that should be

considered.

6.1 Summary

A decomposition-based uncertainty quantification approach intended to support the

decision- and policy-making process in today's modern systems was established. Our

decomposition-based uncertainty quantification approach investigated two topics; un-

certainty analysis and sensitivity analysis. In traditional approaches, quantifying un-

certainty in multicomponent systems either approximated the multicomponent sys-

tem through the use of surrogate modeling or simplified the representation of the

multicomponent system's uncertainty. Instead, our approach was motivated by the

advantages brought about by decomposition: managing complexity through a divide-

and-conquer strategy, exploiting specific disciplinary expertise through local analy-

ses, promoting disciplinary/component autonomy while maintaining an awareness of

system-level issues, and being consistent with many organizational structures. These

are essential characteristics to achieve a sustainable strategy that manages uncertainty

in the complex settings of today's modern engineered systems.

These characteristics are emphasized by drawing analogies between our decomposition-
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based approach to uncertainty quantification and decomposition-based strategies for

multidisciplinary optimization. In the multidisciplinary optimization literature, ap-

proaches are often categorized as monolithic versus distributed, and open consistency

versus closed consistency. Our approach has a distributed architecture, that is, the

multicomponent system uncertainty analysis is partitioned into multiple uncertainty

analyses. This is in contrast to a monolithic architecture, which solves the problem in

its entirety. Our approach has open consistency, that is, our samples are initially ob-

servations from the incorrect probability distributions but upon convergence become

consistent with the desired distributions. In contrast, a closed consistency formula-

tion requires that each sample satisfy global compatibility constraints at every stage

of the algorithm.

In Chapter 2, we developed a decomposition-based uncertainty analysis approach

to quantify the distribution function of all the variables belonging to the system.

The proposed approach decomposed the multicomponent uncertainty analysis into

manageable components, and synthesized the system uncertainty analysis without

needing to evaluate the system in its entirety. Further, the proposed approach was

shown to be provably convergent in distribution. Building upon the decomposition-

based uncertainty analysis algorithm we developed, in Chapter 3, a decomposition-

based sensitivity analysis algorithm. The proposed approach evaluated the system's

main effect indices. The main effect indices may be used for factor prioritization since

they provide the percentage of how much system output variability can be reduced,

on average, by fixing a particular system input somewhere on its domain.

In Chapter 4, we investigated topics which might hinder implementing our decomposition-

based uncertainty quantification approach to today's modern engineered systems. In

particular, we focused on the high-dimensional component-to-component interfaces

and the challenges brought about through the change of measure procedure. This

thesis presented a novel approach that defines and computes empirical importance

weights, and shows its connections to other discrepancy metrics and studies. A key

attribute of the approach is its scalability: it lends itself well to handling a large num-

ber of samples through a scalable optimization algorithm. The proposed approach
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also scales to problems with higher dimensions than was previously possible using the

current practices. Our work also implemented, in Chapter 5, a component-level global

sensitivity analysis to assist in reducing the dimensions of a component-to-component

interface. This procedure, combined with the empirical change of measure, allowed

us to implement our decomposition-based uncertainty quantification approach to a

realistic application.

The realistic application presented in Chapter 5 investigated the environmental

impacts of aviation technologies and operations. The multicomponent system was

composed of a conceptual-level aircraft design tool and an environmental impacts

tools. The challenges of this multicomponent system where the long computational

run times and the high-dimensional component-to-component interface. By using the

component-level global sensitivity analysis we were able to identify the most influen-

tial component-to-component interface variables and thereby reduce the dimensional-

ity of the component-to-component interface. With this reduction in dimensions, our

decomposition-based uncertainty quantification approach effectively determined the

quantities deemed necessary for supporting the decision- and policy-making process.

The contributions of this thesis are:

1. A methodology that enables decomposition-based uncertainty analysis of feed-

forward multicomponent systems which is provably convergent in distribution

to the integrated system-level uncertainty analysis.

2. A methodology that enables decomposition-based global sensitivity analysis of

feed-forward multicomponent systems.

3. An approach for the change of empirical measure which used the observable

and well-defined empirical distribution function and demonstrated scalability

to high dimensional distributions.

4. A demonstration of the decomposition-based uncertainty quantification of feed-

forward multicomponent systems on a realistic application; environmental im-

pacts of aviation.
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6.2 Future work

In Chapter 2, we focused on a method for the forward propagation of uncertain-

ties through a feed-forward system. Further research is required to extend the

decomposition-based methodology to systems with two-way coupling and/or feed-

back loops. Such systems will require iteration between components in the online

phase, thus destroying the clean partition between offline and online phases that we

achieve in the feedforward case. Despite this drawback, the decomposition can still

realize many of the advantages discussed in Section 1.1. A further limitation is that

the current approach has been presented only for systems with random variables and

random vectors. An important area of future work is to extend the method to sys-

tems that include random fields. This will require drawing on recent work to couple

Karhunen-Loeve expansion representations of random fields.

Regarding the decomposition-based sensitivity analysis in Chapter 3, our approach

was limited computationally to the main effect indices. However, one may find it

necessary to extend the decomposition-based sensitivity analysis to include indices

which capture interaction effects. Additionally, from a divide-and-conquer perspec-

tive, one may also consider performing the component-level global sensitivity analyses

concurrently and synthesizing this information to perform the decomposition-based

multicomponent global sensitivity analysis. Lastly, an added extension would be to

incorporate these component-level global sensitivity analyses to reduce the complex-

ity (i.e., reducing the dimensions of the component-to-component interfaces) of the

multicomponent system without sacrificing the accuracy of the multicomponent sys-

tem quantities of interest. Although this thesis did touch on this topic in Section 5.5,

our study used a variance-based method to perform the dimension reduction, which

is not guaranteed to produce the same results had we ranked the influence according

to the variation in the output distribution function.

In our empirical change of measure process, presented in Chapter 4, numerical

challenges regarding high dimensions arose due to ill-conditioning of the matrix H.

These challenges can be addressed, as they have in other fields such as optimization
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of systems governed by partial differential equations [15], through a combination of

preconditioning techniques and use of optimization solvers that are tolerant to ill-

conditioned matrices. Other future directions of interest include exploitation of the

optimization solution process to generate sparse solutions, which may yield a way to

derive efficient Monte Carlo integration rules that rely on a condensed set of samples

[46], and exploring different objective function metrics (in particular replacing the

L 2-norm metric with an Ll-norm metric).

In Chapter 5, our decomposition-based uncertainty quantification approach, in

combination with the empirical change of measure, was performed on the environ-

mental impacts of aviation tool suite. However, this multicomponent system was

composed of only two components. To extend this work to different and more corn-

plex architectures of feed-forward multicomponent systems will require accounting

for dependency among variables using only the samples but no explicit description

of their underlying probability density functions. This will require that Algorithm 2

be rewritten without any explicit description of the underlying probability density

functions or distribution functions.
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Appendix A

TASOpt Random Input Variables

EpoI,ic [-], Low pressure compressor polytropic efficiency.

Epol,hc [-], High pressure compressor polytropic efficiency.

fpoItt [-], Low pressure turbine polytropic efficiency.

epol,ht [-], High pressure turbine polytropic efficiency.

9strut [psi], Maximum allowable strut stress.

Tweb [psi], Maximum allowable wing spar web shear stress.

Ucap [psi], Maximum allowable wing spar cap stress.

Uskin [psi], Maximum allowable fuselage skin pressurization stress.

Ubend [psi], Maximum allowable shell bending stress.

Pstrut [kg/M 3 ], Strut material density.

Pweb [kg/m3 ], Wing box web material density.

Pcap [kg/m 3], Wing box cap material density.

Pskin [kg/M 3], Fuselage pressure-skin material density.

Pbend [kg/r 3], Fuselage bending material density.

Tmetal [K], Turbine material temperature.

TT4 ,TO [K], Turbine inlet total temperature for takeoff.

TT4,CR [K], Turbine inlet total temperature for cruise.

Stc [-], Turbine area-weighted Stanton number.

Of [-], Cooling effectiveness ratio.

FPR [-], Design fan pressure ratio.
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OPR [-], Overall design pressure ratio.

Ecap [psi], Wing spar cap modulus of elasticity.

Estrut [psi], Strut modulus of elasticity.

hCR [ft], Cruise altitude.

CLmax ' -, Maximum lift coefficient.

CL -], Cruise lift coefficient.

Mach [-], Cruise Mach number.
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Appendix B

AEDT Random Input Variables

MTOW (MAX_ TAKEOFF_WGT) [kg], Maximum takeoff weight.

MLDW (MAXLANDINGWGT) [kg], Maximum landing weight.

TC1 (COEFF TC1) [N], 1 't maximum climb thrust coefficient.

TC2 (COEFF TC2) [ft], 2 "d maximum climb thrust coefficient.

TC3 (COEFF TC3) [ft2], 3 rd maximum climb thrust coefficient.

TC4 (COEFFTC4) [K], 4 th thrust temperature coefficient.

TC5 (COEFF TC5) [K-11, 5 th thrust temperature coefficient.

DESALT [ft], Descent altitude.

TDH (COEFFTDH) [-], High altitude descent thrust coefficient.

TLD (COEFFTDL) [-], Low altitude descent thrust coefficient.

TAPP (COEFFTAPP) [-], Approach thrust coefficient.

TLD (COEFF TLD) [-], Landing thrust coefficient.

DESCAS () [kts], Descent calibrated air speed.

DESMACH () [-], Descent Mach number.

MASSREF () [lb-ton], Aircraft reference weight.

MASSMIN () [lb-ton], Aircraft minimum weight.

MASSMAX () [lb-ton], Aircraft maximum weight.

MASSPAYLD () [lb-ton], Aircraft payload weight

MASSGRAD () [ft], Mass gradient on maximum altitude.

FENVVMO () [kts], Maximum operational speed.
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FENV_MMO () [-], Maximum operational Mach number.

FENV_ALT () [ft], Cruise altitude at MTOW in ISA conditions.

FENV_HMAX () [ft], Maximum altitude at MTOW in ISA conditions.

FENV_TEMP () [ft K-11, Temperature gradient on maximum altitude.

WINGAREA () [ft 2 ], Aircraft lifting surface area.

COEFFCLBO () [-], Initial buffet onset lift coefficient for Mach = 0.

BUFFGRAD () [-], Lift coefficient gradient for Mach = 0.

VSTALLTO () [kts], Aircraft stall calibrated air speed at take off.

COEFFCDOTO () [-], Parasitic drag coefficient at take off.

COEFFCD2_TO () [-], Induced drag coefficient at take off.

VSTALLIC () [kts], Aircraft stall calibrated air speed at initial climb.

COEFFCDOIC () [-], Parasitic drag coefficient at initial climb.

COEFF_CD2_IC () [-], Induced drag coefficient at initial climb.

VSTALLCR () [kts], Aircraft stall calibrated air speed at cruise.

COEFFCDOCR () [-], Parasitic drag coefficient at cruise.

COEFFCD2_CR () [-], Induced drag coefficient at cruise.

VSTALLAP () [kts], Aircraft stall calibrated air speed at approach.

COEFFCDOAP () [-], Parasitic drag coefficient at approach.

COEFF_CD2 AP () [-], Induced drag coefficient at approach

VSTALLLD () [kts], Aircraft stall calibrated air speed at landing.

COEFF_CDO_LD () [-], Parasitic drag coefficient at landing.

COEFF_CD2_LD () [-], Induced drag coefficient at landing.

CF1 (COEFFCF1) [kg min-' kN- 1], Aircraft specific 1 't TSFC coefficient.

CF2 (COEFFCF2) [kts], Aircraft specific 2 nd TSFC coefficient.

CF3 (COEFFCF3) [kg min-'], Aircraft specific 1Vt descent fuel flow coefficient.

CF4 (COEFFCF4) [ft], Aircraft specific 2 nd descent fuel flow coefficient.

CFCR (COEFF_CF5) [-], Aircraft specific cruise flue flow correction coefficient.

CLCASIAV () [kt], Standard climb average mission range calibrated airspeed 1.

CL_CAS2_AV () [kt], Standard climb average mission range calibrated airspeed 2.

CLMACHAV () [-], Standard climb average mission range Mach number.
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CRCASi_AV () [ktl,

CRCAS2_AV 0 lktI,

CRMACHAV () [-],

DECASi_AV () [kt],

DECAS2_AV 0 [kt],

Standard

Standard

Standard

Standard

Standard

cruise average mission range calibrated airspeed 1

cruise average mission range calibrated airspeed 2

cruise average mission range Mach number.

descent average mission range calibrated airspeed

descent average mission range calibrated airspeed

DEMACH _AV () [-], Standard descent average mission range Mach number.

CLCAS1_HI ( lkt],

CLCAS2_HI ( [kt],

CLMACH _HI 0 [-]

CRCASi_HI () [kt],

CRCAS2_HI () [kt],

CRMACH _HI () [-],

DECASI_HI () [kt],:

DECAS2_HI () [kt],

DEMACHHI [-],

CLCASI_LO () [ktl,

CLCAS2_LO () [kt],

CLMACH _LO () [-],

CRCASi_LO () [kt],

CRCAS2_LO () [kt],

CRMACH _LO () [-],

DECASi_LO ( [ktl,

DECAS2_LO () [kt],

DEMACHLO () [-1,

THRSTATIC () [lbf],

3tandard climb high mission range calibrated airspeed 1.

3tandard

3tandard

Standard

Standard

Standard

Standard

Standard

Standard

Standard

Standard

Standard

Standarc

Standarc

Standarc

Standarc

Standarc

Standarc

climb high mission range calibrated airspeed 2.

climb high mission range Mach number.

cruise high mission range calibrated airspeed 1.

cruise high mission range calibrated airspeed 2.

cruise high mission range Mach number.

descent high mission range calibrated airspeed 1.

descent high mission range calibrated airspeed 2.

descent high mission range Mach number.

climb low mission range calibrated airspeed 1.

climb low mission range calibrated airspeed 2.

climb low mission range Mach number.

cruise low mission range calibrated airspeed 1.

cruise low mission range calibrated airspeed 2.

cruise low mission range Mach number.

descent low mission range calibrated airspeed 1.

descent low mission range calibrated airspeed 2.

descent low mission range Mach number.

Engine static thrust at sea-level and ISA conditions.

MINBURN () [kg sec 1 ], Single engine minimum fuel burn rate.

CEC (COEFFE) flbf], Jet thurst coefficients in climb.

CFC (COEFFF) [lbf kt 1 ], Jet thurst coefficients in climb.

CGAC (COEFF_GA) [lbf ft'], Jet thurst coefficients in climb.

CGBC (COEFF_GB) [lbf ft-2 ], Jet thurst coefficients in climb.
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CET (COEFF_E) [lbf], Jet thurst coefficients in takeoff.

CFT (COEFF_F) [lbf kt-1], Jet thurst coefficients in takeoff.

CGA_T (COEFF_

CGB_T (COEFF_

CA_ (COEFF_1)

CA2 (COEFF_2)

CA3 (COEFF_3)

CA4 (COEFF_4)

CD1 (COEFF_1)

CD2 (COEFF_2)

CD3 (COEFF_3)

CD_4 (COEFF_4)

CR1 (COEFF_R

CC_ (COEFF_C

CB1 (COEFF_B'

CR2 (COEFF_R

CC2 (COEFF_C

CB2 (COEFF_B'

CR_3 (COEFFR

CC3 (COEFF_C

CB3 (COEFF_B'

GA) [lbf ft-1 ], Jet thurst coefficients in takeoff.

GB) [lbf ft

[kg

[kg

[kg

[kg

[kg

[kg

[kg

[kg

[-I,

[-] ,

[-I,

[-I,

[-],

[-I,

[-I,

[-],

[-I,

min-i

min-1

min-1

min-

min-1

min-1

-2], Jet thurst coefficients in takeoff.

kN-1, lst approach TSFC coefficient.

kN- 1], 2 "d approach TSFC coefficient.

kN- 1 h- 1], 3 rd approach TSFC coefficient.

kN-2] 4 th approach TSFC coefficient.

kN- 1], 1 st descent TSFC coefficient.

kN- 1], 2 "d descent TSFC coefficient.

min-' kN- 1 h- 1], 3 rd descent TSFC coefficient.

min-' kN-2], 4 th descent TSFC coefficient.

Drag-over-lift coefficient, depends on the flaps setting (1).

Coefficient of Lift, depends on the flaps setting (1).

Ground-roll coefficient, depends on the flaps setting (1).

Drag-over-lift coefficient, depends on the flaps setting (2).

Drag-over-lift coefficient, depends on the flaps setting (2).

Ground-roll coefficient, depends on the flaps setting (2).

Drag-over-lift coefficient, depends on the flaps setting (3).

Drag-over-lift coefficient, depends on the flaps setting (3).

Ground-roll coefficient, depends on the flaps setting (3).
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