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ABSTRACT
We introduce the study of the ant colony house-hunting
problem from a distributed computing perspective. When
an ant colony’s nest becomes unsuitable due to size con-
straints or damage, the colony relocates to a new nest. The
task of identifying and evaluating the quality of potential
new nests is distributed among all ants. They must addi-
tionally reach consensus on a final nest choice and transport
the full colony to this single new nest. Our goal is to use
tools and techniques from distributed computing theory in
order to gain insight into the house-hunting process.

We develop a formal model for the house-hunting problem
inspired by the behavior of the Temnothorax genus of ants.
We then show a Ω(logn) lower bound on the time for all n
ants to agree on one of k candidate nests. We also present
two algorithms that solve the house-hunting problem in our
model. The first algorithm solves the problem in optimal
O(logn) time but exhibits some features not characteris-
tic of natural ant behavior. The second algorithm runs in
O(k logn) time and uses an extremely simple and natural
rule for each ant to decide on the new nest.
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F.2.m [Analysis of Algorithms and Problem Com-
plexity]: Miscellaneous; G.3 [Mathematics of Comput-
ing]: Probability and Statistics—Probabilistic Algorithms
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1. INTRODUCTION
Some recent work in distributed computing theory has fo-

cused on biological problems inspired by algorithmic tasks
carried out by ant colonies; for example, [7, 9, 11, 19] study
collaborative food foraging and [3] models and proposes al-
gorithms for task allocation within a colony. Often com-
puter scientists study biologically-inspired algorithms with
the aim of engineering better computing systems. An al-
ternative line of work uses tools developed to analyze and
design distributed computer systems to better understand
the behavior of biological systems [10]. In this paper, we
follow the second approach in an attempt to better under-
stand the house-hunting behavior of the Temnothorax ant.
The essence of this process is a collaborative search, consen-
sus decision, and relocation of the entire ant colony to a new
home, with an emphasis on the decision making component.

We first model the ant colony and its computational con-
straints, and formally define an algorithmic problem that it
solves. The challenge is to develop a model that is simul-
taneously tractable to theoretical analysis and close enough
to reality to give meaningful insights into ant behavior. For
example: Is ant behavior in some sense optimal given ants’
biological constraints? One hypothesis may be that behav-
ior has been optimized through evolution. Lower bounds
matching the performance of algorithms seen in nature can
provide mathematical support for this hypothesis. Alterna-
tively, results may show that behavior is far from optimal,
suggesting the existence of hidden constraints or goals yet
to be fully understood. Can we identify why certain behav-
ioral patterns have developed and what environmental and
biological constraints they are adaptations to?

One motivation for studying the house-hunting process of
Temnothorax ants is that it has received significant attention
from biologists. Researchers have studied ants’ preferences
and capabilities [16, 27], the general structure of the algo-
rithms used by the ants [20, 23], variations due to colony size
[13], and trade-offs between the speed and accuracy of the
process [25]. This work forms a wide basis of scientifically
tested hypotheses that we can use for the foundation of our
model and inspiration for our algorithms.

From a distributed computing perspective, house-hunting
is closely related to the fundamental problem of consensus
[12, 18]. This makes the problem conceptually different from
other ant colony inspired problems studied by computer sci-
entists. Task allocation and foraging are both intrinsically
related to parallel optimization. The main goal is to divide



work optimally amongst a large number of ants in a process
similar to load balancing. This is commonly achieved using
random allocation or negative feedback [1] against work that
has already been completed. In contrast, the house-hunting
problem is a decision problem in which all ants must con-
verge to the same choice. Both in nature and in our proposed
algorithms, this is achieved through positive feedback [1], by
reinforcing viable nest candidates until a single choice re-
mains. At a high level, our work is related to previous work
on rumor spreading in biological populations [8].

1.1 The House-Hunting Process
Temnothorax ants live in fragile rock crevices that are fre-

quently destroyed. It is crucial for colony survival to quickly
find and move to a new nest after their home is compromised.
This process is highly distributed and involves several stages
of searching for nests, assessing nest candidates, recruiting
other ants to do the same, and finally, transporting the full
colony to the new home.

In the search phase, some ants begin searching their sur-
roundings for possible new nests. Experimentally, this phase
has not been studied much; it has been assumed that ants
encounter candidate nests fairly quickly through random
walking. In the assessment phase, each ant that arrives at a
new nest evaluates it based on various criteria, e.g., whether
the nest interior is dark and therefore likely free of holes,
and whether the entrance to the nest is small enough to be
easily defended. These criteria may have different priorities
[16, 27] and, in general, it is assumed that nest assessments
by an individual ant are not always precise or rational [26].
After some time spent assessing different nests, going back
to the old nest and searching for new nests, an ant becomes
sufficiently satisfied with a nest and proceeds to the recruit-
ment phase, which consists of tandem runs – one ant leading
another ant from the old to a new nest. The recruited ant
learns the new nest location and can assess the nest itself
and begin performing tandem runs if the nest is acceptable.

At this point many nest sites may have ants recruiting to
them, so a decision has to be made in favor of one nest. The
ants must solve the classic distributed computing problem
of consensus. One strategy that ants are believed to use
is a quorum threshold [24, 23] – a threshold of the number
of ants in a candidate nest, that, when exceeded, indicates
that the nest should be chosen as the new home. Each time
an ant returns to the new nest, it evaluates (not necessarily
accurately) whether a quorum has been reached. If so, it
begins the transport phase – picking up and carrying other
ants from the old to the new nest. These transports are
generally faster than tandem runs and conclude the house-
hunting process by bringing the full colony to the new nest.

1.2 Main Results and Organization
Our main results are a mathematical model of the house-

hunting process, a lower bound on the number of rounds
required by any algorithm solving the house-hunting prob-
lem in the given model, and two house-hunting algorithms.

Our model (Section 2) is based on a synchronous model
of execution with n probabilistic ants and communication
limited to one ant leading another ant (tandem run or trans-
port), chosen randomly from the ants at the home nest, to a
candidate nest. Ants can also search for new nests by choos-
ing randomly among all k candidate nests. We do not model

the time for an ant to find a nest or to lead a tandem run;
each of these actions are assumed to take one round.

Our lower bound (Section 3) states that, under this model,
no algorithm can solve the house-hunting problem in time
sub-logarithmic in the number of ants. The main proof idea
is that, in any step of an algorithm’s execution, with con-
stant probability, an ant that does not know of the location
of the eventually-chosen nest remains uninformed. There-
fore, with high probability, Ω(logn) rounds are required to
inform all n ants. This technique closely resembles lower
bounds for rumor spreading in a complete graph, where the
rumor is the location of the chosen nest [17].

Our first algorithm (Section 4) solves the house-hunting
problem in asymptotically optimal time. The main idea is a
typical example of positive feedback: each ant leads tandem
runs to some suitable nest as long as the population of ants
at that nest keeps increasing; once the ants at a candidate
nest notice a decrease in the population, they give up and
wait to be recruited to another nest. With high probability,
within O(logn) rounds, this process converges to all n ants
committing to a single winning nest. Unfortunately, this al-
gorithm relies heavily on a synchronous execution and on the
ability to precisely count nest populations, suggesting that
the algorithm is susceptible to perturbations of our model
and most likely does not match real ant behavior.

The goal of our second algorithm (Section 5) is to be more
natural and resilient to perturbations of the environmental
parameters and ant capabilities. The algorithm uses a sim-
ple positive-feedback mechanism: in each round, an ant that
has located a candidate nest recruits other ants to the nest
with probability proportional to its current population. We
show that, with high probability, this process converges to
all n ants being committed to one of the k candidate nests
within O(k logn) rounds. While this algorithm is not opti-
mal, except when k is assumed to be constant, it exhibits a
much more natural process of converging to a single nest. In
Section 6, we discuss in more detail possible modifications
to the algorithm and various perturbations and faults to
which it is resilient. Such robustness criteria are necessary
in nature and generally desirable for distributed algorithms.

2. MODEL
We present a simple model of Temnothorax ants behavior

that is tractable to rigorous analysis, yet rich enough to
provide a starting point for understanding real ant behavior.

The environment consists of a home nest, denoted n0,
along with k candidate nests, denoted ni for i ∈ {1, ..., k}.
Each nest ni is assigned a quality q(i) ∈ Q, for some set
Q. Throughout this paper we let Q = {0, 1}, where quality
0 indicates an unsuitable nest, and 1 a suitable one. We
assume that there is always at least one nest with q(i) = 1.

The colony consists of n identical probabilistic finite state
machines, representing the ants. We assume n is signifi-
cantly larger than k, with k = O(n/ logn). Additionally,
ants know the value of n but not k, so the state machines
may be parameterized by n but must be uniform for all k.
This assumption is based on evidence that real Temnothorax
ants and other species are able to estimate colony size and
change their behavior in response [4, 6].

The general behavior of the state machines is unrestricted
but their interactions with the environment and other ants
are limited to the functions search(), go(), and recruit(),
defined below. Ants execute synchronously in numbered



rounds starting with round 1. In each round, each ant may
perform unlimited local computation (transition through an
arbitrary sequence of states), along with exactly one call to
one of the functions: search(), go(), or recruit().

At the end of each round r, each ant a is located at a
nest, denoted `(a, r) ∈ {0, 1, ..., k}; before round 1, all ants
are located at the home nest. The value of `(a, r) is set by
the calls to search(), go(), or recruit() made in round r.
Let A(i, r) = {a|`(a, r) = i} denote the set of all ants located
at nest ni at the end of round r and let c(i, r) = |A(i, r)|.

In each round, each ant a performs exactly one call to the
following functions:

search(): Returns a triple < i, q(i), c(i, r) > where i is
chosen uniformly at random from {1, · · · , k}. Sets `(a, r) :=
i. This function represents ant a searching randomly for a
nest; the return value of the function includes the nest index,
the nest’s quality and the number of ants at the nest.
go(i): Takes input i ∈ {1, · · · , k} such that there exists

a round r′ < r in which `(a, r′) = i. Returns c(i, r). Sets
`(a, r) := i. The function represents ant a revisiting a can-
didate nest ni; the function returns the number of ants at
nest ni at the end of round r.

recruit(b, i): Takes input b ∈ {0, 1} and i ∈ {1, · · · , k}
such that there exists a round r′ < r in which `(a, r′) = i.
Returns a pair < j, c(0, r) > where j ∈ {1, · · · , k}. Sets
`(a, r) := 0. The return value j is determined as follows.
Let R be the set of all ants that call recruit(·, ·), and let
P be a uniform random permutation of all ants in R. Let
S ⊆ R be the set of ants that call recruit(1, ·).
Return value j of recruit(·, ·) for all ants a ∈ R

1 M : a set of pairs (a, a′) of ants, initially ∅
2 for i = 1 to |R| do
3 if aP (i) ∈ S and (·, aP (i)) 6∈M then
4 a′ := uniform random ant from R
5 if (a′, ·) 6∈M and (·, a′) 6∈M then
6 M := M ∪ (aP (i), a

′)

7 for i = 1 to |R| do
8 if (a∗, aP (i)) ∈M then
9 return j to ant aP (i) where j is input to

recruit(1, j) called by a∗

10 else return j to ant aP (i) where j is input to
recruit(·, j) called by aP (i)

In short, all actively recruiting ants in S randomly choose
an ant to recruit. P simply serves as tie breaker to avoid
conflicts between recruitments. It is important to note that
this process is not a distributed algorithm executed by the
ants, but just a modeling tool to formalize the idea of ants
recruiting other ants randomly without introducing depen-
dency chains between the ordered pairs of recruiting and
recruited ants. The algorithm can be thought of as a cen-
tralized process run by the environment of the home nest in
order to pair ants appropriately. We believe our results also
hold under other natural models for randomly pairing ants.

An ant recruits successfully if it is the first element of a
pair in M . If an ant recruits successfully or is not recruited,
recruit() just returns the input nest id i. Otherwise, it
returns the id of the nest that the ant is recruited to.

We intentionally define recruit() to locate ants back to
the home nest, where recruitment happens. Additionally,
go(i) is only applicable to a candidate nest ni for i 6= 0, so
calling recruit() is the only way to return to the home nest.
Since ants are required to call one of the three functions in

each round, if an ant does not search (call search()) or go
to a nest (call go()), it is required to stay at the home nest.
In this way, all ants located in the home nest participate in
recruitment in each round, either actively recruiting (b = 1)
or waiting to be recruited (b = 0).

Recruitment encompasses both the tandem runs and di-
rect transport behavior observed in Temnothorax ants. Since
direct transport is only about three times faster than tandem
walking [22], and since we focus on asymptotic behavior, we
do not model this action separately.

Next, we prove a general statement about the probability
that a recruiting ant is successful.

Lemma 2.1. Let a be any ant that executes recruit(1, ·)
in some round r, and assume c(0, r) ≥ 2. Then, with prob-
ability at least 1/16, (a, ·) ∈M .

Proof. With probability 1/2 ant a is located in the first
half of the random permutation. Conditioning on this, the
probability that a is not recruited by some ant with higher

precedence in round r is at least:
(

1− 1
c(0,r)

)c(0,r)/2
≥ 1/2,

where c(0, r) ≥ 2 is the number of ants at the home nest.
Further, with probability 1/2, ant a chooses to recruit an ant
a′ located in the second half of the permutation, and with

probability ≥
(

1− 1
c(0,r)

)c(0,r)/2
≥ 1/2, a′ is not recruited

by any ant with higher precedence than a. So, in total a
recruits successfully with probability at least 1/16.

Problem Statement: An algorithm A solves House-
Hunting with k nests in T ∈ N rounds with probability
1 − δ, for 0 ≤ δ ≤ 1, if with probability 1 − δ, taken over
all executions of A, there exists a nest i ∈ {1, · · · , k} with
q(i) = 1 and `(a, r) = i for all ants a and all rounds r ≥ T .

3. LOWER BOUND
In this section, we present a lower bound on the number of

rounds required for an algorithm to solve the house-hunting
problem. The key idea is similar to lower bounds on spread-
ing a rumor in a complete graph [17] where neighbors contact
each other randomly. Assuming a house-hunting process
with a single good nest, its location represents the rumor
to be spread among all ants, and communication between
random neighbors is analogous to the recruiting process.

Assume that only a single nest nw has quality 1, and so it
is the only option for the ants to relocate to. Additionally,
assume that each ant is able to recognize nest nw once it
knows its id. These assumptions only restrict the environ-
ment and add to the ants’ power, so a lower bound under
these assumptions is sufficient. Note that each ant has only
two ways of reaching a nest: (1) by searching, or (2) by
getting recruited to it. Throughout this section, an ant is
considered to be informed if it knows the id of the winning
nest nw; otherwise, an ant is considered to be ignorant.

Lemma 3.1. With probability at least 1/4 an ant that is
ignorant at the beginning of round r remains ignorant at the
end of round r.

Proof. In round r, ant a may either (1) not participate
in recruitment or search (2) participate in recruitment at the
home nest or (3) search. In the first case, ant a is guaranteed
to remain ignorant. In the second case, ant a calls recruit().
Let Xr ≤ c(0, r) be the number of informed ants at the



beginning of round r that are recruiting at the home nest to
the winning nest; these ants are calling recruit(1,w). The
probability that ant a is ignorant after round r is at least(

1− 1
c(0,r)

)c(0,r)
≥ 1

4
when c(0, r) ≥ 2. If c(0, r) < 2, ant a

is forced to recruit itself, so it remains ignorant. In the third
case, for k ≥ 2, the probability that ant a remains ignorant
after searching is (k − 1)/k ≥ 1/2.

Therefore, the overall probability that an ignorant ant re-
mains ignorant in round r, after either searching or partici-
pating in recruitment, is at least 1/4 (since 1/2 > 1/4).

Let random variable X̄r denote the number of ignorant
ants at the beginning of round r. In order for the algorithm
to solve the house hunting problem, it is necessary that X̄r =
0 for some round r. Otherwise, at least one ant is ignorant.

Theorem 3.2. For any constant c > 0, and any algo-
rithm A that solves HouseHunting with k ≥ 2 nests in T
rounds with probability at least 1/nc, T = Ω(logn).

Proof. By Lemma 3.1, with probability at least 1/4 an
ant that is ignorant at the beginning of round r remains
ignorant at the end of round r. The probability that an
ignorant ant remains ignorant for r = (log4 n)/2− log4(12c)
consecutive rounds is at least (1/4)r ≥ 12c/

√
n. So the

expected number of ignorant ants at the beginning of round
r = (log4 n)/2−log4(12c) is E[X̄r] ≥ (12c/

√
n)(n) = 12c

√
n.

Note that the random variable X̄r can be expressed as a
sum of indicator random variables X̄a

r , where for each ant
a, X̄a

r is 1 if ant a is ignorant, and 0 if it is informed, at
the beginning of round r. These indicator random variables
are not independent, so we cannot directly apply a Cher-
noff bound. We instead show that their sum is bounded by
defining random variables that dominate the X̄a

r variables.
Let Y ar be a random variable such that P [Y ar = 1] =

(1/4)r for each a and each r. Let Yr be the sum of these in-
dependent random variables for all ants a. Note that E[Yr] =
n(1/4)r, so for r = (log4 n)/2 − log4(12c), E[Yr] = 12c

√
n.

Therefore, by a Chernoff bound Pr[Yr < 6c
√
n] ≤ 1/nc.

By Lemma 3.1, the probability that an uninformed ant
remains uninformed is at least 1/4, regardless of the other
ants’ actions in round r. Therefore,

Pr[X̄a
r = 1|all X̄a′

r for a′ before a in P ] ≥ (1/4)r,

where P is the random permutation used to model the re-
cruitment process. So, by the definition of Y ar :

Pr[X̄a
r = 1|X̄a′

r for all a′ before a in P ] ≥ 1

4r
= Pr[Y ar = 1].

By Lemma 1.18 in [5][Chapter 1], Pr[X̄r < x] ≤ Pr[Yr <
x] for any x ≤ n. In particular, for r = (log4 n)/2−log4(12c),
it follows that Pr[X̄r < 6c

√
n] ≤ Pr[Yr < 6c

√
n] ≤ 1

nc .
Therefore, with probability at least 1 − 1/nc, at least

6c
√
n ants are ignorant at the end of round r = (log4 n)/2−

log4(12c). These ants are not informed of the id of the win-
ning nest, and so cannot be located at this nest.

Since algorithm A solves the HouseHunting problem
with probability at least 1/nc in T rounds, then, with prob-
ability at least 1/nc, after T rounds, all ants are informed of
the winning nest. We showed that with probability at least
1−1/nc, at least 6c

√
n ants are ignorant at the end of round

r = (log4 n)/2− log4(12c). Therefore, T ≥ r = Ω(logn).

4. OPTIMAL ALGORITHM
We present an algorithm that solves the HouseHunting

problem and is asymptotically optimal. In the key step of
the algorithm, each ant tries to recruit other ants to the nest
it found after searching; after each round of recruiting, each
ant checks if the number of ants at its nest has increased
or decreased. Nests with a non-decreasing population con-
tinue competing while nests with a decreasing population
drop out. In each round, the population of at least one nest
is non-decreasing, so at least one nest remains in the compe-
tition. Additionally, other nests drop out at a constant rate,
meaning a single winning nest will be identified quickly.

This algorithm relies heavily on the synchrony in the ex-
ecution and the precise counting of the number of ants in a
nest, which makes it sensitive to perturbations of these val-
ues, and therefore, not a natural algorithm that resembles
ant behavior. However, the algorithm demonstrates that
HouseHunting is solvable in optimal time in our model.

4.1 Algorithm Pseudocode and Description
The pseudocode of the algorithm is presented in Algo-

rithm 1. Each call to the functions from Section 2 (in bold)
takes exactly one round. The remaining lines of the algo-
rithm are considered to be local computation and are exe-
cuted in the same round as the preceding function call.

Each ant is in one of four states: search, active, passive,
or final, initially search. Based on the state of the ant, it
executes the corresponding case block from the pseudocode.

The search subroutine is executed only once, during the
first round, and the final subroutine is used by active ants
at the end of the execution to recruit all ants to the winning
nest. The other two subroutines, active and passive, rep-
resent the actions of active (recruiting) ants, and ants from
bad/dropped-out nests, respectively. Each of these subrou-
tines takes exactly four rounds, labeled as R1, R2, R3, or
R4 in the pseudocode. The subroutines are carefully sched-
uled such that these two types of ants do not meet until the
end of the competition process when a single winning nest
remains; otherwise, the competition between ants from com-
peting nests would be slowed down by ants from dropped-out
nests. The active and passive subroutines are padded with
recruit(0, ·) and go(nest) calls to achieve such interleaving
(lines 12, 17–18, 32–33, 39 are such padding rounds).

Search (lines 6–11): In the first round, each ant
searches for a nest. If the nest has quality 0, the ant moves
to the passive state; otherwise, it moves to the active state.
Passive (lines 12–19): An ant is passive if it either

found a bad nest or its nest has dropped-out. The ant spends
a round at its (non-competing) nest, then it goes home to be
recruited. This call to recruit(0, nest) never coincides with
a recruit(1, nest) of an active ant, so a passive ant can only
be recruited by an ant in the final state. Once recruited,
the passive ant moves to the final state.
Final (lines 20–21): An ant in the final state is aware

that a single winning nest remains, so it recruits to it in each
round. This call to recruit(1, nest) coincides with the call
to recruit(0, nest) of passive ants, so once a single nest re-
mains, passive ants are recruited to it in every fourth round.

Active (lines 22–42): An active ant tries to recruit to
its nest by executing recruit(1, nest). It then goes to the
resulting nest to assess its population. Based on the nest
(nestt) and population (countt), we consider three cases:



Algorithm 1: Optimal HouseHunting Algorithm

1 state : {search, active, passive, final}, initially search
2 nest : nest index i ∈ {0, · · · , k}, initially 0
3 count : an integer in {0, · · · , n}, initially 0
4 quality : a boolean in {0, 1}, initially 0
5 case state = search
6 < nest, count, quality >:= search()
7 if quality = 0 then
8 state := passive
9 else

10 state := active

11 case state = passive
12 go(nest) (R1)
13 < nestt, · >:= recruit(0,nest) (R2)
14 if nestt 6= nest then
15 nest := nestt
16 state := final

17 go(nest) (R3)
18 go(nest) (R4)

19 case state = final
20 < nest, · >:= recruit(1,nest) (R1, R2, R3, R4)
21 case state = active
22 < nestt, · >:= recruit(1,nest) (R1)
23 countt := go(nestt) (R2)
24 if (nestt = nest) and (countt ≥ count) then
25 count := countt
26 go(nest) (R3)
27 < ·, counth >:= recruit(0,nest) (R4)
28 if counth = count then
29 state := final

30 else if (nestt = nest) and (countt < count) then
31 state := passive
32 recruit(0,nest) (R3)
33 go(nest) (R4)

34 else
35 nest := nestt
36 countn := go(nest) (R3)
37 if countn < countt then
38 state := passive
39 go(nest) (R4)

Case 1 (lines 25–31): nestt = nest and the number of
ants in nest has not decreased, so the nest remains compet-
ing. The ant updates the new count and spends an extra
round at the nest that has a special purpose with respect to
Cases 2 and 3 below. Finally, if the number of ants at the
home nest is equal to the number of ants at the competing
nest, all ants have been recruited to a single winning nest
and the ant switches to the final state.

Case 2 (lines 32–36): nestt = nest but the population has
decreased so the nest drops out. The ant becomes passive
and spends a round at the home nest, which coincides with
the round active ants spend at competing nests in Case 1.

Case 3 (lines 37–42): nestt 6= nest, so the ant got re-
cruited to another nest. Although it already knows the pop-
ulation (countt) of the new nest, the ant updates that value
(countn) to determine if this new nest is about to compete
or drop out. If countt = countn, the nest is competing be-
cause the active ants in Case 1 are spending the same round
at the nest; if countt > countn, the nest is dropping out
because the ants in Case 2 already determined a decrease in
population and are spending this round at the home nest.

4.2 Correctness Proof and Time Bound
As written, Algorithm 1 never terminates; after all ants

are in the final state, they continuously recruit each other.
This issue can easily be handled if ants check whether the
number of ants at the home nest is the same as the number
of ants at the candidate nest. For simplicity we just assume
the algorithm terminates once all ants are in the final state.
Proof Overview: The proof of correctness and time

bound analysis of Algorithm 1 are structured as follows. In
Lemma 4.1, we show that a competing nest is equally likely
to continue competing and to drop out. Consequently, as
we show in Lemma 4.2, each competing nest has a constant
probability of dropping out. We put these lemmas together
in Theorem 4.3 to show that, with high probability, Al-
gorithm 1 solves the HouseHunting problem in O(logn)
rounds: O(log k) rounds to converge to a single nest and
O(logn) rounds until all passive ants are recruited to it.

Let R1 be the set of round numbers r such that r ∈ R1

iff (r− 1) mod 4 = 1; these rounds, labeled R1 in the pseu-
docode, are exactly the rounds in which only ants from ac-
tive nests are located at the home nest and recruiting each
other. Let C(i, r) for each r ∈ R1 and each nest ni denote
the set of active ants for which nest = ni. This implies that
| ∪i∈[1,k] C(i, r)| = c(0, r) for r ∈ R1.

Let random variable Xa
r , for each ant a and round r ∈

R1, take on values in {−1, 0, 1}. If ant a gets recruited by
another ant in round r, then Xa

r = −1; if ant a successfully
recruits another ant, then Xa

r = 1; otherwise, Xa
r = 0. Let

or be a vector of length c(0, r), where or(a) = Xa
r . Let

random variable Y ir denote the change in the number of ants
at nest ni after round r, where r ∈ R1. Y ir =

∑
a∈C(i,r) X

a
r .

Informally, the change in population of nest ni is simply
the sum of identically distributed {−1, 0, 1} random vari-
ables with mean 0 that are non-zero with constant proba-
bility. Therefore, the sum of these variables is negative with
constant probability. Proving this fact requires a more rigor-
ous argument because the Xa

r variables are not independent.
Recall that, as specified by the recruitment model, Y ir is

the result of a random recruitment process in which all ants
are ordered by a random permutation. Then, in order of the
permutation, ants choose uniformly at random other ants at
the home nest to recruit. The random variables involved in
this process are the random permutation P as well as the
set of random choices of ants.

Lemma 4.1. Let nest ni be a competing nest in round r ∈
R1. Then, Pr[Y ir < 0] = Pr[Y ir > 0].

Proof. Random variable Y ir is simply the sum of values
of or(a) corresponding to ants a ∈ C(i, r). Since or has ex-
actly the same number of −1s and 1s, it is possible to choose
some (non-random) permutation P ′ that swaps the locations
of the −1s and 1s in or. Choosing a random permutation P
in the recruitment process and then applying the swapping
permutation P ′ negates the value of Y ir . Moreover, choos-
ing a uniform random permutation P and then applying
this swapping permutation P ′ still yields a uniform random
permutation. So, −Y ir is distributed according to the exact
same distribution as Y ir . Therefore, Y ir is symmetric around
0 and Pr[Y ir < 0] = Pr[Y ir > 0].



Lemma 4.2. Let nest ni be a competing nest in round r ∈
R1. If |C(i, r)| < c(0, r), then Pr[Y ir < 0] ≥ 1/66.

Proof. Let P1 be the uniform random permutation in
in the recruitment process that determines Y ir . Let per-
mutation P2 swap the position of a fixed ant a∗ such that
a∗ /∈ C(i, r) with the position of an ant a chosen uniformly
from C(i, r). The existence of such an ant is guaranteed by
the assumption that |C(i, r)| < c(0, r).

By Lemma 2.1, Pr[Xa∗
r = 1] ≥ 1/16. Conditioning on

Y ir = 0, at most 1/2 the ants a ∈ C(i, r) have Xa
r = 1.

Therefore, with probability at least 1/2, the ant a chosen
uniformly at random by permutation P2 has Xa

r < 1. Con-
ditioning on Xa∗

r = 1 can only increase this probability. So
with probability at least (1/2)(1/16), applying the compo-
sition of P1 and P2 to compute Y ir increases its value by at
least 1. Since the composition of P1 and P2 is also a uniform
random permutation, the distribution of Y ir remains exactly
the same as the case when only P1 is applied. Therefore,

Pr[Y ir = 0] ≤ 1− 1
32

Pr[Y ir = 0] so Pr[Y ir = 0] ≤ 32
33
.

By Lemma 4.1, Pr[Y ir < 0] = Pr[Y ir > 0]. Therefore,
Pr[Y ir < 0] ≥ 1/66.

Theorem 4.3. For any constant c > 0, with probability
at least 1 − 1/nc, Algorithm 1 solves the HouseHunting
problem in O(logn) rounds.

Proof. In the first round, all ants search for nests, so
the expected number of ants located at each good nest is
n/k. Assuming k ≤ n/(12(c + 1) logn) = O(n/ logn), by
a Chernoff bound, with probability at least 1 − 1/nc+1, at
least n/(2k) = Ω(logn) ants visits each good nest.

Let kr be a random variable denoting the number of com-
peting nests in round r ∈ R1. Suppose kr > 1, and so
|C(i, r)| < c(0, r). By Lemma 4.2, Pr[Y ir < 0] ≥ 1/66
for each nest ni among the kr competing nests. There-
fore, E[kr+4] ≤ (65/66)kr. Also, note that for any round
r, kr ≤ k. For r = log66/65 k+ (c+ 1) log66/65 n = O(logn),

it follows that E[kr] = 1/nc+1. By a Markov bound, Pr[kr ≥
1] ≤ 1/nc+1, so with probability at least 1−1/nc+1, kr ≤ 1.
It is never possible for all nests to decrease in population, so
for each round r, kr ≥ 1. So, overall, after O(logn) rounds,
with probability 1− 1/nc+1, there is exactly one competing
nest.

Once there is only one competing nest in some round r ∈
R1, all ants from that nest switch to the final state and
start recruiting the passive ants every fourth round. The
recruited ants transition to the final state, and in at most
O(logn) rounds all ants are recruited to the winning nest.

Therefore, in total, with probability at least 1−1/nc, each
nest is discovered by at least one ant and all ants are located
at a single good nest in O(logn) rounds.

5. SIMPLE ALGORITHM
In this section, we present a simple algorithm that solves

the HouseHunting problem in O(k logn) rounds with high
probability. The main idea of the algorithm is that all ants
initially search for nests and those that find good nests sim-
ply continuously recruit to their nests with probability pro-
portional to nest population in each round. Ants in larger
nests recruit at higher rates, and eventually their popula-
tions swamp the populations of smaller nests. This process
is similar to the well-known Polya’s urn model [2].

Algorithm 2: Simple House-Hunting

1 state : {active, passive}, initially active
2 < nest, count, quality >:= search()
3 if quality = 0 then
4 state := passive
5 case state = active
6 b := 1 with probability count/n, 0 otherwise
7 nest := recruit(b,nest)
8 count := go(nest)

9 case state = passive
10 nestt := recruit(0,nest)
11 if nestt 6= nest then
12 state := active
13 nest := nestt
14 count := go(nest)

5.1 Algorithm Description and Pseudocode
In each round of Algorithm 2, each ant can be in one of

two states: active or passve, initially starting in the active
state. In the first round of the algorithm, all ants search
for nests; the ants that find good nests remain in the active
state, and the ants that find bad nests switch to the passive
state. Then, the algorithm proceeds in alternating rounds
of recruitment by all ants at the home nest (either active
recruit(1, ·) or passive recruit(0, ·)), and population as-
sessment at candidate nests. In each round of population
assessment, each ant chooses to recruit actively in the next
round with probability count/n, where count is the assessed
population at the candidate nest, and n is the total number
of ants. When a passive ant gets recruited to a nest, it be-
comes active again. When an active ant gets recruited to a
different nest, it starts recruiting to that new nest.

5.2 Correctness Proof and Time Bound
For each nest ni and each round r let random variable

p(i, r) = c(i, r)/n denote the proportion of ants at nest ni in
round r. By the pseudocode, ants located at nest ni in round
r will recruit with probability p(i, r) in round r + 1. Define

Σ2(r) =
∑k
i=1 p(i, r)

2, the expected proportion of ants that

will recruit in total, in round r. Since
∑k
i=1 p(i, r) = 1, by

the `1 versus `2 norm bound Σ2(r) ≥ 1/k.
Proof Overview: The proof of correctness and runtime

analysis of the algorithm are structured as follows. In Lem-
mas 5.1, 5.2, and 5.3, we show some basic bounds on the ex-
pected number of ants recruited and the change of the value
of p(i, r) for a single nest in each round. Then, in Lemmas
5.5, 5.6, and 5.7, we use a Taylor series expansion of the ratio
between the populations of two nests to show that in expec-
tation this ratio increases multiplicatively by (1 + Ω(1/k))
in each round of recruiting, provided that both nests have a
Ω(1/k) fraction of the total population. On the other hand,
if a nest has less than a Ω(1/k) fraction of the total pop-
ulation, in Lemmas 5.8 and 5.9, we show that the ants in
such a nest recruit so slowly that the nest completely drops
out within O(k logn) rounds with high probability. Finally,
in Theorem 5.11, we consider all

(
k
2

)
pairs of nests to show

that the widening population gaps lead to only a single nest
remaining in each pair within O(k logn) rounds, ensuring,
by a union bound, that a single nest remains overall.

Throughout this section, let c > 0 be an arbitrary con-
stant and let d be an arbitrary constant such that d ≥ 64.
In the analysis, we assume that k ≤

√
n/(8d2(c+ 6) logn) =



O(
√
n/ logn). While we feel that this assumption is reason-

able, we are also hopeful that it is not necessary.
Let R1 be the set of all odd rounds, excluding round 1;

by the pseudocode, in these rounds, ants are located at the
candidate nests. So, for each r ∈ R1 and each ant a, `(a, r) =
i 6= 0; for each round r′ 6∈ R1 and for each ant a, `(a, r′) = 0.

5.2.1 Change in Population of a Nest in One Round
We first study how the population of a single nest changes

in a round. Intuitively, we expect a p(i, r) proportion of the
ants in ni to recruit, and a Σ2(r) proportion to be recruited.
So we expect a total change of p(i, r)(p(i, r)−Σ2(r)). Qual-
itatively, we show this in Lemma 5.3, up to constant factors;
the main difficulty is handling dependencies in the recruit-
ing process. Before proving Lemma 5.3, we give two lemmas
that state the expected outcome of a single ant recruiting.

As before, define random variable Xa
r to take on value −1

if ant a is recruited away from its current nest in round r, 1
if it successfully recruits another ant, and 0 otherwise.

The following lemma applies to an ant a recruiting with
any probability p in a given round r. It is clear that when-
ever an ant recruits, it is always with probability p(i, r),
so the majority of the time we will apply the lemma for
p = p(i, r); however, the general statement of the lemma
helps reason about the expected value of Xa

r for ants from
different nests in Lemma 5.2.

Lemma 5.1. Let ni be any nest and let ant a be located in
nest ni in some round r ∈ R1. Also, suppose ant a recruits
with probability p in round r. Then, there exist functions ξ1
and ξ2 such that E[Xa

r ] = pξ1(i, r)− ξ2(i, r) and ξ1(i, r) ≥ ξ
for a fixed constant ξ > 0.

Proof. Let Aar be a random variable indicating whether
some ant a chooses to recruit (executes recruit(1, ·)) in
round r + 1. By assumption, Pr [Aar = 1] = p. Whether
ant a is actually successful in recruiting another ant de-
pends on: (1) the order of the random recruiting permu-
tation P , (2) the choices of other ants to recruit or not, and
(3) the choices by recruiting ants of whom to recruit. Let B
be a random variable encompassing all these random vari-
ables that affect Xa

r , excluding Aar . Therefore, B is a triple

(P, {Aa
′
r |a′ 6= a}, {1, · · · , n}n) and it takes on values from

the set B of all such triples. The expected value of Xa
r is:

E[Xa
r ] =

∑
b∈B

Pr [B = b] pE [Xa
r |B = b, Aar = 1]

+
∑
b∈B

Pr [B = b] (1− p)E [Xa
r |B = b, Aar = 0] .

Fix some value B = b. We consider several cases based on
all the possible ways the value of Aar can affect Xa

r . We can
immediately eliminate some of these cases. If Aar = 0 (the
ant chooses not to recruit), it is not possible that Xa

r = 1
(the ant succeeds in recruiting). Also, since B = b is already
fixed, ant a is either chosen by another ant or not, regardless
of the value of Aar . This fact rules out two more cases: (1)
the case where Xa

r = 0 if Aar = 0, and Xa
r = −1 if Aar = 1,

and (2) the case where Xa
r = −1 if Aar = 0, and Xa

r = 0
if Aar = 1. In (1), since the choices of the other ants are
already fixed and included in B = b, it is not possible that
ant a gets recruited if it chooses to recruit but it does not
get recruited otherwise. Similarly, in (2), it is not possible
that ant a gets recruited when it chooses not to recruit but

does not get recruited when it fails to recruit. All remaining
cases are listed below:

Case 1: Xa
r = −1 for both Aar = 0 and Aar = 1. That is, the

ant is recruited by another ant no matter its decision.

Case 2: Xa
r = −1 if Aar = 0, and Xa

r = 1 if Aar = 1. That
is, if the ant chooses to recruit it succeeds, and if not,
it is recruited by another ant.

Case 3: Xa
r = 0 for both Aar = 0 and Aar = 1. That is,

whether the ant chooses to recruit or not, it will not
be part of a successful recruitment.

Case 4: Xa
r = 0 if Aar = 0, and Xa

r = 1 if Aar = 1. That is,
if the ant chooses to recruit it succeeds, but if not, it
is not recruited by another ant.

Let pbx be the probability of case x occurring given B = b.
The expected value of Xa

r is:∑
b∈B

Pr [B = b] ·
(
p
(
pb2 + pb4 − pb1

)
+ (1− p)

(
−pb1 − pb2

))
=
∑
b∈B

Pr [B = b]
(
p
(

2pb2 + pb4

)
−
(
pb1 + pb2

))
= pEB

[
2pb2 + pb4

]
− EB

[
pb1 + pb3

]
.

Now, we need to show that EB
[
2pb2 + pb4

]
≥ ξ for some

fixed constant ξ > 0. By Lemma 2.1, each recruiting ant
succeeds with constant probability. A recruiting ant only
succeeds in cases 2 and 4 so we have EB [pb2+pb4] ≥ ξ for some
constant ξ > 0. Therefore, EB [2pb2 + pb4] ≥ EB [pb2 + pb4] ≥ ξ.

Overall, E[Xa
r ] = pξ1(i, r)−ξ2(i, r), for constants ξ1(i, r) =

EB [2pb2 + pb4] ≥ ξ > 0 and ξ2(i, r) = EB [pb1 + pb2].

Note that the values of ξ1(i, r) and ξ2(i, r) are slightly
different for different nests. For example, the different prob-
abilities corresponding to the cases in Lemma 5.1 vary based
on the population of a given nest in a given round and the
populations of the remaining nests in that round. In our full
version [14], we prove a bound on the ξ1(i, r) and ξ2(i, r) val-
ues of two different nests that will be useful in later proofs.

Lemma 5.2. Let ni and nj be two nests with p(i, r) ≤
p(j, r) in some round r ∈ R1. Then, ξ1(i, r) · p(i, r) −
ξ2(i, r) ≤ ξ1(j, r) · p(i, r)− ξ2(j, r).

It is simple to use Lemma 5.1 to calculate the expected
change in p(i, r). The calculation is given in [14].

Lemma 5.3. For each nest ni and each round r ∈ R1,
E[p(i, r + 2)] = p(i, r) · [1 + ξ1(i, r) · p(i, r)− ξ2(i, r)] .

Lemma 5.3 shows that the population change of a nest
depends quadratically on p(i, r) so larger nests will ‘swamp’
smaller nests, causing their populations to drop to 0.

5.2.2 Relative Changes in the Populations of Two
Nests in One Round

We first define a measure of the population gap between
two nests.

Definition 1. For any nests ni and nj, let nH(i, j, r) ∈
{i, j} be the id of the nest with the higher population in round
r. Let nL(i, j, r) be the nest with the lower population. De-
fine:

ε(i, j, r) =
p(nH(i, j, r), r)

p(nL(i, j, r), r))
− 1.



ε(i, j, r) is the relative population gap between the larger
and smaller of nests ni and nj in round r. In [14] we show:

Lemma 5.4. For any two nests ni and nj, E[ε(i, j, 1)] ≥
1/(3(n− 1)).

Since ε(i, j, r) is a ratio of two populations, it is not imme-
diately clear how to compute its expected change between
rounds. However, using a Taylor series expansion we bound
this ratio by a linear function, and use Lemma 5.3 to com-
pute its expected change. We first show how to use the
Taylor series expansion in our setting. In [14] we compute:

Lemma 5.5. For positive numbers x0, x1, y0, and y1 let

∆x = x1 − x0, ∆y = y1 − y0, and ∆
(
x
y

)
= x1

y1
− x0

y0
. Then:

∆

(
x

y

)
=

[
∆x

y0
− x0∆y

y2
0

]
·
∞∑
i=0

(
−∆y

y0

)i
For simplicity of notation, write pH = p(nH(i, j, r), r),

pL = p(nL(i, j, r), r). Also, ∆pH = p(nH(i, j, r), r + 2) −
p(nH(i, j, r), r), ∆pL = p(nL(i, j, r), r + 2)− p(nL(i, j, r), r)

and ∆
(
pH
pL

)
= p(nH (i,j,r),r+2)

p(nL(i,j,r),r+2)
− p(nH (i,j,r),r)

p(nL(i,j,r),r)
. We can now

apply Lemma 5.5 to show:

Lemma 5.6. Let ni and nj be two nests with ∆pL < pL in

some round r ∈ R1. Then, ∆
(
pH
pL

)
≥ 1

2

(
∆pH
pL
− pH∆pL

p2
L

)
.

Proof. Note that we are not considering expectations for
now, just the actual values. Applying Lemma 5.5, we can

write ∆
(
pH
pL

)
in terms of ∆pH and ∆pL. We have:

∆

(
pH
pL

)
=

(
∆pH
pL
− pH∆pL

p2
L

) ∞∑
i=0

(
−∆pL

pL

)i
.

The value ∆pL
pL

is strictly less than 1 by the assumption

that ∆pL < pL, so the infinite sum above converges to
1

1+∆pL/pL
≥ 1/2.

We now use ∆(pH/pL) to calculate the expected change
in ε(i, j, r) for two nests after one recruitment round.

Lemma 5.7. Let ni and nj be two nests with ∆pL < pL,
p(i, r) ≥ 1/(dk) and p(j, r) ≥ 1/(dk) for some round r ∈ R1.
Then, E [ε(i, j, r + 2)] ≥ (1 + ξ/(2dk))E [ε(i, j, r)] for fixed
constant ξ > 0.

Proof. First we show that:

ε(i, j, r + 2) ≥ p(nH(i, j, r), r + 2)

p(nL(i, j, r), r + 2)
− 1.

This is because, if the larger of the two nests in round r
remains larger in round r+2, then nH(i, j, r) = nH(i, j, r+2)
and nL(i, j, r) = nL(i, j, r + 2), so, by the definition of ε,

ε(i, j, r + 2) = p(nH (i,j,r),r+2)
p(nL(i,j,r),r+2)

− 1. Alternatively, if the two

nests flip positions, then p(nH (i,j,r),r+2)
p(nL(i,j,r),r+2)

− 1 must be smaller

than ε(i, j, r+2) since it contains the population of the larger
nest in the denominator. Fixing p(i, r) and p(j, r), we have:

E[ε(i, j, r + 2)] ≥ E
[
p(nH(i, j, r), r + 2)

p(nL(i, j, r), r + 2)
− 1

]
= ε(i, j, r) + E

[
p(nH(i, j, r), r + 2)

p(nL(i, j, r), r + 2)
− p(nH(i, j, r), r)

p(nL(i, j, r), r)

]

So we have reduced our question of how we expect the
absolute difference between the nests to change to the ques-
tion of how we expect the population ratio to change. By
Lemma 5.6, it follows that:

E[ε(i, j, r + 2)] ≥ ε(i, j, r) +
1

2

(
pLE[∆pH ]− pHE[∆pL]

p2
L

)
.

By Lemma 5.3 we have:

pLE[∆pH ]− pHE[∆pL] = pLp
2
Hξ1(nH , r)− pLpHξ2(nH , r)

− pHp2
Lξ1(nL, r) + pLpHξ2(nL, r)

≥ ξpLpH(pH − pL),

where the inequality follows from the guarantee of Lemma
5.2 that pLξ1(nL, r) − ξ2(nL, r) ≤ pLξ1(nH , r) − ξ2(nH , r).
Noting that ε(i, j, r) = pH−pL

pL
we have:

E[ε(i, j, r + 2)] ≥ ε(i, j, r) +
ξpLpH(pH − pL)

2p2
L

≥ ε(i, j, r)
(

1 +
ξpH

2

)
≥ ε(i, j, r)

(
1 +

ξ

2dk

)
.

5.2.3 Changes in Populations of Multiple Nests over
O(k log n) Rounds

We now show that once the population of a nest is very
small, it will quickly drop to zero. We first give a lemma,
proven in [14], that once the population of a nest drops be-
low a certain threshold, ants will recruit at a slow enough
rate that the population will remain small for a number of
rounds. We then show that over these rounds, the popula-
tion will in fact drop to 0 with high probability.

Lemma 5.8. Let ni be any nest with p(i, r) ≤ 1/(dk) in
some round r ∈ R1. Then, with probability at least 1 −
1/nc+4, p(i, r′) ≤ 1/(dk) for all rounds r′ ∈ [r, r + 64(c +
4)k logn)].

Lemma 5.9. Let ni be a nest with p(i, r) ≤ 1/(dk) in
some round r ∈ R1. Then, with probability at least 1 −
1/nc+3, c(i, r′) = 0 for r′ = 64(c+ 4)k logn.

Proof. We calculate the expected change in the number
of ants in nest ni by first calculating E[Xa

r ] for some ant a in
nest ni and some round r ∈ R1 such that p(i, r) ≤ 1/(dk).

Suppose ant a does not recruit. Let random variable

Y a
′

r have value 1 if ant a′ successfully recruits ant a, and

value 0 otherwise. By Lemma 2.1, it follows that E[Y a
′

r ] ≥
p(i′, r)/(16n) where i′ = `(a′, r). Therefore:

E

∑
a′ 6=a

Y a
′

r

 =
∑
a′ 6=a

E[Y a
′

r ] ≥ 1

16n

k∑
j=1

∑
a′ 6=a

a′∈A(j,r)

p(j, r)

≥ 1

16n

 k∑
j=1

∑
a′∈A(j,r)

p(j, r)

− 1

dk

≥ 1

16n

(
k∑
j=1

np(j, r)2

)
− 1

dk
≥ Σ2(r)

16
− 1

dk
.



Therefore, the expected value of Xa
r is:

E[Xa
r ] ≤ 1

dk
−
(

1− 1

dk

)
E

 ∑
a′ /∈A(j,r)

Y a
′

r


=

1

dk
−
(

1− 1

dk

)(
Σ2(r)

16
− 1

dk

)
≤ − 1

64k
,

where the bound follows from the assumption d ≥ 64. So
E[p(i, r + 2)] = p(i, r)(1 + E[Xa

r ]) ≤ p(i, r) (1− 1/64k) .
By Lemma 5.8, p(i, r′) ≤ 1/(dk) for all r′ ∈ [r, r + 64(c+

4)k logn]. Therefore, for r′ = 64(c+4)k logn, it is true that
E[p(i, r′)] ≤ 1/nc+3 and, by a Markov bound, nest ni has at
least one ant with probability at most 1/nc+3. Therefore,
with probability at least 1− 1/nc+3, c(i, r′) = 0.

Next, for any pair of nests, both with population propor-
tions ≥ 1/(dk), we can use Lemma 5.7 to argue that the
populations of these nests diverge quickly. As soon as a nest
drops below the 1/(dk) threshold we can use Lemma 5.9 to
show that it will not be the winning nest.

Lemma 5.10. Let ni and nj be two nests with q(i) =
q(j) = 1 and ξ > 0 be a fixed constant. For r′ = (6d/ξ +
64(c+6))k logn, with probability at least 1−1/nc+2, at least
one of the following is true: c(i, r′) = 0 or c(j, r′) = 0.

Proof. Note that if at any point a nest has no ants in
it, it remains having no ants thereafter. We consider two
possible cases based on how many ants are in each nest in
each round r ∈ [1, 6dk logn/ξ)]:

Case 1: In some round r ∈ [1, 6dk logn/ξ)] either ni of
nj has fewer than n/(dk) ants. Then, by Lemma 5.9, with
probability at least 1 − 1/nc+3, this nest has no ants after
64(c+ 4)k logn rounds.

Case 2: In every round r ∈ [1, 6dk logn/ξ)] both ni and
nj have at least n/(dk) ants. We will show that, with proba-
bility at least 1−1/nc+3 this case does not happen. First, we
show that ∆pL < pL in all rounds with high probability, so
that we can apply Lemma 5.7. Since both nests have at least
n/(dk) ants, pL ≥ 1/(dk), so the expected number of ants
recruiting for that nest is at least n/(d2k2) = Ω(logn), by

our assumption k ≤
√
n/(8d2(c+ 6) logn) = O(

√
n/ logn).

By a Chernoff bound, with probability at least 1− 1/nc+3,
the number of recruiting ants is at most 2n/(d2k2). With
probability at least 1 − 1/nc+3, not all ants from the nest
with lower population recruit so ∆pL < pL. By Lemma 5.7,

E[ε(i, j, 6dk logn/ξ)] ≥ [1 + ξ/(2dk)]6dk logn/ξ E[ε(i, j, 1)]

≥ n3 · E[ε(i, j, 1)].

By Lemma 5.4, E[ε(i, j, 1)] ≥ 1/(3(n − 1)). So, we have
E[ε(i, j, 6dk logn/ξ)] ≥ n. However, this is a contradiction
to the fact that ε(i, j, 6dk logn/ξ) ≤ n−1, by definition, and
consequently E[ε(i, j, 6dk logn/ξ)] ≤ n− 1.

Each case holds with probability at least 1 − 1/nc+3, so
union bounding them, we get that, with probability at least
1− 1/nc+2, either c(i, r′) = 0 or c(j, r′) = 0.

Theorem 5.11. With probability at least 1− 1/nc, Algo-
rithm 2 solves HouseHunting in O(k logn) rounds.

Proof. By our bound on k (k ≤
√
n/(8d2(c+ 6) logn) =

O(
√
n/ logn)), with probability at least 1 − 1/nc+1, in the

first round of the algorithm (a round of searching), at least

some ant will arrive at a nest with quality 1. So, with high
probability, since only ants at nests with quality 1 recruit,
there is always at least one ant recruiting to a good nest.

By Lemma 5.10, with probability at least 1− 1/nc+2, for
each pair of nests ni and nj , at least one nest contains no
ants by the end of O(k logn) rounds. Union bounding over
all, at most

(
k
2

)
< k2 < n (by the bound on k), pairs of good

nests, we conclude that, with probability at least 1−1/nc+1,
after O(k logn) rounds, each pair contains at least one nest
with no ants. This can only be true if all nests have no ants
(not possible) or if all ants are located at one good nest.

Union bounding over the initial search phase and subse-
quent competition between nests, with probability at least
1−1/nc, HouseHunting is solved in O(k logn) rounds.

6. DISCUSSION AND FUTURE WORK
Extensions to the Model: For the analysis, we make

many simplifying assumptions about the house-hunting pro-
cess. We are confident that some of these assumptions can be
weakened. Possible changes include assuming only approxi-
mate knowledge of n, allowing arbitrary values of k, and al-
lowing non-binary nest qualities along with some measure of
performance based on the chosen nest quality. Distinguish-
ing between direct transport and tandem runs may also be
interesting, paired with more fine-grained runtime analysis.

Additionally, real ants can only assess nest quality and
population approximately. For example, they may estimate
nest area by random walking inside the nest and counting
how often they cross their own path [21]. They seem to esti-
mate nest population by tracking encounter rates with other
ants, with more encounters indicating higher population [15,
22]. Adding noisy measurements to our model and designing
algorithms that handle this noise would be very interesting.
It may even be possible to explicitly model low level behav-
ior and implement modular algorithms for nest assessment,
population measurement, recruitment, and search that give
various runtime and error guarantees.

Extensions to the Algorithms: We believe that Algo-
rithm 2 may be a good starting point for work on more real-
istic house-hunting models. Below we discuss some possible
extensions to the algorithm. Some seem to simply require a
more sophisticated analysis, while others require trade-offs
in the algorithm’s running time and its level of simplicity.

Improved running time: The O(k logn) runtime of Al-
gorithm 2 is required because, on average each nest initially
contains n/k ants, so ants only recruit with probability 1/k.
O(k) time is required to amplify population gaps by a con-
stant factor. Ideally, ants would all recruit with a probability
lower bounded by a constant, but still linearly dependent
on the nest populations, allowing convergence in O(logn)
rounds. If ants keep track of the round number, they can
map this to an estimate k̃(r) of how many competing nests

remain, allowing them to recruit at rate O(c(i, r)/n · k̃(r)).
We believe that such a strategy should yield a relatively
natural algorithm converging in O(polylogn) rounds.

Non-binary nest qualities: Assuming a real-valued nest
quality in the range (0, 1) affects Algorithm 2 because ants
no longer have the notion of a good nest. However, it should
be possible to incorporate nest quality into the recruitment
probability in order to make the algorithm converge to a
high-quality nest, without significantly affecting runtime.



Approximate counting, nest assessment, and knowledge of
n: The analysis of Algorithm 2 does not require each ant
to recruit with a specific probability, but just that the to-
tal number of ants recruiting to a nest is proportional to its
population. So, it should be resilient to noisy quality and
population measurements. If ants have unbiased estimators
of these values, we believe the algorithm should remain cor-
rect, with some runtime dependence on estimator variance.

Fault tolerance: Similarly, Algorithm 2 should be fault
tolerant. A small number of ants suffering from crash-faults
or even malicious faults, should not affect the overall popu-
lations of recruiting ants and the algorithm’s performance.

Asynchrony: Finally, Algorithm 2 currently works in
synchronous rounds and relies on this assumption to get the
correct number of ants at a given nest. However, we believe
that, as long as the distribution of ants in candidate nests
over time stays close to the distribution in the synchronous
model, Algorithm 2 can be extended to work in a partially-
synchronous model, potentially at some runtime cost.
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