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ABSTRACT

Dynamic Response of Systems with Structural Damping

by
Stephen H. Crandall
Professoxr of Mechanical Engineering
. ~Massachusetts Institute "of-Pechihology

The response of simple vibratory systems containing structural damping
is studied analytically when the excitation is an impulse and when the
excitation is stationary rendom vibration. It is found that in & strict
sense the aésxmption of ideal structural damping represents a physically
unrealizable model because a small precursor response occurs before the
~application of an impulsive load. For stationary random excitation exact
solutions for the mean square response are compared with approximate
solutions obtained from two increasingly accurate "equivalent viscous"

substitutes for structural damping.
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Dynamic Response of Systems With Structural Damping”

by
Stephen H. Crandall

Professor of Mechanical Engineering
Massachusetts Institute of Technology

Linear structural dsuping has been widely used in snalytical studics
of vibration and flutter as a simple model for demping mechanisms in which
the dissipation incresses with the stress level of the vibretion. The
linear structural dasping sssusption is easily described in terms of
complex frequency response but difficulties arise in-"‘i#:fgnslhting this
back into the time domein. In the present note the impulse response of
a simple oscillatory system with structural damping is represented as a
Fourier integral and an approximation solution is plotted. It is found
that in a strict sense the linear structural damping model is physicqlly
unrealizable because it implies a ( s;:au) response prior to the application
of the excitation. When the excitation is a stationary random process with
an ideally vhite spectrum the exact solution for the mean square response
is obtained for a system with structural damping and for a system with both
structural demping and viscous damping. References are made throughout to
two incressingly accurate "equivalent viscous” approximations of structural
damping.
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1. Equivalent viscous epproximetions for structural damping.  In Fig. 1(a)

a linear spring with lineer structural damping is indiceted. The specification

for linear structural damping is that under simple harmonic motion of the

1wt

form e the complex ratio of spring force to elongation is * k(1+ig)

vhere g 18 the damping coefficient; i.e., the megnitude of the damping force
is proportional to the elaatic force but iis phage 1is advanced by 90°, The
damping force is independent of the frequency () , at least if only positive
frequencies are considered. 1f;, however, negative freguencies are to be

considered the correct phase relation for the damping force requixes that the
complex force displacement ratio be written

k(1+ 1g sgn o) o (1.1)

vhere sgn ) 1is +1 1f (0 18 positive, zero if w = 0 and -1 if.w is negative.
In Fig. 1(b) the same elastic spring is in parallel with a linsar viscous
dashpot. Under simple harmonic motion.of the form eiwt the complex ratio

of force to displacement across the pair is

k+ 1wC, (1.2)

In ¥ig. 2 the imaginery parts of (1.1) and (1.2) are sketched &s functions
of frequency. Because of the awkward singularity at the origin for structural
daxping it is sometimes convenient to substitute for the structural damping
en "equivalent viscous” damping. An equivalence 18 obtained by taking the
cross-over frequency <J, in Pig. 2 equal to the (undamped) natural frequency

Wy =\ Kk/S177 - At this frequency the viscous force amplitude is C, Vk/n



while the structural damping force amplitude is gk (for unit displacement

amplitude in both cases). These forces will be equal if

Ce = BJ mk ‘ (1°3:

The vationalization for choosing w, =<), can be based on the fact that
for oscillatory excitation of fixed amplitude +the viscous damping force
magnitude is greatest when the exciting frequency is equal to ¢J, and on

the fact that at this frequency the system response is most sensitive to

changes in the dashpot parameter. At frequencieg far removed from resonance
the system response is not greatly affected by the damping and hence an
approximation with incorrect damping away from resonance might be acceptable
if it gave the correct damping at resonance.

This is the basis for the first equivalent viscous substitution. The
original system with structurel dsmping is in Fig. 1(s). The "equivalent
viscous" system in 1(b) is teken to ha:re the same mass m and the same spring
constant k, but instesd of the structural demping s dashpot with constent c,
given by (1.3) is inserted. The equivalent éashpot constant depends on all
three parameters of the original system but only one element (the damping
element) is altered.

In the second equivalent viscous substitution of Fig. 1(c) we permit the
magnitude of the elastic spring constant to differ from th;.t in Pig. 1(a). The
equivalence here is based on the requirement that the complex ﬁ‘e@ency responses

in the two cases should have the same poles.

Let the external exciting force in Pig. 1 be of the form f= Ro §e 19%1,
The steady state response wil) then have the form x« Re {E(OO) N ] 10')1;}



where H(c0 ) is the complex frequency response. For the.system in Pig. l(a)
with structurel damping we have

Ha( W ) - _3[m = e
W, -w +i3w,, $gh W (1.4
for real () . This may be extended to complex w) 1fve replace sgn «J by
sen (R, {a)} ). The poles of H,( ) ) ave then at

W = ( -_“.'/Mz -+ '-/\) (.A)n‘ ~ .(1°5

vhere

z y1+9% + [ (1.6
/LL = > .

Vv o= S5 -/
5

Turning next to the system witn viscous damping in Fig. 1l(c) let the

spring constent and dashpot constent be k., and ¢, respectively. The
complex frequency response is

L) = 1 o
Bol ) Ke/m - W* + iW0C, /h (2.7

which has poles at

W o= jl/E Sy, Ce (1.8)
” 4m#*
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These poles will coincide with those of {1.5) if

ke = k | 1+ 82

¢, - siE [ (-2 ) ]Vz | ,

This result is due to Sorcks, [ 17].

For comparison with (1.k) we list the complex frequency responses for the
equivalent viscous systems of Fig. 1(b) and 1l(c) under the conditions (1.3)
and (1.9) respectively. ' '

(L) = . 1
o m Wi - W+ :‘:940”@)

B (W)=

0 (s Az)a),, ~Wrl2Au,w (1.0

Impulse response. If in Pig. 1 the excitation £(t) is the unit impulse

function §(t) the febponge h(t) is called the impulse response function. In

principle, the impulse response function is implied as soon as the complex
frequency response H(«) ) is known since h(t) and H( W) utisfy the Fourier
transform relstion [ 2] o

n(t) = Zx'r;r' Sn( w) elWt 4., (2.1)

- 00
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Por the systems with viscous damping in Fig. 1(b) and 1(c) the impulse
response functions correspording to (1.10) are well kmown[ 3 ] . ror >0

_ 9wyt
bp(t) = e S -9% Wt
MO 1= 904 | (2.2)
“Jwnt

A - £ S/ M, T
hc(t) mwyu/ D/’V(’ A

vhere ) and i aze gtven in (1.6) vhile Iy(t) = b(t) = 0 for +< 0.

In the case of structural damping the singularity at ()= 0 in (1.k4)
rules out the usual evaluation of (2.1) by contour integration. A real
integral from zero to infinity cen be obtained in this case by noting that the
imaginary pert of the integrend is en odd function and that, the real part

is an even function. oD

/ (W, - w?)cos wt + 9O Sinct: i
mmT L (A= @7)t gt

o

ha(t) =

(2.3)

We have been unable to evaluate (2.3) in closed form but an asymptotic procedure
which permits the attaiument of any desired accurecy will be outlined. Some
characteristics of h,(t) can however be ascertained directly. The most
importent is that he(0) does not venish. Setting ted y-.xe:ui- .-.,w integral
%7 from which we obtain '

b (0) = - A (20

2 mw,( }\14-/«41’-)
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Purthermore h,(t) is continuous at t=0 so that a non-zero responie oceurs
for t < 0. For light damping we will see that this precursor response

1s small but strictly speaking it signifies that the lipear structural damping

model is physically unrealizsble [ 5 ]. It is possible thst this may
vitiate the usefulness of the structural damping model for some pdrposes,
We now develop an asymptotic epproximation to (2.3) and evaluate the
leading term of the discrepancy between ha.(t) and h,(t). ~We begin by subtracting
the. second of (2.2) from (2.3) using (2.1) and the second of (1.10)....
=0
B () - n() - 2AOn | ZAUnCOSWL + [y )L,
Tm ), T (@ 0T gt

Let oo

20, “ ), Cos Wit
Cm= Y ' e dle)) (2.6)
T y(wn“-w‘)z'—l-,@u‘/?zu),‘f‘
I |

_ o |

za),Z" Mdp-@) sinat dio

™~ wz_wz_ FhaN 12, 4 N
o( n ) -+ 4/10/) L,

be integrals to be evaluated for t > 0. Then we have

h(t) - b (t) = 777&4?)” ( C"f'S) )[ar t >0
—f_ﬁaﬁn ( C - 5) For t <o

(2.7)
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The cosine integral C is a standard case [6]
- Aw,t

_ e | A s (2.8
Ce ~ 2 ,
Z ) (w5<9+/¢ &//79)

vhere O is an abbreviation for yazE

We turn now to the Qine integral 8 which is agparently non-¢lementayy.
In the lightly damped case ( A\ smsll g /U,’,b’l) thé' integrand cﬁmges
rapidly in the néighborhood of w:/a), Acgbi'd:l.ngly we make & partial fraction
expension snd split the renge of integration to isolate the tera responsible
for this behavicr. '

Dzut(),, (2.0
-~ +S i) it [ 34 cp-gu,
T G i G

o] ;,ua)h | ) -

The second term in the first renge of integration is very sensitive to the damping

(2.9)

If )\ were to vanish the other contributions would not change much but the
contribution of this term would become infinite. We thzréfore pioceed further
with this term alome (S,, say) before expanding in povers of A .. Betting

0O =d -/uCO,, we have
A
I ‘ ( / _ M}PQV*AWM )( Sl},antcagﬂt+CWntsmﬂ9Jﬁ

" 20, (V) Q2%
o



{ : M
/ 2 i)+ N 4 , Ane 4=
- ! M itV i 1 *Jl wnt Loanuz d.g.‘
sy S TS

Finally the two integrals remaining ' in (2.10) are known for infinite Limits [ 7]

80 that we have

st j
Sa'zfrr"i‘ — [Z Slf‘{/:“‘*’m - ﬂ‘w,,am (As:/uw t+ cyuwnf) (2.11)

Tuw, (y)
¥ p nt d§)
1 0.6 d, 2\ si
+2 )‘l)" «SIylwn‘ﬁj f{f_‘_ 27‘_(,0% -+ ;ﬂu)”co%t 'ﬂ""i'st,'
S PN

The two integrals in (2.11) are no longer sensitive to ,lvarii.ltionl in 9\ vhen
’)\ is small.

To complete the evaluation of (2.9) it remains to evaluate these two
integrals and the three other integrals in (2.9). In all five of these
integrals it is possible to introduce {), as either () ’f)aa),, 80 as to reduce sll
denominators to the form L+ AW’ vith the origin , Ll = 0 , excluded
from the range of integration. A systemstic method of approximmtion can then

be based on the following expansion in powers of /\
1 | 2 w,, 3¢ Wi ) (2.12)
rongrorcll e S Ao S 0




All integrals can then be evaluated in terms of the Ci and 81 functions [8]
vhich have been tabulated [ 9] Here we give the results of using only
the first term of (2.12). This produces a discrepancy between hy(t) and h (t)
which is 0( A ). Utilizing one more term of (2.12) would give further
terms of order ?\3 » ete. Hote that for small A the relation (1.6) yields
A =~ &f2
Carrying out the above program leads to the following result for 5.
-)a)nt
{ e A o
Su — e (Ca5B + L SmP
+ L (sm6Cio - cosbsi6) (2.2
- i( S si@ + o058 C 9)] + 0(A%)

‘where we have used the motations 6 = AW, £ and-s10 =Bioco -8i0.
Neglecting the 0('A?) term in (2.13) and combining with (2.8) sccording to (2.7)
gives our final result for the (app;-oxiute) discrepency between h (t) and
bo(t). This result is plotted in ng; 3 for the particular case gs0.05(Qe20).
Note the precurdor response for t< O. Bince h (t) = O for t<0 this
precurgor response is jJust h‘(t) « It should be pointed out that the megnitude
of the precursor response is small compered to h‘(vh) for t > 0. The plot
in Pig. 3 shows only thé dilcre&?x between h‘ and hc" The amplitude of

may, h (t) itself runs from spproximetely unity at te0 to about 0.6 at

t«20. Por the damping chosen imn Fig. 3 the megnitude of the precursor response
is thus only about one percent of the popt impulse respoase.



For sdditionsl imterest the discrepancy between h,(t) and hc(t) as
given by (2.2) 1is also plotted in Pig. 3 for the same amount of damping. The
magnitude of the difference between the two equivalent viscous responses is
sbout 40 times smaller than the differemce between either one of them and
our asysptotic approximstion to the structural damping response.

3. Random vibration of aylt"tn with structural demping. Let the excitation

f(t) in Pig. 1 be a stationary random process with an ideally white spectrum;

1.6., the mean square spectral demsity 8/{() ) of £(t) is taken to be 8,

a constant over all frequencies from (J=-®Wto O=00 . The dimsnsions

of By are those of force squared per unit of circular frequency. The mean

square spectral density 8, ( .0) of the response X (t) in cese (a) is [10.]
5,(wW) = KW BH~w) 8L W)

8o Inf

(0= W™ igw) Y(@n - 0= igd¥)

(3-1)

using (1.4). Note that although H( ) has a singularity st the origin,

8 X () does not. The response is tims a stationary random process with
a well-behaved spectrum, analytic except for poles at the roots of the
denominator. When g is small S’l( (J ) has a typical narrow band appearance.

The expected mesan square of the response [ll] .
oo

E [%%] « 58”‘ (w)dw (3.2)

— 0o



can be.cbtained by contour integration and the method of residues. Altermatively,

since (3.1) is an even real fumction (3.2) can be reduced to the following
real intagral .- y
)

23,
E [O( EJ - ma Q‘Jnl" w-.)z-_*_gzwﬁ.

o {3.3)

vhich can be found in tebles [12] . Either way the result of the integration
for case (a) is |

N P Sy P vl

g m*w? 2 (14g9)

(3.4)

For the equivalent viscous approximations of Fig. 1{b) and 1{c) the calculation

of the mean square response is well known ]:21.2\]° In case {(b) we find

2. S . &%
R -

(3.5}

vhile for case (c) the result turns out to be identical to (3.4); 1.e., the
requirement that the complex frequency response in ¢asge (c) should have the
same poles es in case {a) leads to the result that the mesn square responss o

white stationary random excitation is the samp in the two cases.

In Pig. b the mean square responses according to (3.4) end (3.5) are plotted
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as functions of the demping perameter g. Por small damping the approximetion {3.5)
furnished by the simpler equivalent viscous system of Pig. 1(b) is quite
satisfactory. Yor large damping the relative error of the approximation iz

large, but for g=0.4 the relative error is already down to about five percent

and for smaller damping the relative error is o(gz),

4. Random vibration of system with both structural and viscous damping. In
more complicated systems containing structural damping it can be expected
that neither of the equivalent viscous substitutions will m'odnco- the

correct mean square regponse undexr random qxcitation. As an illustration
consider the system in Pig. ‘I5(a) in which a spring with structural damping
iz in parallel with a viscous demping element. Tho complex frequency
response for x when the excitation ia the force f ie

E(W) = 1/m » -
Wy ™+ Gedy S +25w,Ww) (5.2)
vhere
_ k ~ L
G‘)ﬂ = _V)-Z 2 Fwn - i (“02)

If the excitation f£{t) is a stationary rendom process with an ideally white

spectrum of density 5, the expscted mean square response is

A
B [/X 2] - \So S d/@
m? A [(w;&w% 'L(gw,,‘sgnw+ Zga),,a)ﬂ [(w;-w'j-i Q) sgnw + 2 gw,,,a))]
{4.3)
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In this case the singularity at the origin remains and it is<necessary to
evaluate (4.3) as a real integral over the range 0 to OO,

R
E[x2] = 3525 — Ld’“) e (h.4)
) (W~ )"+ (gua+ 250,W)
The #ingularity in (4.3) is reflectesd by the fact that whereas the poles of
the integrend of (k.3) eve ( + a + ih)a)ﬁ vhere y
= ,a'
.. [JU-3%*+g" + I-%
| 2 (k.5)

b S + (‘/(/"SL)L'{“?& _/+§2.)'/?-

the poles of the integrand of {i.h) mfa + 1b)a,;1an,{ [-a. +A 2% - b)]cq,l
The integration of (4.4) iz accomplished by a partial fraction expensiom into
four loggrithmic integrals of complex quantities. Careful attentiom to the
changes in arguments during integration leads finally to the following result

S(m-tan” bla)[ala-9/25)+b-5)b-25)]
+5 (Fan™ 222 [a(a+9Es)+(b-5)b ]
gDy [ s
©Ja Q"f)j (2s+9X25-3)
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which is valid for 0 < 2§/e< 0O although it 18 indeterminate vhen

g= 2§ . The expression (4.6) is continuous however and may be svaluated
at g= 25 by 1'Hospital's ruls. When g= 25 we have sal and b= 23 = g,
the integrand of (k.k) has & doubls pole at (U = -, and (4.6) reduces to

(W-tan??) +2§ + ;é’/"_(; ";‘f‘;y (h.7)

aj . /

a),, 4S(+35Y I+§2-
in terms of 1;’ . This is plotted as curve (a) in Pig. 6.

The two equivalent viscous substitutioms for this system are shown in
Pig. 5(b) and (c). In Pig. 5(b) we have the first equivalence in vhich only
the damping element 1s changed to a single viscous element vhich gives the
same mgnitude of damping force in simple harmemic moticn st () =), a8
the original system of Fig. 5(a). The expected msan ‘square response under
the same random excitation is | | |

E[XEJ - (ESE = ...T!..S_S.?. . 1
k(c-(-kg/@n) m*w, 28 + 3

- {h.8)
Yor the particular case 25 = g this is plotted as curve (b) in Fig. 6.
The gecond eguivalence is based on the requirement t&t the ;q;mivuhnt
viscous system of Fig. 5(c) should have ths same Doles as the original system
of ¥ig. 5(a). Here both the elastic element and the damping element are adjusted



to meet this requiremsnt. We find
ke = kta??)
¢, = 2km b - | (4.9)

vhere & and b are given by (k.5). The expected mean square response under
the esame random excitation 1is

2] - AS - TS __a
KoC, ) 26 (a*+b¥)

(k.10)

This is plotted as curve {c) in Fig. 6 for the particular case mr--aga g
Stuiying Fis. 6 we note that the exact solution (a) lies between the approximations
(b) snd (c). Whem 25 = g = 0-3'the relative error between () and {c) is

sbout 5% while the ra;a.tin error between (a) and (b) is about 10%. For smaller
values of damping the relative error is.0(g?). Some notiom of the behavior

of the error for other combinations of structurel and viscous damping can be

had by remembering that Fig. 4 represents the case vhers 2% /g = 0, that

7ig. 6 represents the case 29’/3 = 1 and that for a:;/g = 00 (i.e., all damping

is viscous) all three models become ideatical.
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Pig. 1

Pig. 2

Fig. 3
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Oaptions for Figures

{a) Vibratory system with linsar structursl dsmping. {(b) First
equivelent viscous system vith same elastic elemext and equal
damping force at () w (), . (c) Becomd equivalent viscous system
in which both elastic and dawping elements are sdjusted to produce
some poles as in (a).

Comparison of the behavior of structural and viscous damping forces
as functions of frequency for fixed amplitude of displacement.

Discrepancies between impulse xesponses for the systems of Fig. 1
vhen g= 0.05.

Mean square response to vhite random excitation for the systems

- of Hig. 1.

{a) Vibratory system vith structural damping and viscous damping.
(b) Pirst equivelent viscous system with same elastic element and
equal damping force at (W=wy,. {c) Becond equivalent viscous
gystem in which both elastic and damping elements are sdjusted
to produce same poles es in (a).

Nean square response to wvhite random excitation for the systems
of Pig. 5, for the case vhere g= 25
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