
MIT Open Access Articles

A (Truly) Local Broadcast Layer for Unreliable Radio Networks

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Nancy Lynch and Calvin Newport. 2015. A (Truly) Local Broadcast Layer for Unreliable
Radio Networks. In Proceedings of the 2015 ACM Symposium on Principles of Distributed
Computing (PODC '15). ACM, New York, NY, USA, 109-118.

As Published: http://dx.doi.org/10.1145/2767386.2767411

Publisher: Association for Computing Machinery (ACM)

Persistent URL: http://hdl.handle.net/1721.1/100841

Version: Author's final manuscript: final author's manuscript post peer review, without
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/100841
http://creativecommons.org/licenses/by-nc-sa/4.0/

A (Truly) Local Broadcast Layer for
Unreliable Radio Networks

Nancy Lynch
MIT CSAIL

Cambridge, MA
lynch@csail.mit.edu

Calvin Newport
Georgetown University

Washington, DC
cnewport@cs.georgetown.edu

ABSTRACT
In this paper, we implement an efficient local broadcast ser-
vice for the dual graph model, which describes communi-
cation in a radio network with both reliable and unreliable
links. Our local broadcast service offers probabilistic latency
guarantees for: (1) message delivery to all reliable neighbors
(i.e., neighbors connected by reliable links), and (2) receiv-
ing some message when one or more reliable neighbors are
broadcasting. This service significantly simplifies the design
and analysis of algorithms for the otherwise challenging dual
graph model. To this end, we also note that our solution can
be interpreted as an implementation of the abstract MAC
layer specification—therefore translating the growing corpus
of algorithmic results studied on top of this layer to the dual
graph model. At the core of our service is a seed agreement
routine which enables nodes in the network to achieve “good
enough” coordination to overcome the difficulties of unpre-
dictable link behavior. Because this routine has potential
application to other problems in this setting, we capture it
with a formal specification—simplifying its reuse in other
algorithms. Finally, we note that in a break from much
work on distributed radio network algorithms, our problem
definitions (including error bounds), implementation, and
analysis do not depend on global network parameters such
as the network size, a goal which required new analysis tech-
niques. We argue that breaking the dependence of these al-
gorithms on global parameters makes more sense and aligns
better with the rise of ubiquitous computing, where devices
will be increasingly working locally in an otherwise massive
network. Our push for locality, in other words, is a contri-
bution independent of the specific radio network model and
problem studied here.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Wireless Com-
munication; G.2.2 [Discrete Mathematics]: Graph The-
ory—network problems

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
PODC’15, July 21–23, 2015, Donostia-San Sebastián, Spain.
Copyright c© 2015 ACM 978-1-4503-3617-8 /15/07 ...$15.00.
DOI: http://dx.doi.org/10.1145/2767386.2767411.

Keywords
radio network; local broadcast; abstract MAC layer; dual
graph; unreliability

1. INTRODUCTION
In this paper, we implement an efficient local broadcast ser-

vice in the dual graph radio network model [14, 16, 3, 7, 10,
8], which captures wireless communication over both reliable
and unreliable links. In more detail, the dual graph model
describes a network with two graphs, one for each type of
link. In each round, the network topology used for node
communication is a combination of the edges from reliable
link graph and some subset of the edges from the unreliable
link graph, the latter chosen adversarially. As argued in our
earlier studies of this setting, the inclusion of unpredictable
links in formal models of radio communication is motivated
by the ubiquity of such behavior in real networks (e.g., [23]).

Our local broadcast algorithm yields two types of prob-
abilistic latency guarantees: a fast progress bound, which
bounds the time for a node to receive something when one
or more of its reliable neighbors (i.e., neighbors connected
by reliable links) are transmitting, and a slower but still rea-
sonable acknowledgment bound, which bounds the time for
a sender to finish delivering a broadcast message to all of
its reliable neighbors. The service we implement operates
in an ongoing manner, which makes it suitable for use as
an abstraction layer for developing higher-level distributed
algorithms for unreliable radio networks. To this end, we
note that our algorithm can be interpreted as an implemen-
tation of the Abstract MAC Layer specification [13, 15]. It
follows that the growing corpus of results designed to run
on top of this abstraction (e.g., [9, 20, 6, 12, 11, 5]) can be
composed with our implementation, automatically porting
these existing solutions to the dual graph model for the first
time.

More generally speaking, we note that since 2009 [14] we
have waged (algorithmic) battle with the complexities intro-
duced by the presence of unpredictable link behavior in the
dual graph model—describing upper and lower bounds for a
variety of problems [14, 16, 3, 7, 10, 8]. This paper can be
seen as the culmination of this half-decade of effort, in which
we integrate what we have learned into a powerful abstrac-
tion that renders this realistic but difficult setting tractable
to a wider community of algorithm designers.
True Locality. Before proceeding to the details or our
results, we must first emphasize an important property of
our service: its implementation is “truly local,” by which
we mean that its specification, time complexity, and error

bounds are expressed independent of global parameters such
as network size. To make this work: we define our correct-
ness and performance properties locally, in terms of individ-
ual nodes, rather than globally, in terms of all the nodes;
we express our time complexity bounds with respect to lo-
cal properties, such as bounds on local neighborhood size,
not the full network size, n; and we capture our error prob-
abilities as generic ε parameters, rather than the common
approach of bounding the error in terms of (1/nc), for some
constant c ≥ 1. Though locality of this type has been well-
studied in other network models (e.g., [19, 17]), it is less
understood in the wireless setting—a deficiency we believe
must be addressed. There are two justifications for this be-
lief.

First, the common practice of seeking “high probability”
(i.e., an error probability bound of the form n−c) seems
unnatural for most deployment scenarios—why should you
have to grow your network size to decrease your error prob-
ability?1 Of course, by instead introducing a generic error
parameter, ε, as we do in this paper, we are not eliminating
the possibility of high probability error bounds when use-
ful, as you can simply set ε = (1/nc) if needed. But we
believe that one should try to postpone considering such de-
pendence until it is really necessary. Second, as we see an
increasing emphasis on an Internet of Things style ubiquity
in the wireless setting [1], global properties such as network
size can grow to a massive scale. In studying local algo-
rithms for such scenarios, it is important that we separate
time complexity and error guarantees from global param-
eters and instead reorient them toward the relevant local
conditions. This paper provides an example of what is re-
quired for a reorientation of this type.
Results. Our local broadcast service is parametrized by
two time bounds, tack and tprog, and an error bound, ε. It
assumes a dual graph model with an oblivious link scheduler
(i.e., decisions about which unreliable links to include in the
topology in each round are made at the beginning of the
execution), and a natural geographic constraint that requires
all nodes within distance 1 be connected by a reliable edge,
and no nodes at distance more than r ≥ 1 be connected
by an unreliable edge. (We typically assume r is constant
and therefore omit it in our result summary below. For the
sake of completeness, however, we keep r as a parameter in
our analysis during all steps leading to these results.) Our
service guarantees: (1) for each broadcast of a message m
by a node u, with probability at least 1 − ε, every reliable
neighbor of u will receive m within tack rounds; and (2) for
a given receiver v and span of tprog rounds, such that at
least one reliable neighbor of v is broadcasting throughout
the entire span, the probability that v fails to receive at
least one message during these rounds is no more than ε.
We present an algorithm that takes ε as a parameter and
implements this service for values of tack and tprog bounded
as follows:

1The most likely answer for why these high probability
bounds persist is that they make life easier for the algorithm
designer. In particular, if a property holds with high proba-
bility in n, a basic union bound provides that the property
holds for all nodes in a network for all rounds of any reason-
able length execution, which greatly simplifies subsequent
analysis. We believe, however, that the algorithm designer
should do more work to make the treatment of error proba-
bility more natural to the practitioner using the algorithms.

• tprog = O
(

log ∆ log (log4 ∆
ε

)
)

• tack = O
(
∆ log (∆/ε) log ∆ log (log4 ∆

ε
)(1

1−ε)
)

where ∆ is an upper bound on node degree. We empha-
size that that these results are near optimal, as even in the
absence of unreliable links: (1) any progress bound (which
reduces to symmetry breaking among an unknown set of
nodes) requires logarithmic rounds (e.g., [21]); and (2) any
acknowledgement bound requires at least ∆ rounds in the
worst case (imagine a receiver u neighboring ∆ broadcast-
ers: u can only receive one message per round, delaying one
of these broadcasters by at least ∆ rounds).
Discussion. A core difficulty in solving local broadcast in
the dual graph model is the presence of the unreliable links,
which are included or excluded in the network topology ac-
cording to an arbitrary link schedule (see the model section
below for details). To understand this difficulty, recall that
the standard strategy for broadcast in a radio network is
to cycle through a fixed schedule of geometrically decreas-
ing broadcast probabilities [2]. The intuition for this fixed
schedule approach is that for each receiver, one of these prob-
abilities will be well-suited for the local contention among
its nearby broadcasters. In the dual graph model, however,
there is no fixed amount of local contention: the link sched-
ule can effectively change this amount at each receiver at
each round by changing the edges included in the network
topology. It is possible, for example, that the link sched-
ule was constructed with the intent of thwarting this fixed
schedule strategy by including many links (i.e., increasing
contention) when the schedule selects high probabilities, and
excluding many links (i.e., decreasing contention) when the
schedule selects low probabilities.

To overcome this difficulty, we use as a starting point
the general strategy we originally identified in [10]: per-
mute the broadcast probability schedule after the execution
begins (and therefore, after the link schedule has already
been generated) to regain independence from the topology.
The challenge in permuting a broadcast probability sched-
ule, however, is coordinating the nodes sufficiently that they
can apply the same permutation. This creates a chicken and
egg problem: to share information among processes requires
that we solve broadcast, but we are sharing this informa-
tion to help solve broadcast. Our solution is to instead solve
a form of loose coordination we call seed agreement. This
problem assumes each participant generates a seed (for our
purposes, this seed will be random bits for use in generat-
ing a probability permutation), and then attempts to con-
vince nearby nodes to commit to its seed. A solution to this
problem must guarantee that every node commits to some
nearby seed (perhaps its own), and, crucially, that there are
not too many unique seeds committed in any node’s neigh-
borhood (in this paper, we achieve a bound on the order of
log (1/ε), for error probability ε). If nodes subsequently use
these seeds to permute their broadcast probability schedules
(thereby gaining independence from the link schedule), we
are assured that there are not too many different schedules
in a given neighborhood. An extra conflict resolution mech-
anism is then introduced to our broadcast strategy to help
resolve contention among these competing schedules.

We note that the seed agreement subroutine provides a
general strategy for taming adversarial link scheduling, and
is therefore of independent interest. Accordingly, in this

paper we provide a standalone formal specification for the
problem that is satisfied by our algorithm. This simplifies
the process of subsequently integrating our seed agreement
solution into other algorithms.

Finally, we note that to solve these problems in the ab-
sence of global parameters such as n requires the introduc-
tion of new and non-trivial proof techniques, also of inde-
pendent interest for the general pursuit of true locality in ra-
dio network algorithms. For example, in analyzing our seed
agreement subroutine, we could not simply assume that cer-
tain key parameters involving local contention hold for the
whole network, as this would require a dependence on n.
We instead established a region of goodness surrounding the
target node in our analysis. Using a careful induction on
algorithm steps, we showed that although the guaranteed
radius of this region must contract as time advances (due to
the influence of nodes outside the region for whom we make
no assumptions), this contraction is slow enough that our
target node safely completes its computation in time. Simi-
larly, in analyzing the local broadcast routines that leverage
the seed agreement bits, we had to leverage a new notion
of “high probability” that is defined with respect to node
degree, not network size (this is the source of the log (∆/ε)
factors in the tack bound described above).
Related Work. The dual graph model of unreliable ra-
dio communication was introduced by Clementi et al. [4],
and subsequently given the name “dual graph” by Kuhn
et al. [14]. It has since been well-studied [14, 16, 3, 7, 10, 22].
Under the pessimistic assumption of an adaptive adversary
(as oppose to the oblivious adversary considered in this pa-
per), we previously explored bounds for global broadcast [14,
16], local broadcast [7], and graph structuring algorithms [3,
22]. In [10], we studied the impact of different link scheduler
models by proving that some of the more pessimistic bounds
from our previous work depended on the assumption that
the link schedule was constructed by an adaptive adversary.
Of particular relevance to this paper, we proved in [10] that
local broadcast with efficient progress is impossible with an
adaptive link scheduler of this type, but is feasible with an
oblivious link schedule. To establish this latter point, we
designed and analyzed a one-shot local broadcast algorithm
that offers a progress guarantee (i.e., every node that neigh-
bors a broadcaster will get some message quickly) but no
reliability guarantees (i.e., no particular message is guaran-
teed to be delivered). The algorithm in [10] introduced the
basic ideas that we developed into the seed agreement speci-
fication and SeedAlg algorithm presented in this paper. We
also note that all results [10] depend on global parameters,
whereas here we invest significant effort in gaining true lo-
cality.

The abstract MAC layer [13, 15] is an approach to design-
ing wireless network algorithms that defines an abstraction
that captures the main guarantees of most wireless link lay-
ers, and then divides the task of algorithm design into two
efforts: (1) describing and analyzing algorithms that run on
top of the abstraction, and (2) implementing the abstrac-
tion in specific low-level wireless models. Our local broad-
cast problem was defined with the standard parameters of a
(probabilistic) abstract MAC layer in mind. Our algorithm,
therefore, can be interpreted as a strategy for implement-
ing this layer in the dual graph radio network model, and
therefore providing a way to translate to the dual graph low
level model the growing corpus of algorithms designed and

analyzed onto of the abstract MAC layer [9, 20, 6, 12, 11, 5].
We note, however, that the translation from our algorithm
to an abstract MAC layer implementation is not immediate,
as some (presumably straightforward) work will be required
to mediate between our definition, expressed in terms of
low-level details like rounds and receiving messages, and the
higher level specification of the abstract MAC layer, which
is usually expressed only in terms of the ordering and timing
of input and output events.

2. THE DUAL GRAPH MODEL
We use a radio network model based on dual graphs, which

describes randomized algorithms executing in a synchronous
multihop radio network with both reliable and unreliable
links. The model describes the network topology with a
dual graph (G,G′), where G = (V,E), G′ = (V,E′), and
E ⊆ E′, where E describes reliable links and E′\E describes
unreliable links. We use n to denote |V |, the number of
vertices in the graphs. For u ∈ V , we write NG(u) (NG′(u))
to denote u’s immediate neighbors in G (G′), not including
u itself. We assume two degree bounds: ∆, an upper bound
on |NG(u)∪{u}|, and ∆′, an upper bound on |NG′(u)∪{u}|,
defined over every u.

An embedding of a (finite) set V of graph vertices in the
Euclidean plane is simply a mapping emb : V → R2; this
provides a pair of (x, y) coordinates for each vertex V . If emb
is an embedding of the vertices V of a dual graph (G,G′)
and r is a real number, r ≥ 1, then we say that (G,G′)
is r-geographic with respect to emb provided that, for ev-
ery u, v ∈ V, u 6= v, the following conditions hold (where d
represents Euclidean distance):

1. If d(emb(u), emb(v))) ≤ 1 then {u, v} ∈ E.

2. If d(emb(u), emb(v)) > r, then {u, v} /∈ E′.

In other words, nearby vertices must be neighbors in G,
and distant vertices cannot even be neighbors in G′, but
vertices in the grey zone represented by the intermediate
distances in (1, r] might or might not be neighbors in G
or G′. We say that (G,G′) is r-geographic provided that
there exists an embedding emb of the vertex set V such that
(G,G′) is r-geographic with respect to emb. We sometimes
also say that (G,G′) is geographic provided that there exists
a real r ≥ 1 such that (G,G′) is r-geographic.

The dual graphs we consider in this paper are assumed
r-geographic, for some particular r, which we fix for the rest
of the paper. Moving forward, fix an space I. An algorithm
is an injective mapping proc() from I to some set of pro-
cesses, which are some type of probabilistic timed automata
that model wireless devices. Thus, proc(i) denotes the pro-
cess with id i. We assume that each process knows (e.g.,
has in a special component of its initial state) its own id,
and also knows the quantities ∆, and ∆′. Notice, we do not
assume processes know n (as is typical in such models) as we
seek problem definitions and solutions that operate indepen-
dently of the network size. A process assignment for a dual
graph (G,G′) and id space I is an injective mapping id()
from V to I, that assigns a different id to each graph vertex.
The two mappings, proc and id, together serve to assign a
distinct process to each graph vertex. That is, proc(id(u))
is the process assigned to graph vertex u. To simplify ter-
minology, we often write node u to indicate proc(id(u)) or

process i to indicate proc(i). We assume that processes do
not know the id() mapping in advance.

An execution of an algorithm in a given dual graph net-
work topology (G,G′) proceeds in synchronous rounds 1, 2,
In each round t, each node decides whether to transmit a
message or receive, based on its process definition; this might
involve a random choice. The communication topology in
round t consists of the edges in E plus an arbitrary subset
of the edges in E′ \ E. This subset, which can change from
round to round, is determined by an adversary that we call
a link scheduler (see below). Once the topology is fixed for
a given round, we use the following standard collision rules
to determine communication: node u receives a message m
from node v in round t, if and only if: (1) u is receiving; (2)
v is transmitting m; and (3) v is the only node transmitting
among the neighbors of u in the communication topology
chosen by the link scheduler for round t. If node u does not
receive a message, then we assume that it receives a special
“null” indicator ⊥: that is, we assume no collision detection.

We now formalize the notion of a link scheduler: the en-
tity responsible for resolving the non-determinism concern-
ing which edges from E′\E are added to the topology in each
round. Formally, we define a link scheduler to be a sequence
G = G1, G2, G3, ..., where each Gt (also denoted G[t]) is the
graph used for the communication topology in round t. We
assume each Gt is allowable given our above model defini-
tion.2 We assume the link scheduler for a given execution
is specified at the beginning of the execution. Notice, this
definition implies oblivious behavior concerning the network
dynamism, as all decisions on the topology are made at the
beginning of an execution.

The other relevant source of non-determinism in our model
is the environment which we use to provide inputs and re-
ceive outputs as required by a specific problem (when rel-
evant). For example, in solving local broadcast, an envi-
ronment provides the messages to broadcast, whereas for a
problem like consensus, it provides the initial values. The
details of what defines a well-formed environment is speci-
fied on a problem-by-problem basis. As with the scheduler,
when analyzing an execution we first fix the environment for
the execution. Though it is possible to conceive of an envi-
ronment as a probabilistic entity, for the sake of simplicity,
the environments we consider in this paper are all determin-
istic (i.e., once you fix an environment for an execution, all
non-determinism regarding inputs is resolved). To formally
model the interaction with an environment, we break down
the synchronous steps each process takes within a round as
follows: first all processes receive inputs (if any) from the
environment, next all processes that decide to transmit do
so, they then all receive, and finally, they generate outputs
(if any) which are processed by the environment to end the
round.

We call the combination of a dual graph, process assign-
ment, link scheduler, and environment a configuration. No-
tice, a configuration resolves all relevant model and problem
nondeterminism. It follows that a configuration combined
with a probabilistic algorithm defines a distribution over
possible executions (which we sometimes call the execution
tree). When we say an algorithm satisfies a certain prop-
erty with a given probability, we mean that for all allowable
configurations, in the execution tree that results from com-

2That is, it is a graph that includes all the nodes and edges
of G with (perhaps) some edges from E′ \ E also included.

bining the algorithm with the configuration, the property is
satisfied with that probability.

3. SEED AGREEMENT
The seed agreement problem provides a loose form of coor-

dination: each participating node u generates a seed s from
some known seed domain S, and then eventually commits
to a seed generated by a node in its neighborhood (perhaps
its own). The safety goal is to bound the number of unique
seeds committed in any given neighborhood by a sufficiently
small factor δ, while the liveness goal is to do so in a min-
imum of rounds. In this section, we provide a dual graph
algorithm that yields a bound δ that is roughly O(log(1

ε
)),

and that operates within time that is polynomial in log(∆)
and log(1

ε
), with (provided) error probability ε.

In Section 4, we use seed agreement as a crucial subrou-
tine in our local broadcast service implementation. It is
potentially useful, however, to any number of problems in
the dual graph model (and elsewhere), so we take our time
here to first provide a careful formal specification, which we
then satisfy with a new dual graph algorithm. The analy-
sis of our algorithm was rendered particularly tricky by our
goal of avoiding dependence on global parameters such as
n, and provides some of the main technical contributions of
this paper. Due the long length of this analysis, we defer
the details to the full version of this paper [18]. The strat-
egy deployed in this section is to bound the rate at which
a region of “goodness” (i.e., sufficiently bounded contention)
surrounding our target node contracts as the node races to-
ward termination.

3.1 The Seed Agreement Problem
Fix a finite seed domain S. We specify the problem as

Seed(δ, ε), where δ is a positive integer representing the
seed partition bound, and ε is a small nonnegative real rep-
resenting an error probability. This specification describes
correctness for a system based on some arbitrary system
configuration, running according to our execution definition.
The specification has no inputs. Its outputs are of the form
decide(j, s)u, where j ∈ I, s ∈ S, and u ∈ V . This repre-
sents a decision by the node at graph vertex i to commit to
the seed s proposed by the node with id j (in the following,
we call j the owner of seed s). We begin with two basic non-
probabilistic conditions on the outputs; these must hold in
every execution:

1. Well-formedness: In every execution, for each vertex u,
exactly one decide(∗, ∗)u occurs.

2. Consistency: In every execution, for each pair of vertices
u1, u2, if decide(j, s1)u1 and decide(j, s2)u2 both occur,
then s1 = s2.

That is, if outputs contain the same owners then they
also contain the same seeds. The two remaining conditions
are probabilistic. To talk about probabilities of events, we
must first specify the probability distribution. As noted in
Section 2, the combination of the system configuration fixed
above and a given seed agreement algorithm defines a dis-
tribution on executions. We state our remaining properties
in terms of this distribution. In more detail, we start by
considering an agreement property. Let Bu,δ be the event

(in the probability space of executions) that at most δ dis-
tinct ids appear as seed-owners in decide outputs at nodes
in NG′(u) ∪ {u}.

3. Agreement: For each vertex u, Pr(Bu,δ) ≥ 1− ε.

Note that we state Condition 3 for each vertex u separately,
rather than in terms of all vertices, as in [10]. This change
is needed for expressing costs in terms of local parameters.

We now express independence of the choices of seed values
corresponding to different owners. An owner mapping Mo is
a mapping from V to I, that is, an assignment of an (owner)
id to each vertex. A seed mapping Ms is a mapping from V
to S, that is, an assignment of a seed to each vertex. We
say that a seed mapping Ms is consistent with an owner
mapping Mo provided that, if two vertices have the same
owner, then also have the same seed. That is, if Mo(u) =
Mo(v) then Ms(u) = Ms(v). Let OwnMo be the event in
the probabilistic execution that Mo is the owner mapping.

4. Independence: Suppose that Mo is an owner mapping
and Ms is a seed mapping, where Ms is consistent
with Mo. Suppose that Pr(OwnMo) > 0. Then, con-
ditioned on OwnMo , the probability that Ms is the
seed mapping that appears in the execution is exactly
(1
|S|)
|range(Mo)|.

Condition 4 says that the probability of each consistent seed
mapping is just what it would be if the seed mapping were
determined in the following way: All processes first choose
a seed from S, uniformly at random. Then after every pro-
cess chooses a seed owner, it also adopts the associated seed
value.

3.2 A Seed Agreement Algorithm
We now describe our seed agreement algorithm, SeedAlg,

which takes as its sole parameter, an error bound, ε1. We
will show, in Theorem 3.1, that this algorithm implements
Seed(δ, ε) for values of δ and ε that depend on ε1. Its main
strategy is to hold aggressive local leader elections that yield
bounded safety violations (i.e., multiple nearby leaders). In
the following description, we assume for simplicity that ∆ is
a power of 2. We also use a “sufficiently large” constant c4
for the phase length.

Algorithm SeedAlg(ε1), for process i at graph
vertex u, where 0 < ε1 ≤ 1

4
:

The algorithm uses log ∆ phases, each consisting
of c4 log2(1

ε1
) rounds.

Process i maintains a local variable containing
its “initial seed” in S, which it chooses uniformly
at random from the seed domain S. It also keeps
track of its status ∈ {“active”, “leader”, “inactive”},
and the current phase number and round num-
ber.

Now we describe process i’s behavior in any par-
ticular phase h ∈ {1, . . . , log ∆}. If status =
active at the beginning of phase h, then process i
becomes a leader; i.e., sets status to leader, with
probability 2−(log ∆−h+1). Thus, it uses probabil-
ities: 1

∆
, 2

∆
, . . . , 1

4
, 1

2
, as it progresses through the

phases.

If process i becomes a leader at the start of phase
h, it immediately outputs decide(i, s), where s

is its initial seed. Then, during the remaining
rounds of the phase, process i broadcasts (i, s)
with probability 1

log (1
ε1

)
in each round. At the

end of the phase, it becomes inactive.

If process i is active but does not become a leader
at the start of phase h, then it just listens for
the entire phase. If it receives a message con-
taining a pair (j, s), then it immediately outputs
decide(j, s) and becomes inactive. If it receives
no messages during this phase, then it remains
active.

If process i completes all phases and is still active,
then it outputs decide(i, s), where s is its initial
seed.

3.3 Correctness of SeedAlg
The analysis of SeedAlg contained in the full version [18]

culminates with the main theorem below. For the following,
recall that r is the value used in defining the r-geographic
property assumed of our dual graph (Section 2), and ∆ is
the maximum node degree in G.

Theorem 3.1. SeedAlg(ε1) satisfies the Seed(δ, ε) speci-
fication, where:

• δ = O(r2 log (1
ε1

)), and

• ε = O(r4 log4(∆)(ε1)c
r2

), for a constant c, 0 < c < 1.

The algorithm takes O((log ∆) log2(1
ε1

)) rounds.

4. LOCAL BROADCAST
We now define our local broadcast service, then describe

and analyze an efficient solution which uses the SeedAlg
algorithm from Section 3 as a key subroutine.

4.1 The Local Broadcast Problem
The local broadcast problem described here requires nodes

to implement an ongoing probabilistic local communication
service with timing and reliability guarantees. In more de-
tail, we call the problem LB(tack, tprog, ε), where tack ≥
tprog ≥ 1 are integer round bounds, and ε is a small real rep-
resenting an upper bound on the error probability. To define
the problem, we must first fix the underlying dual graph net-
work in which it is being solved: (G = (V,E), G′ = (V,E′)).
We then define a setMu of possible messages for each u ∈ V .
For simplicity, we assume these sets are pairwise disjoint.
Let M =

⋃
uMu be the set of all possible messages. Every

node u ∈ V has a bcast(m)u input and ack(m)u output, for
each m ∈Mu. Node u also has a recv(m′)u output for each
m′ ∈M.

We now restrict the behavior of the environments we con-
sider for this problem. In more detail, we assume that (1)
the environment generates each input at a given node u at
most once per execution (i.e., each message it passes a node
to broadcast is unique), and (2) if the environment gener-
ates a bcast(m)u input at u at some round r, it must then
wait until u subsequently generates a ack(m)u output (if
ever) before it can generate another bcast input at u. To
simplify analysis, we restrict our attention to deterministic
environments. Therefore, we can assume the environment

is modeled as synchronous deterministic automaton that re-
ceives the nodes’ ack outputs as input, and generates their
bcast inputs as its output.

In the following, we say a node u is actively broadcasting
m in round r, if node u received a bcast(m)u input in some
round r′ ≤ r, and through round r, node u has not yet gen-
erated a subsequent ack(m)u output. Similarly, we say u is
active in a given round if there is some message that u is ac-
tively broadcasting during this round. The problem places
deterministic and probabilistic constraints on the nodes’ out-
put behavior. We begin with the deterministic constraints.

In every execution, the following must always hold:

1. Timely Acknowledgement. If node u receives a bcast(m)u
input in round r, it will generate a single correspond-
ing ack(m)u output in the interval r to r+ tack. These
are the only ack outputs that u generates.

2. Validity. If node u performs a recv(m)u output in
some round r, then there exists some v ∈ NG′(u) such
that v is actively broadcasting m in round r.

Recall that if we fix some configuration and an algorithm,
the combination yields a well-defined probability distribu-
tion (equiv., execution tree) over executions of the algorithm
in this configuration. To aid our probabilistic constraint def-
initions, we first introduce some notation for discussing an
execution tree determined by a configuration. When con-
sidering any execution from such a tree, we can partition
time into phases of length tprog starting in the first round.
We number these 1, 2, We use the terminology phase i
prefix to describe a finite execution prefix that includes ev-
ery round up to the beginning of phase i (i.e., it does not
include the first round of phase i but does include the last
round—if any—before phase i begins). For a given execu-
tion tree, phase i prefix α in this tree, and node u, let Auα
describe the set of tprog-round extensions of α in which there
is a G-neighbor of u that is active throughout every round
of phase i, and let Buα describe the set of tprog-round exten-
sions where u receives at least one message mv ∈ Mv from
a node v in a round r such that v is actively broadcasting
mv in r.

We now define two probabilistic constraints that must hold
for every configuration:

1. Reliability. For every configuration, node u, and r-
round execution prefix such that u receives a bcast(m)u
input at the beginning of round r: the probability that
every v ∈ NG(u) generates a recv(m)u output before
u’s corresponding ack(m)u output, is at least 1− ε.

(Notice: this property leverages the timely acknowledg-
ment property which tells us that in every extension of
this prefix, u generates an ack(m)u output wihin tack
rounds.)

2. Progress. For every configuration, node u, phase i,
and phase i prefix α in the resulting execution tree:
Pr(Buα | Auα) ≥ 1− ε.

4.2 Constants
Below is a summary of the constants used in the algorithm

description and analysis that follow. In the following, we
assume ∆ is a power of two.

• ε1 is the notation used in the below algorithm descrip-
tion to describe the desired error probability.

• ε′ is the maximum error probability bound that guar-
antees, given the constraints of Theorem 3.1, that the
SeedAlg(ε′) algorithm satisfies the Seed(δ, ε) spec for
an ε ≤ ε1/2.

Note: given the relationship between SeedAlg and
Seed’s error bounds, as established in Theorem 3.1,

ε′ = Θ
(
(ε1
r4 log4 ∆

)(1/(cr2))
)
, where c, 0 < c < 1, is the

constant provided by Theorem 3.1. Because c < 1, we

can rewrite the bound as Θ
(
(ε1
r4 log4 ∆

)(γ/r2)
)
, for some

constant γ > 1.

• ε2 = min{ε′, ε1}.3

• c2 is a constant used in our analysis of successful re-
ceptions of messages.

• c1 is a constant we use in defining the length of a phase
in the algorithm (see Tprog below).

• Tprog = dc1 · r2 · log (1
ε1

) · log (1
ε2

) · log ∆e =

O
(
r2 log (1

ε1
) log (1

ε2
) log ∆

)
is the number of rounds

required by our algorithm to ensure progress.

• κ = Tprog · dlog (r2 log (1
ε2

))e · log log ∆: the maximum
number of bits consumed from a seed agreement seed
in a single phase of length Tprog worth of broadcasting.

• Tack =
r212 log (1/ε2) log ∆ ln (2∆

ε1
)∆′

c2Tprog(1−ε1/2)
=

12 ln (2∆
ε1

)∆′

c2c1 log (1/ε1)(1−ε1/2)
= O

(∆ log (∆/ε1)
(1−ε1)

)
is the number of

phases a node will spend attempting to send a message
that arrives as a bcast input.

• Let Ts = O(log ∆ log2 (1
ε2

)) be the number of rounds

required for the seed agreement algorithm SeedAlg(ε2)
(as provided by Theorem 3.1).

4.3 A Local Broadcast Algorithm
We now describe LBAlg: our solution to the local broad-

cast problem. This description makes use of several con-
stants described in the previous section.

Algorithm LBAlg(ε1), for process i at ver-
tex u for some real ε1, 0 < ε1 ≤ 1

2
.

Node u partitions rounds into phases of length
Ts+Tprog rounds. We label these phases 1, 2, 3,
During each phase, u can be in one of two states:

3Note: For asymptotic concision, we want to ensure that the
error probability we use for SeedAlg is no more than ε1. We
cannot simply claim that ε′, as defined above, satisfies this
constraint because given its relationship to to ε1 from above,
it is possible that if γ is sufficiently small compared to r2,
and ε1 is sufficiently small compared to r and log ∆, that
this exponent will be a sufficiently small fraction to increase
(ε1
r4 log4 ∆

) to something larger than ε1. This min statement

handles this possibility.

receiving or sending. Node u begins the exe-
cution in the receiving state. After receiving a
bcast(m)u input, u will spend the next Tack full
phases in the sending state (if it receives the bcast
input in the middle of a phase, it waits until the
beginning of the next phase to switch to the send-
ing state). At the end of the last round of the
last of these Tack phases, node u generates an
ack(m)u output, and then returns to the receiv-
ing state.

We now define what happens during these phases.
At the beginning of each phase, regardless of u’s
state, it executes SeedAlg(ε2) as a subroutine,
using the seed set Sκ = {0, 1}κ; i.e., the set de-

scribing every bit sequence of length κ. Let s
(j)
u

be the seed that node u commits in the beginning
of phase j. We call the rounds spent at the be-
ginning of a phase running SeedAlg the preamble
of the phase, and the remaining rounds the body
of the phase.

Node u’s behavior during the body of a given
phase j depends on its state. If it is in the receiv-
ing state, it simply receives during each of these
rounds. If during one of these rounds, node u re-
ceives a message m′ that it has not yet previously
received, it generates a recv(m′)u output.

On the other hand, if u is in the sending state
for this phase, during each of the body rounds,
it does the following:

1. Node u consumes dlog (r2 log (1
ε2

))e new bits

from its seed s
(j)
u . If all of these bits are 0

(which occurs with probability a · 1

r2 log (1
ε2

)
,

for some a ∈ [1, 2)) it sets its status to par-
ticipant, otherwise it sets its status to non-
participant.

2. If u is a non-participant, it receives.

3. If u is a participant, it next consumes log log ∆

new bits from s
(j)
u . Let b be the value in

[log ∆] specified by these bits. The node
then uses an independent (with respect to
the other processes) local source of random-

ness (i.e., not bits from s
(j)
u), to generate b

bits with uniform randomness. If all b bits
are 0 (which occurs with probability 2−b), u
broadcasts its message.

As with the receiving state, if during any of these
body rounds, node u receives a message m′ that
it has not yet previously received, it generates a
recv(m′)u output.

The above algorithm divides rounds into phases and then
runs a seed agreement algorithm at the beginning of each
phase to synchronize shared random bits for the remainder
of the phase. Notice that there is nothing fundamental about
this frequency of seed agreements. In some settings, it might
make sense to run the agreement protocol less frequently,
and generate seeds of sufficient length to satisfy the demands
of multiple phases. Such modifications do not change our
worst-case time bounds but might improve an average case
cost or practical performance.

4.4 Correctness of LBAlg
Our goal here is to analyze LBAlg to prove the following

theorem:

Theorem 4.1. LBAlg(ε1) solves the LB(tack, tprog, ε1) prob-
lem for parameters:

• tprog = Ts + Tprog = O
(
r2 log ∆ log (r

4 log4 ∆
ε1

)
)

• tack = (Tack + 1)(Ts + Tprog) =

O
(
r2∆ log (∆/ε1) log ∆ log (r

4 log4 ∆
ε1

)(1
1−ε1

)
)

Below is the core lemma on which we build our proof of
Theorem 4.1. This lemma bounds the behavior of LBAlg
within the scope of a single phase. To do so, we first intro-
duce some useful notation. For a given phase i of an exe-
cution, let Bi be the set of nodes that are in sending status
during phase i, and Ri = NG(Bi) be the set of nodes that
neighbor Bi in G. Notice, because sending status is fixed
for the duration of a given phase, both Bi and Ri are deter-
mined at the beginning of phase i and cannot change during
the phase. Also recall from the model definitions that ∆′

bounds the maximum degree in G′. Using this notation, we
specify and prove the following key probabilistic behavior:

Lemma 4.2. Fix some phase i and an execution prefix
through the (j − 1)th body round of this phase, for some
j ∈ {2, ..., Tprog}. Fix nodes u and v, where u ∈ Ri and
v ∈ NG(u) ∩ Bi. Assume the call to SeedAlg at the begin-
ning of phase i in this prefix satisfies Bu,δ. Let pu be the
probability that u receives some message in the jth round,
and let pu,v be the probability that u receives a message from
v in this round. It follows that:

• pu ≥ c2
r2 log (1

ε2
) log ∆

• pu,v ≥ pu/∆′

Proof. Fix some u, v, t and a prefix, as specified by the
lemma statement. (Notice, we know that a node v satisfying
the constraints of the statement exists due to the assumption
that u ∈ Ri, which implies that |NG(u) ∩ Bi| > 0.) Let
S = {S1, S2, ..., Sk} be a minimum-sized partition of the
nodes in NG′(u) ∩ Bi such that all nodes in Sj committed
to the same seed in the beginning of this phase. Given the
lemma assumption that the preamble of this phase satisfies
Bu,δ, it follows: k ≤ δ. Finally, let Siv be the set from S
that contains v.

We now analyze the next broadcast round. In this round,
nodes in Bi use their seeds to decide whether or not to be-
come a participant. In particular, they become a partici-
pant with probability 1

r2 log (1
ε2

)
= c/δ, for some constant

c > 0, using bits from their seeds to resolve the random
choice. For each Sj ∈ S, all nodes in Sj make the same
decision in each round because they are using bits from the
same seed. Let piv be the probability that set Siv decides
to be a participant, and all other sets in S decide to be non-
participants. To bound piv , we apply Lemmata B.17 and
B.18 from the analysis of seed agreement in the full version
of this paper [18] to obtain the uniformity and independence
properties needed to prove the following:

piv = (c/δ)(1− (c/δ))k−1

> (c/δ)(1/4)
c(k−1)
δ

(k≤δ)
> (c/δ)(1/4)c

= Θ(1/δ)

Assume this event—that only Siv decides to participate
from among the sets in S—occurs. It follows that only nodes
in Siv can potentially broadcast in this round. Let ` be the
number of links from nodes in Siv to u included in the net-
work topology for the round by the link scheduler included
in our configuration definition. Because Siv contains the G-
neighbor v (by definition), we know that v is connected to
u and that therefore ` > 0.

The next thing that happens in this round is that the
nodes in Siv use more random bits from their shared seed
to choose a value uniformly from [log ∆]. If ` = 1, we define
the correct choice of value from [log ∆] to be 1. If ` > 1,
we define the correct choice to be dlog `e. By Lemma B.17
(from [18]), we know the nodes in Siv will choose a value
from this set with uniform probability. The probability they
choose a correct value with respect to ` is therefore at least
1/ log ∆.

Assume that this event also occurs. At this point, by
assumption, only nodes in Siv are potential broadcasters.
Each such node decides to broadcast with the correct prob-
ability, pc, which, as defined above, is within a factor of 2 of
1/`. Let us consider the possibilities. We first note that with
probability at least 1/2, u will decide to receive in this round
(broadcast probability 1/2, which corresponds to choosing
the value 1 from [log ∆], is the largest possible broadcast
probability).

Assume this event occurs. The probability that exactly
one neighbor among the ` neighbors connected to u sub-
sequently decides to broadcast is constant (as there are `
neighbors, each deciding to broadcast with probability pc =
Θ(1/`)). To calculate pu we must now combine all three
independent probabilities: the Θ(1/δ) probability that Siv
is the only set in S to participate, the 1/ log ∆ probability
that Siv nodes choose the correct value, and the Θ(1) prob-
ability that u decides to receive and exactly one neighbor of
u in the topology for the round broadcasts. We combine the
constants in these asymptotic expression to define a lower
bound on the constant c2 used in our definition of pu from
the lemma statement.

Now we step back to consider pu,v. Whereas we just cal-
culated that there is a constant probability that exactly one
node from among ` nodes decides to broadcast using broad-
cast probability pc, we must now ask the probability that
a specific node—i.e., v—is this broadcaster. We can bound
this probability as:

pc(1− pc)`−1 =
c′

`
(1− c′

`
)`−1 ≥ c′

`
(
1

4
)c
′
≥ 1

4∆′
,

where c′ is a constant of size at least 1 used in the definition
of pc. By replacing the constant probability for this final
step used in the derivation of pu above with this new ≈ 1/∆′

probability, we get the pu,v bound required by the lemma
statement. (As a slight technicality, we omit the 1/4 in the

1
4∆′ calculation above in this final pu,v bound, as this can

be captured by adjusting the constant c2 calculated for pu
by a factor of 4 to include this extra amount.)

We can now draw on Lemma 4.2 to prove the progress and
reliability properties required by the LB specification. We
begin with progress:

Lemma 4.3. LBAlg(ε1) solves the LB(tack, tprog, ε1) prob-
lem for: tprog = Ts + Tprog.

Proof. Notice that this definition of tprog is the same
as the length used by the phases in our algorithm. It fol-
lows that the boundaries of the phases in the progress prop-
erty align with the phase boundaries used by LBAlg, so we
can refer to both types of phases interchangeably. To prove
progress, therefore, it is sufficient to show that for any node
u and phase i such that u has an active G neighbor, the
probability that u receives at least one broadcast message
in this phase is at least 1− ε1.

To do so, fix some node u, phase i, and phase i prefix
α such that Auα is non-empty; i.e., there is at least one G
neighbor of u that is active throughout phase i. Let α′

be the extension of α through the call to SeedAlg at the
beginning of phase i. By Theorem 4.16, and the definition
of the ε2 error parameter passed to SeedAlg, this call to
SeedAlg in this α′ extension satisfies Bu,δ with probability
at least 1− (ε1/2).

Assume our above assumptions (including the assumption
thatBu,δ is satisfied) hold. It follows that Lemma 4.2 applies
with respect to u for all Tprog of the subsequent body rounds

in phase i Let p
(j)
u be the (independent) probability that u

receives a message in body round j of the phase. Notice,

that Lemma 4.2 tells us that p
(j)
u ≥ pu ≥ c2

r2 log (1
ε2

) log ∆
for

each such round. We can now bound the probability that u
fails to receive a message in all Tprog body rounds as:

pfail =

Tprog∏
j=1

(1− p(j)
u) ≤

Tprog∏
j=1

(1− pu) <

(1/e)Tprogpu = (1/e)c1c2·log (1/ε1).

It is straightforward to show that for sufficiently large values
of constants c1 and c2, we get pfail ≤ ε1/2. To conclude the
proof, we use a union bound to show that the probability
that Bu,δ does not hold and/or the probability that u fails to
receive a message when this property does hold, is less than
ε1: providing the needed 1− ε1 probability for u receiving a
least one message in phase i.

We now turn our attention to the reliability property of our
local broadcast problem:

Lemma 4.4. LBAlg(ε1) solves the LB(tack, tprog, ε1) prob-
lem for: tack = (Tack + 1)(Tprog + Ts).

Proof. Fix some nodes u and v that are neighbors in
G. Let k = ln (2∆

ε1
)/p, for p = c2

r2 log (1
ε2

) log ∆
(i.e., p is the

lower bound for pu,v from the statement of Lemma 4.2).
In the following, we define a body round to be useful with
respect to u, if it occurs in a phase such that Bu,δ holds for
the preceding SeedAlg preamble. Let p1 be the probability
that u fails to receive a message m from v during k useful
rounds in which v is active with m. Applying Lemma 4.2 to

lower bound the receive probability in each of these rounds,
it follows:

p1 ≤ (1− p)k < (1/e)pk =
ε1
2∆

.

We now investigate the number of phases necessary to
ensure that v experiences at least k useful rounds with a
sufficiently high probability. To do so, we first fix q =
d 12k
Tprog(1−ε1/2)

e. Consider an experiment where we run q

consecutive phases. Let Xi, for i ∈ [q], be a random vari-
able that describes the number of useful rounds in phase
i of the experiment. Notice, Xi either takes on the value
Tprog (with probability at least 1 − ε1/2) or 0 (else). Let
Y = X1 +X2 + ...+Xq be the total number of useful rounds
generated by the experiment. It follows:

E[Y] = q · Tprog · (1− ε1/2) = 12k.

We now apply a Chernoff Bound, to bound the probability
that Y is more than a factor of 2 smaller than its expectation
µ = E[Y]:

Pr(Y < (1/2)µ = 6k) < e−
µ
12 = e−k ≤ e− ln (2∆

ε1
)

= ε1/(2∆).

(Notice, in the above we can bound e−k ≤ e− ln (2∆
ε1

)
because

k ≥ ln (2∆
ε1

).)
We have now established that with probability at least

1− ε1/(2∆), u will experience at least 6k > k useful rounds
in q phases. We earlier established that if u experiences at
least k useful rounds during which v is broadcasting m, then
u receives m from v with probability at least 1 − ε1/(2∆).
Assume u broadcasts m for at least q consecutive phases.
By a union bound, the probability that both events occur
with respect to these phases, and u therefore receives v’s
message m, is greater than 1− ε1/∆.

To conclude, we want to calculate, under the assumption
that v broadcasts m for at least q phases, that every G
neighbor of v succeeds in receiving m. Because there are at
most ∆ such neighbors, and each succeeds with probability
at least 1 − ε1/∆, a union bound says that every neighbor
succeeds with probability at least 1− ε1, as required by the
reliability property.

To satisfy reliability, therefore, it is sufficient for any node
v receiving a bcast(m)u input to spend at least q full phases
with sending status. Notice, this is exactly what LBAlg
requires, as by definition it has v spend the next Tack = q full
phases after a bcast(m)v input in sending status. The tack in
the lemmas statement is defined to be long enough for v to
wait up to a full phase length until the next phase boundary,
plus the rounds required for an additional q phases.

We now pull together the pieces to prove Theorem 4.1:

Proof Proof (of Theorem 4.1). The definition of the
local broadcast problem had four conditions, two determin-
istic and two probabilistic. We consider each in turn and
argue that LBAlg satisfies the conditions for the parameter
values specified in the theorem statement.

We first note that timely acknowledgment holds because
LBAlg, by definition, has each node generate an ack in re-
sponse to a bcast within a fixed number of rounds that is
strictly less than the tack factor from the theorem statement.
Similarly, the validity condition holds as LBAlg, by defini-
tion, only has nodes broadcast messages they received in a

bcast input, and nodes only recv messages that they actually
received from another node. Moving on to the probabilis-
tic properties, Lemma 4.3 tells us that tprog = Ts + Tprog
rounds, and that tack = (Tack+1)tprog rounds. Notice, Tack
shows up in tack unchanged from its definition. The defini-
tion of tprog, however, shows up in a form that is simplified as
compared to the definition provided for Ts and Tprog (which
contain both ε1 and ε2 facotrs). To match the bounds in the
Theorem statement, therefore, it is sufficient to show that
Ts + Tprog = O

(
log ∆ log2 (1

ε2
) + r2 log ∆ log (1

ε2
) log (1

ε1
)
)

can be upper bounded by O
(
r2 log ∆ log (r

4 log4 ∆
ε1

)
)

. We

dedicate the remainder of this proof to this effort.

By definition, ε2 ≤ ε1. We can, therefore, substitute the
former for the latter in our sum, yielding:

Ts + Tprog = O
(
r2 log ∆ log2 (

1

ε2
)
)
.

We need a bound, however, that is expressed with respect
the problem parameter ε1. This requires us to dive deeper
into the relationship between ε2 and ε1. There are two cases
to consider given our definition above that ε2 = min{ε′, ε1}.
The first case is that ε2 = ε1. If this is true, we can simply
replace ε2 with ε1 in our above equation, and the result is

clearly upper bounded by O
(
r2 log ∆ log (r

4 log4 ∆
ε1

)
)

(which

strictly increases the log factor by adding the r4 log∆ term).
The second case is that ε2 = ε′ < ε1. By definition of ε′,

it would then follow that ε2 = Θ
(
(ε1
r4 log4 ∆

)(γ/r2)
)
, for some

constant γ > 1. The properties of γ allows us to simplify
(asymptotically) the log2 (1

ε2
) term in our above equation as

follows:

log2 (
1

ε2
) =

[
log (

(r4 log4 ∆)(γ/r2)

(ε1)(γ/r2)
)
]2

=

[
(γ/r2) log (

(r4 log4 ∆)

(ε1)
)
]2

= O
(

log2 (
r4 log4 ∆

ε1
)
)
.

Notice in the above we simply drop the (1/r2), as it too is
bounded to be at least 1, so dropping it simply increases the
value of the upper bound. Now to conclude our argument,
we simply substitute this upper bound for log2 (1

ε2
) in our

above sum to get the desired equation.

5. CONCLUSION
In this paper, we described and analyzed an ongoing lo-

cal broadcast service for the dual graph model. This service
hides the complexities introduced by unpredictable link be-
haviors and therefore has the potential to significantly sim-
plify the development of distributed algorithms for this chal-
lenging setting. As noted in the introduction,

Our solution can also be adapted to implement the ab-
stract MAC layer specification [13, 15], allowing existing re-
sults for this abstraction to translate to the dual graph model
(e.g., [9, 20, 6, 12, 11, 5]). Though we leave the details of
this adaptation to future work, we note that it would likely
be straightforward, with the main effort focused on align-
ing our local broadcast problem definition—which depends
on low level model details, such as rounds and receiving
messages—with the higher level of the abstract MAC layer,

which is specified in terms of the timing and ordering of
input and output events.

Finally, we emphasize that our commitment to truly local
algorithms, which required us to avoid global parameters
in problem definitions, algorithm strategies, and analysis,
is of standalone interest to those studying radio network
algorithms. As we argued at this paper’s opening, a local
perspective provides more flexibility to practitioners, and
will become increasingly necessary as network sizes grows.

6. ACKNOWLEDGMENTS
This research is supported in part by: Ford Motor Com-

pany University Research Program, NSF Award CCF-1320279,
NSF Award CCF-0937274, NSF Award CCF-1217506, NSF
CCF-0939370, and AFOSR Award Number FA9550-13-1-
0042.

7. REFERENCES
[1] Luigi Atzori, Antonio Iera, and Giacomo Morabito.

The Internet of Things: A Survey. Computer
Networks, 54(15):2787–2805, 2010.

[2] Reuven Bar-Yehuda, Oded Goldreigch, and Alon Itai.
On the Time-Complexity of Broadcast in Multi-Hop
Radio Networks: An Exponential Gap between
Determinism and Randomization. Journal of
Computer and System Sciences, 45(1):104–126, 1992.

[3] Keren Censor-Hillel, Seth Gilbert, Fabian Kuhn,
Nancy Lynch, and Calvin Newport. Structuring
unreliable radio networks. Distributed Computing,
27(1):1–19, 2014.

[4] A. E. F. Clementi, A. Monti, and R. Silvestri. Round
Robin is Optimal for Fault-Tolerant Broadcasting on
Wireless Networks. Journal of Parallel and Distributed
Computing, 64(1):89–96, 2004.

[5] Alejandro Cornejo, Nancy Lynch, Saira Viqar, and
Jennifer L Welch. Neighbor Discovery in Mobile Ad
Hoc Networks Using an Abstract MAC Layer. In
Annual Allerton Conference on Communication,
Control, and Computing, 2009.

[6] Alejandro Cornejo, Saira Viqar, and Jennifer L Welch.
Reliable Neighbor Discovery for Mobile Ad Hoc
Networks. In Proceedings of the International
Workshop on Foundations of Mobile Computing, 2010.

[7] Mohsen Ghaffari, Bernhard Haeupler, Nancy Lynch,
and Calvin Newport. Bounds on contention
management in radio networks. In The International
Symposium on Distributed Computing (DISC), 2012.

[8] Mohsen Ghaffari, Erez Kantor, Nancy Lynch, and
Calvin Newport. Multi-message broadcast with
Abstract MAC layers and unreliable links. In
Proceedings of the ACM Symposium on Principles of
Distributed Computing (PODC), 2014.

[9] Mohsen Ghaffari, Erez Kantor, Nancy Lynch, and
Calvin Newport. Multi-message broadcast with
abstract mac layers and unreliable links. In
Proceedings of the ACM Symposium on Principles of
Distributed Computing (PODC), 2014.

[10] Mohsen Ghaffari, Nancy Lynch, and Calvin Newport.
The cost of radio network broadcast for different
models of unreliable links. In Proceedings of the ACM
Symposium on Principles of Distributed Computing
(PODC), 2013.

[11] Majid Khabbazian, Fabian Kuhn, Dariusz Kowalski,
and Nancy Lynch. Decomposing Broadcast
Algorithms Using Abstract MAC Layers. In
Proceedings of the International Workshop on
Foundations of Mobile Computing, 2010.

[12] Majid Khabbazian, Fabian Kuhn, Nancy Lynch,
Muriel Medard, and Ali ParandehGheibi. MAC
Design for Analog Network Coding. In Proceedings of
the International Workshop on Foundations of Mobile
Computing, 2011.

[13] Fabian Kuhn, Nancy Lynch, and Calvin Newport. The
Abstract MAC layer. In Proceedings of the
International Symposium on Distributed Computing
(DISC), 2009.

[14] Fabian Kuhn, Nancy Lynch, and Calvin Newport.
Brief announcement: Hardness of broadcasting in
wireless networks with unreliable communication. In
Proceedings of the ACM Symposium on the Principles
of Distributed Computing (PODC), 2009.

[15] Fabian Kuhn, Nancy Lynch, and Calvin Newport. The
Abstract MAC layer. Distributed Computing,
24(3-4):187–206, November 2011. Special Issue for
DISC 2009: 23rd International Symposium on
Distributed Computing.

[16] Fabian Kuhn, Nancy Lynch, Calvin Newport, Rotem
Oshman, and Andrea Richa. Broadcasting in
unreliable radio networks. In Proceedings of the ACM
Symposium on Principles of Distributed Computing
(PODC), 2010.

[17] Fabian Kuhn, Thomas Moscibroda, and Rogert
Wattenhofer. What cannot be computed locally! In
Proceedings of the ACM Symposium on Principles of
Distributed Computing (PODC), 2004.

[18] Nancy Lynch and Calvin Newport. A (truly) local
broadcast layer for unreliable radio networks.
Technical Report MIT-CSAIL-TR-2015-016, MIT
Computer Science and Artificial Intelligence
Laboratory, Cambridge, MA, May 2015.

[19] Moni Naor and Larry Stockmeyer. What can be
computed locally? SIAM Journal on Computing,
24(6):1259–1277, 1995.

[20] Calvin Newport. Consensus with an abstract mac
layer. In Proceedings of the ACM Symposium on
Principles of Distributed Computing (PODC), 2014.

[21] Calvin Newport. Lower bounds for radio networks
made easy. In Proceedings of the International
Symposium on Distributed Computing (DISC), 2014.

[22] Calvin Newport. Lower bounds for structuring
unreliable radio networks. In Proceedings of the
International Symposium on Distributed Computing
(DISC), 2014.

[23] Calvin Newport, David Kotz, Yougu Yuan, Robert S
Gray, Jason Liu, and Chip Elliott. Experimental
Evaluation of Wireless Simulation Assumptions.
Simulation, 83(9):643–661, 2007.

