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Abstract

As VLS circuit speeds have increased, the need for accurate three-dimensional inter-
connect models has become essential to accurate chip and system design. Many of these
interconnect structures are small compared to a wavelength, and much work has been
directed at rapidly solving for the inductance and capacitance of these structures.

The first part of this thesis involves further development of efiicient inductance ex-
traction and simulation. Firsi, a method of nonuniformly discretizing planar structures
is developed which allows for hierarchical descriptions and modification while still en-
forcing current conservation. Also, a possible alternate preconditioner to accelerate the
iterative method is described. Finally, the most significant contribution for this part is
the numerically robust Arnoldi approach for efficiently generating compact, or reduced
order models for the inductance problem.

Even though much work has been directed toward solving separately for the induc-
tance and capacitance of these structures, these two quantities are not necessarily de-
coupled, and for higher frequencies a distributed model is necessary. The second part
of this thesis develops fast algorithms for solving this full quasistatic Maxwell’s equa-
tions to effectively capture this “coupled” or distributed capacitance and inductance.
The technique employed for extraction is an integral equation approach for modeling
the impedance of interconnect structures accounting for both the charge accumulation
on the surface of conductors and the current traveling along conductors. While such
computations by themselves and not new, a technique is proposed for which it is possible
to generate guaranteed passive reduced order models for efficient inclusion in a circuit
simulator such as SPICE.

In their basic form, these methods require direct LU factorization of very large linear
systems. Such factorization is impractical due to the O(n®) computation time and O(n?)
storage costs. Iterative techniques are then applied which can exploit fast potential
solvers such as the Fast Multipole method to bring the cost of model generation to O(n)
operations and storage. For a modest problem size, the iterative methods show nearly
2 orders of magnitude speed up in computation time and an order of magnitude less
memory than direct factorization.

Thesis Supervisor: Jacob K. White
Title: Professor of Electrical Engineering and Computer Science
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Introduction

1.1 Motivation

In the days of the first integrated cizcuits, the speed of the circuit was largely de-
termined by the switching speed of individual transistor devices. The characteristics of
the path a signal must travel from device to device were negligible. As speeds increased
however, the delay incurred by this path, or interconnect, became critical to accurate
chip and system design. More recently, not only have self characteristics such as delay
become important, but also electromagnetic coupling to other nearby interconnect. For
this reason, generating accurate models of these undesirable, or parasitic, properties has
become essential to chip and system design.

Measurement has always been an approach to modeling interconnect, however such
an approach can be difficult and time consuming, especially on-chip, and thus in recent
years much effort has been devoted to the fast and accurate computation of interconnect
models directly from Maxwell’s equations. For many portiors of a design, the significant
interconnect may be long and uniform enough to be modeled using a two-dimensional
approximation and transmission line theory. Unfortunately, discontinuities in this 2D
interconnect, such as vias through planes, chip-to-board-connect and board-to-board
connectors, require full three dimensional modeling. To account for these, the designer,
or CAD tool, must glue together 2D and 3D models which is cumbersome. Additionally,
as circuit density increases, these discontinuities become more prevalent, and full 3D
modeling is the only course.

Many of these structures are small compared to a wavelength, and thus a low fre-
quency, or quasistatic, approximation of Maxwell’s equations is appropriate. This thezis
describes the development of fast algorithms for the modeling and simulation of compli-

19



20 CHAPTER 1. INTRODUCTION

!

' 1.

wr
T;“

Figure 1-1: a) Two conductors, each with a pair of terminals b) The abstract port
representation of the two conductors.

cated three-dimensional interconnect in this regime.

1.2 Problem Description

The goal of parasitic interconnect extraction for a set of conductors is to determine
the relation between the currents and the voltages at the terminals (or ports) of the
conductors. For a k terminal-pair problem in the sinusoidal steady-state at the frequency
w, this relation is described by the admittance matrix, Y:(w) € C**¥ where

Yi(w)Ve(w) = Li(w), (1.1)

where I,,V; € C* are vectors of the terminal current and voltage respectively [10].
To understand the connection to Maxwell’s equations, consider a geometry consisting
of two terminal pairs as shown in Fig. 1-1. For this problem,

Yi(w) Yiz(w)
Yo(w) Yaa(w) ] . (1.2)

From (1.1), we see that column one of Y; can be computed by computing the cur-
rents I;; and Iy, resulting from setting Vi; = 1 and Vi = 0. Computing these currents
given a set of potentials is accomplished through solutions for the electromagnetic fields
governed by Maxwell’s equations. A common approach is to apply a finite difference or
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(a) (b)

Figure 1-2: Finite difference discretization of all of space versus a boundary element
method discretizing only the surface. Reprinted with permission of Mike Chou

finite element method to the governing equations in differential form. Such an approach
requires the discretization of all of 3-D space which can be cumbersome and generate very
large linear systems. Instead, consider an integral equation approach, which requires dis-
cretization of only the conductors. This is illustrated in Figure 1-2 for the capacitance
problem which can be solved via a boundary-element approach requiring the discretiza-
tion of only the surface[12, 56]. Similarly, the inductance problem can be treated via
a volume-element approach which requires the discretization of the interior of conduc-
tors only [54, 70]. Unfortunately, such methods generate dense matrix problems which, if
solved via standard direct methods such as Gaussian Elimination, grow in computational
cost on the order of n3, and in memory as O(n?), where n is the number of elements into
which the problem is discretized. For modern packaging structures for which n is 104 to
10°%, these growth rates are prohibitive. For instance, n = 10* corresponds to nearly 1
gigabyte of memory and hours for a single factorization at 100 MFlops (million floating

point operations per second).

Over the past decade, solving the dense matrices associated with boundary or volume-
element methods has been made substantially more efficient through the use of iterative
solution techniques accelerated by “fast-multipole” or other matrix sparsification algo-
rithms. This combined approach reduces the computational (and storage) cost of using
boundary and volume-element methods to nearly O(n) [21].

Fast multipole algorithms have been applied for capacitance and inductance extrac-

tion as described in [46, 48, 29, 35]. However, for general tools for fast parasitic extraction,
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issues apart from these fast sparsification techniques must be addressed. In this thesis,
we investigate these issues and develop algorithms which are shown to be two orders of
magnitude faster and consume an order of magnitude less memory than direct approaches
for n ~ 104,

The developments of this thesis are divided into two parts. Part I involves further
development of efficient algorithms for inductance extraction and simulation and Part II
develops fast algorithms for solving the full quasistatic Maxwell’s equations to effectively
capture the “coupled” capacitance and inductance.

To begin, Chapter 2 is a motivational chapter, describing the regimes for which the
algorithms of the thesis are useful. It also demonstrates the need for tools capable of
handling entire interconnect structures which generate these large linear systems.

To start Part I, Chapter 3 gives a detailed description of the previous work on
multipole-accelerated inductance extraction in [35). The detail is included not only to
put the rest of this part in context, but also because many of the contributions are vital
to Part II. However, the methods presented in this chapter are not the end of the story.
In particular, methods of efficient discretization leave room for further improvement and
in the first section of Chapter 4 we develop a method of nonuniformly discretizing pla-
nar structures. The approach allows hierarchical description and modification while still
enforcing current conservation. Using such an approach is shown to reduce the size of
the linear systems by at least an order of magnitude.

Issues related to the fast convergence of the the iterative matrix solution algorithm
also leave room for improvement and in the second section of Chapter 4 an alternate
preconditioner to accelerate the iterative method is described.

The algorithms of Chapter 3 and 4 capture the frequency dependent resistance and
inductance at specific frequency points only, however, often the end use of interconnect
models is for simulation with nonlinear devices. Such simulation must be performed in the
time domain and knowledge of the resistance and inductance at individual frequencies
is not adequate. Methods of efficiently generating compact yet accurate time domain
descriptions of the interconnect are necessary.

Methods of generating compact, or reduced order, models from larger dynamic linear
systems has been explored in many disciplines, however an approach which is computa-
tionally efficient for dense systems whose rank is on the order of 10* has only recently
been explored. Perhaps the most important development of Part I is the development of
the Arnoldi approach in Chapter 5 for efficiently generating numerically robust reduced
order medels.

The methods of Part I are concerned with inductance alone. However, even though
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much work has been directed toward solving separately for the inductance and also
capacitance of these structures {12, 5, 7, 6, 48, 35), these two quantities are not necessarily
decoupled. While an integral equation approach has been developed for this coupled
problem [55], the acceleration and efficient generation of compact models for complicated
three dimensional geometries has not been addressed.

Part II of this thesis develops fast algorithms for solving the full quasistatic Maxwell’s
equations to effectively capture this “coupled” capacitance and inductance. This full
quasistatic regime which we term “electromagnetoquasistatics” (EMQS), can be viewed
as treating the inductance and capacitance in a distributed manner. The technique
employed for extraction is an integral equation approach accounting for both the charge
accumulation on the surface of conductors and the current traveling along conductors. In
this work, an approach similar to the standard integral equation approach for interconnect
analysis is used to formulate a system of equations amenable to techniques of model order
reduction discussed in Chapter 5. But generating the low order model requires many
solves of a dense linear system. The approaches developed for fast solution are the crux
to fast and efficient model order reduction.

Many of the sections of this thesis also exist in published form. The motivational
example of Section 2.2.2 appears in [31]. The inductance algorithm of Chapter 3 appears
in [35] and the theory for the preconditioners in [34]. Some of the reduced order modeling
werk of Chapter 5 appears in [62]. All of Part I (Chapters 3, 4, and 5) is implemented
in C code available from ftp://rle-vlsi.mit.edu/pub/fasthenry. Sections of Part II
appear in [33] and [32).



24

CHAPTER 1. INTRODUCTION



Motivation

Through examples, this chapter places in context the contributions of this thesis and
also demonstrates the necessity of accurate parasitic extraction tools. First in Section 2.1
we generate a simple circuit model for two pins of connector to demonstrate where such
simple models break down. Then, in Section 2.2.2, the entire package of an analog IC is
coupled into circuit simulation to demonstrate the need for accurate models to facilitate

fast and accurate designs.

2.1 Placing this work in context

Through a small example, this section demonstrates the application regime for the
developments in this thesis. To motivate the developments of subsequent chapters, the
example will follow a common approach for interconnect modeling at low frequencies and
demonstrates where such an approach breaks down.

For simplicity, consider only two pins of the eighteen pin connector built by Teradyne,
Inc. shown in Figure 2-1. We wish to accurately model the admittance seen by a source
when the pins connect the source to a resistive load as shown in Figure 2-2.

A common approach to generating a simple circuit model is to avoid solving the full
quasistatic Maxwell’s equations by instead computing first the resistance and inductance,
that is, computing Y; under the magnetoquasistatic assumption that the displacement
current is negligible, and then second, computing the capacitance by solving an electro-
static problem. With these R, L, and C values, a common and simple circuit model for
the system is the “I'” model shown in Figure 2-4. To make a symmetric model for the
interconnect, the 7 or T' models shown in Figures 2-3 and 2-5 are common. Such circuit
models are accurate for low frequencies for all values of Rj,,q4, but for higher frequencies,
the models break down. For instance, in Figure 2-6, the resistance and inductance were

25
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Figure 2-1: An eighteen pin backplane connector built by Teradyne, Inc

Figure 2-2: Two pins of the eighteen pin connector with terminating load.
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computed for zero frequency (DC) and Rj,.4 was set to zero. The choice of Rjsaq was
made to emphasize the inductance and the exact values were computed by methods of
Chapter 6. Notice that all the models match the exact value until around 10 MHz. The
models eventually break down due to skin effects, The current begins crowding toward
the surface of the conductor, increasing the resisiance and decreasing the inductance{70].
To improve the response at higher frequencies, consider using i and L computed at
f = 10 GHz as shown in Figure 2-7. Now all the models match up to 360 MHz, but are
inaccurate below 10 MHz.!

From these figures, it is apparent that a model which captures the frequency depen-
dence of the resistance and inductance is necessary for accurate models from zero to 300
MHz. Chapter 5 describes numerically robust techniques for generating low order models

to capture these effects over such a frequency range.

INote that in this example the frequency dependent effect on the inductance is small. For an example
of stronger frequency dependence, see Section 3.4.



28

CHAPTER 2. MOTIVATION

Figure 2-6: Response of 2 pins with Rj,,4 = 0 using various simple circuit models derived

for f =0.
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Figure 2-7: Response of 2 pins with Rj,,q4 = 0 using various simple circuit models derived

for f =10 GHz.
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Figure 2-8: Response of 2 pins with Rj,,4 = 0 using various simple circuit models derived

for f =0GH=z

As circuit speeds have increased, models for such interconnect beyond 300 MHz have
become important. At higher frequencies, the interconnect becomes self-resonant and
such sharp features in the response must be captured accurately. For the case of these
two pins, the capacitance is high enough that the first resonance appears well within the

quasistatic regime.

To investigate these resonances, consider the response of the structure in the giga-
hertz range as shown in Figure 2-8. Note that at the resonance points, the structure,
which is 1.8 ¢m long, is still small compared to a wavelength. The lumped models shown
were generated using B and L at f = 0 Hz. From the figure, the I' model has missed the
resonance by over 0.5 GHz, and the 7 and T models are better, but still inaccurate. Ad-
ditionally, the T' model has an extra peak at 2.25GHz. Such deviation are unacceptable
as we will see in the next section. Using the inductance and resistances at f = 10 GHz,
all the models come slightly closer to the resonance but are still inaccurate as shown in
Figure 2-9. The choice of f = 10 GHz for computing R and L for this example was not
important. Choosing R and L at the resonant frequency produces similar results because

for this example the frequency dependence on the admittance is small.

Of the three models above, the # model performs best. This is not surprising con-
sidering the structure “looks” like a 7 model. Starting at the source in Figure 2-2, the
conductors are very closely spaced, indicating a high capacitance, then they separate,
enclosing a large “loop” for which the flux, and thus the inductance, is high, and then
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Figure 2-9: Response of 2 pins with Rj,.q = 0 using various simple circuit models derived
for f =10GH=

the conductors come tegether again for a large capacitance.

Such heuristic knowledge of the geometry of the conductor may allow a designer to
write down a specific model for each specific section of interconnect. Such an approach
might result in close results as shown by the above example. However, this approach is
cumbersome since there can be many sections of interconnect. Additionally, it may be
difficult to derive a simple model such as the 7 model for a complex three-dimensional
section of interconnect and even if possible, the model is still inaccurate as shown in
Figure 2-9. Lastly and perhaps most importantly, is that the simple models can capture
at most only one resonance and thus are inaccurate beyond the first resonance. For these
reasons, it is necessary to develop fast and efficient methods which accurately capture the
admittance directly, taking into account both capacitive and inductive effects simuita-
neously. This electromagnetoquastatic (EMQS) problem is tbe topic of Chapter 6. Also
we find in Appendix A that for certain geometries common to interconnect analysis, the
quagistatic approximation is useful beyond the short-compared-to-a-wavelength regime.
For the connector example, this corresponds to the behavior including the higher reso-
nances of Figure 2-6. This is a regime for which the simple single resonance of the =

model can never capture.

To summarize, Figure 2-10 marks the different regimes discussed in this thesis. In
region A, a single lumped R and L are adequate and Chapter 3 and 4 discuss fast methods
of computing an appropriate R and L for models like in Figure 2-3. For models valid
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Figure 2-10: The different regimes discussed in this thesis. A: Single lumped induc-
tance, Chapter 3 and 4, B: Frequency dependent inductance and model order reduction,
Chapter 5, C: Coupled inductance and capacitance, Part II

from zero frequency to the higher frequencies of region B, the frequency dependence of
the resistance and inductance must be captured and the single lumped R and L are not
adequate. In Chapter 5 we develop numerically robust methods for generating low order
models valid over this larger range. In region C, capacitance and inductance cannot
be separated if the resonant behavior is to be captured. In Part II we develop fast
methods to generate low order models of this interconnect which accurately captures
these resonances.

Note that the frequency intervals of each regime are geometry dependent. For in-
stance, if the pins of the connector were thinner, the skin effect would become important
at a higher frequency and region A would have been wider. Similarly, if the conductors
were spaced farther apart, region B would be wider because the capacitance would be
smaller and the first resonance would occur at a higher frequency.
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Figure 2-11: a) A pulse with a 500 ps rise time. b) Crosstalk on an adjacent pin

2.2 Real Examples from Experiment

Before beginning the developments of subsequent chapters, this section gives two
examples to show the importance of capturing the frequency domain with such accuracy.
As will be shown in Section 2.2.1, for digital circuits, the simulated response may be
inaccurate if some harmonic of the operating frequency falls at a resonance . For analog
chip design, a certain subsystem may be designed to have minimum impedance at a
certain frequency. Inaccurate interconnect models can results in poor performance of the
fabricated devices compared to simulation as will be demonstrated in Section 2.2.2.

2.2.1 A Digital Example

For the backpla.ne.connector of Figure 2-1, consider exciting one of the middle pins
with step in voltage with a 500 ps rise time as shown in Figure 2-11a. Such a pulse can
induce a voltage on adjacent pins and quantifying this switching noise is important for
accurate system design. For this pulse, a fully coupled 18 pin version of the = circuit of
Figure 2-3 captures the behavior accurately compared to experimental measurement as
shown in Figure 2-11b. One might expect that such behavior is accurately captured since
the pulse has a strong frequency component at 1/(500ps) = 2GHz which is a frequency
where the 7 model is still accurate.

Next, consider moving to a much faster rise time of 100 ps. As seen in Figure 2-12,
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Figure 2-12: a) A pulse with a 100 ps rise time. b) Crosstalk on an adjacent pin

the pulse excites a resonance as can be seen by the jagged response of the measured data.
The simple 7 model is now far from accurate. To understand this, note that 1/(100ps) =
10GHz which is beyond the simple single resonance that the v model is able to capture.
Thus, it becomes necessary to model the fully distributed “electromagnetoquasistatic”
case to capture these higher resonances accurately.

2.2.2 Modeling of an analog chip and its package

As analog circuits operating at RF frequencies are integrated on silicon, the entire
package and interconnect structures become an integral part of the functional design
used for matching and tuning networks. To demonstrate this point, this section observes
the effect on simulation of not including models for the entire package of an analog IC
package. The necessity of accurate package models thus motivates the development of
fast parasitic extraction tools.

In particular, for a 2.4 GHz RF to IF Conve-ter integrated circuit under develop-
ment at Harris Semiconductor, we show that modeling the resistance, capacitance, and
inductance of the package leads, bondwires, die attach plane, and on-chip interconnect is
required for accurate circuit simulation. The HFA3624 shown in Figure 2-13 is a bipolar
device that provides up/down conversion between a 2.4 - 2.5 GHz RF signal and 40 - 400
MHz IF operation for a wireless communication chipset.

The entire package is shown in Figure 2-14. The chip is the small rectangle in the
center, with the bondwires rising from the chip and bonded to either the rectangular die-
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Figure 2-13: HHFA3624 RF/IF Converter Block Diagram
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Figure 2-14: The package for an RF integrated circuit

attach plane below or extending out the package pins on the outside of the figure. The
package pins are drawn a distance away from the package for illustration. The bondwires
which do not terminate on the die attach would terminate on the package pins.

The analysis will focus on accurately predicting the gain, S3;, and return loss, S;;, as
a function of frequency of one section of the converter, the transmit amplifier or TXA.
While the simulation focuses on one section of the circuit, the interconnect external to the
die will be modeled for the entire device to more fully capture coupling effects associated
with the packaging.

The device was designed to have a maximum gain and minimum return loss at the
operating frequency of 2.45GHz. The first design was performed without consideration
of the package parasitics and the first pass out of fabrication showed very poor results as
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Figure 2-15: Experimental Measurement for the TXA. Measurement is off from intended
design of minimum Sy; and maximum Sy; at 2.45 GHz

shown in Figure 2-15. Note that if package parasitics had been accounted for originally,
this very expensive extra fabrication iteration might have been avoided.

In the following subsections we investigate the effects of modeling the package leads
and bondwires, the on-chip interconnect, and the grounded die attach plane, respectively.

Modeling of the Package and Bondwires

The HFA3624 is packaged in a 28 lead SSOP as was shown in Figure 2-14. The die
‘attach (DA) plane is used as a ground return and is fused to some of the package leads

as ground connections. The chip internal ground connections are made by down bonding
from bend pads to the DA.

The capacitance and inductance of just the package were assembled in a 7-type model
as illustrated in Figure 2-16 where the L1 terminal is the external connection to the PCB
and the P1 terminal is the internal connection to the bonding post. The capacitance
to ground of each lead was divided into the two capacitors, C1Ga and C1Gb. The self
inductance was similarly divided between Lla and L1b. The small series resistance was
lumped into a single element R1, and a large resistance, Rldc, was provided to allow the
lead to be left unconnected with a DC path to ground. The capacitance between the
internal end of the lead and the DA was captured in C1DA. The remaining capacitors
represent the significant coupling capacitances between the package leads. The mutual
inductance was also modeled but is not shown here.
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Figure 2-17: Simulation with Package and Bondwire Models

The resistance and inductance of the bondwires were computed, but due to the small
surface area of the bondwires compared to the separation, capacitance was neglected and
a simple network of RL circuits was used for the lumped element model.

At this point all connections to the DA were modeled as a single node. The distributed
currents in the DA will be modeled later in Section 2.2.2. The simulation results with only

package and bondwire models matched poorly to measurement, as shown in Figure 2-17.

To appreciate the influence of parasitic inductance of the package leads and bondwires
versus the intentional components for tuning, consider simulation with and without the
mutual inductance terms in both models. This is shown in Figures 2-18. It can be
seen that while neither result gives good agreement with measurement at this point, the
parasitic inductive effects have a strong influence on the waveforms. Interestingly, even
though the gain seems to have improved, this is merely coincidental as will be shown

later.
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Figure 2-18: Simulation with Package and Bondwire Models, with and without Mutual
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Figure 2-19: Layout of the TXA

Modeling of the On-Chip Interconnect

As observed from the results of the previous section, it is clear that with only package
and bondwire models the simulation is unacceptably far from the measured data. While
the final goal is to match the measured data over the whole frequency range, for this
product we are especially interested in the results at 2.4 GHz. At this frequency, the
predicted gain is 6 dB above the actual gain and the input return loss curve is significantly
shifted in frequency. Next we show improvements in the simulation by including models
for the on-chip interconnect. The layout of the TXA with the interconnect lines of interest
is shown in Figure 2-19.

From the influence of the inductance seen in Figure 2-18 we can expect that the
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Figure 2-20: Simulation with Package, Bondwire, and On-chip Interconnect Models

on-chip interconnect inductance will also play a significant role. For instance, while the
length of a given segment of on-chip interconnect is considerably shorter than a bondwire,
the full path of current can be on the order of the bondwire length and therefore cannot
be neglected. To compute the inductance and resistance, the geometries of selected
lines were extracted from the layout in a partially automated process and read into the
inductance solver. In some cases, the interconnect inductance values were found to be
as much as ten percent or more of the fabricated spiral inductor values. In addition,
coupling ratios for simulating mutual inductance were as high as 50 percent between

adjacent lines.

For capacitance calculation, the fourteen largest sections of interconnect were mod-
eled. For the process used in this product, it has been shown that in the gigahertz range,
the epitaxial layer is too resistive to act as a ground reference for capacitance calcula-
tion [43]. For this reason, the doped bulk substrate was used as the ground reference. The

maximum capacitance to ground was 0.17 pF and the maximum coupling capacitance
was 0.03 pF.

The effect on simulation of adding just the on-chip RL and then also the on-chip
capacitance is shown in Figure 2-20. The added capacitance greatly improved the pre-
diction of the gain at 2.4 GHz. For the return loss the improvement is still not as drastic.
The simulated minimum is approaching the measured data, but the overall S;; curve is

still very inaccurate.
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Figure 2-21: Bondwires with Ground Connections to the DA Plane

Modeling of the Die Attach Plane

As mentioned in Section 2.2.2, the DA plane was assumed ideal and all ground con-
nections to the plane were shorted together in the Spice model to this point. However,
in the partial inductance approach, it is necessary to model the full path of current flow.
Note that even if the plane were perfectly conducting, it would still have inductive effects.

For this reason, a more accurate model for the bondwire current paths and ground
connections was implemented by treating the DA as a distributed RL plane. The dis-
cretization is shown in Figure 2-21. This model replaced the previous bondwire mode!
used in Section 2.2.2.

Simulation with the new bondwire model including the DA showed excellent results
as seen in Figure 2-22. The gain matches very closely at 2.4 GHz and the minimum in

the return loss occurs at nearly the same frequency as in measurement.

Better models

The above investigation shows the need for three-dimensional modeling in an efficient
manner, however there is clearly room for improvement. The return loss, Sy, does not
match well above 2 GHz and the gain, S, is off below 2 GHz. Some of the discrepancies
might result from the fact that the package leads, bondwires plus die attach, and on-chip
interconnect models were all built separately. Thus, the coupling between a package lead
and a bondwire was not captured.

Additionally, the DA plane was modeled as a distributed RL plane only, with the
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Figure 2-22: Simulation with Package, Bondwire, On-chip Interconnect, and Die Attach
Models

net capacitance to the printed circuit board’s plane below modeled as a single capacitor.
Such a lumped model is acceptable near 2.45GHz, but may be responsible for the devia-
tion at the higher frequencies. To show this, for the same chip under different conditions,
measured data was taken and the simulations were done with and without the DA ca-
pacitor. The results are shown in Figure 2-23 where it can be seen that the capacitance
has a significant on the return loss, and actually improves the gain above 4 GHz.

Such strong results related to this lumped capacitor imply that an accurate distributed
model of resistance, inductance, and capacitance simultaneously is necessary for further
accuracy, especially at higher frequencies.

With the general need for quasistatic extraction tools motivated, the next chapter
begins by describing fast methods of inductance extraction.
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Part 1

Effective Inductance Calculation
and Model Order Reduction
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As was seen in Section 2.1, accurate computation of the inductance and resistance
alone is important for problems in which the frequencies of interest are well below the
first resonance of the structure. Various workers have developed methods for inductance
calculation [7, 9, 55]. The integral equation approach of Ruehli [55] has perhaps been the
most popular for its wide range of applicability and its straightforward circuit interpre-
tation. For complex three-dimensional geometries however, the approach of Ruehli leads
to systems too large to solve by direct matrix solution techniques. Previous work of this
author [35] extended the applicability of Ruehli’s method to more complex geometries
by applying an accelerated iterative solver to reduce both the time and memory required
to solve the dense matrix problem at individual frequency points.

While the methods of [35] allow the analysis of geometries with tens of thousands of
elements, there is still a need for more. As geometries become more complex, or higher
accuracy is needed, the designer needs faster solvers which can analyze larger problems.
This part of the thesis (Chapters 3, 4, and 5), addresses a number of issues for improving
the process of inductance extraction developed in [35]. Many of this issues are also
applicable to the EMQS dornain of Chapter 6.

In Chapter 3 we review the methods of [55, 35] for inductance extraction at individual
frequency points. A discretization of an integral form of Maxwell’s equations is used to
generate a dense linear system whose solution gives the desired inductance. For com-
plicated interconnect structures, the linear system which must be solved is too large for
direct methods such as Gaussian Elimination. For this reason we turn to Krylov-subspace
iterative methods. The advantage of an iterative solve for dense matrix problems hinges
on a small number of iterations to convergence. Fast convergence can be accomplished
through preconditioning. Combining a fast iterative solver with fast potential solvers
is then shown to give an O(n) algorithm for inductance calculation which is orders of
magnitude faster than direct methods.

In Chapter 4, we improve upon the methods in Chapter 3. From the implementation
in [35), geometries with large planar structures require a uniform discretization which
can generate systems with an excessively large number of elements. A method of nonuni-
formly discretizing planar structures becomes necessary and Section 4.1 describes an
approach which allows for hierarchical descriptions and modification while still enforcing
current conservation.

Also, different preconditioning techniques can have different performance for different
classes of problems and improvement is always of interest. In Section 4.2 we explore an
alternate preconditioning technique based on the work of [38].

The inductance approach described above is tuned to the computation of inductances
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and resistances at one frequency only. But as was demonstrated in Chapter 2, the com-
putation of a single lumped R and L as in Figures 2-4, 2-3, 2-5 or similar such circuits,
is not adequate for capturing the frequency response over the entire frequency range of
interest. It thus becomes important to generate a model to represent the inductance
which is still of low order, but captures the frequency dependent effects. In Chapter 5,
we look at applying a moment-matching variant of an eigenvalue computation technique
known as Arnoldi’s method to generate low order models for the inductance problem.
These methods will also prove very important for model generation of the full electro-
magnetoquasistatic (EMQS) problem in Chapter 6.



Background for the Inductance
Problem

In this chapter we review the methods of [55, 35] for inductance extraction at individ-
ual frequency points. The development can be divided into two parts: the first involves
deriving an appropriate linear system representing the geometry and the second involves
rapidly solving that linear system to compute the appropriate inductance. The layout of
this chapter is shown graphically in Figure 3-1. To derive a linear system, a discretization
of an integral form of Maxwell’s equations is used to give a circuit interpretation. This
circuit must then be “solved” at a specific frequency to ¢ympute the inductance. To
efficiently solve the circuit we use the circuit technique known as mesh analysis.

For complicated interconnect structures, the linear system which must be solved is
too large for direct methods such as Gaussian Elimination. For this reason we turn to
Krylov-subspace iterative methods. The advantage of an iterative solve for dense matrix
problems hinges on a small number of iterations tc convergence. Fast convergence can
be accomplished through preconditioning as will be discussed in Section 3.3. Combining
a fast iterative solver with fast potential solvers is then shown to give an O(n) algorithm

for inductance calculation which is orders of magnitude faster than direct methods.

Derive Linear System Fast Iterative Solution

| s |
Integral Form Discretization Mesh Analysis Preconditloning Fast porential
Section 3.1 Section 3.1 Section 3.2 +

Figure 3-1: Outline of Chapter

47
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3.1 Integral Equation

Inductance extraction is the process of computing the complex frequency-dependent
admittance matrix of (1.1) under the magnetoquasistatic approximation [25].

Several integral equation-based approaches have been used to derive the Y; associated
with a given package or interconnect structure [54, 7, 66, 40] under the magnetoqua-
sistatic approximation. These integral formulations are derived by assuming sinusoidal
steady-state, and then applying the magnetoquasistatic assumption that the displace-
ment current, jewE, is negligible everywhere. Given this, begin with Maxwell’s equations

in sinusoidal steady state,

VxE = —jwuH (3.1)
VxH = jweE+dJd (3.2)
V-(E) = p (3.3)
V-(eH) = 0 (3.4)

where w is the angular frequency. In addition, within the conductors, by Ohm’s law,
J=oFE (3.5)

where o is the conductivity. As stated above, the frequencies of interest will be considered
small enough such that the displacement current, jweE, can be neglected in (3.2). This
assumption is clearly justified within the conductors where the conductivity is large.

Under this quasistatic assumption, the divergence of (3.2) gives current conservation,
V.J=0. (3.6)
Note that for this work, we wish to allow for ideal current sources, and thus (3.6) becomes
V-J=1I,(r). (3.7

From this point, we wish to eliminate the field quantities, E and H, in favor of the
current density, J, and applied voltages. From Gauss’' Law of magnetic flux, (3.4), the

magnetic flux can be written as

pH=V x A (3.8)

where A is the vector potential. Applying this to (3.1),

V x (E + jwA) = 0. (3.9)
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This implies that there exists a scalar function, ®, such that
—V®é=F+jwA (3.10)

where ® will be called the scalar potential. We require one final relation to relate the
vector potential, A to the current density, J. By use of (3.8) and by choosing the

Coulomb gauge,
V-A=0. (3.11)

Equation (3.2) then becomes
— VA =pd (3.12)

Al =L / ’(") (3.13)

where V' is the volume of all conductors.
Substituting (3.13) and (3.5), into (3.10) yields the following integral equation:

I(r) | jup / T g = —va(r). (3.14)

o dr | |r -7

and thus

Using equation (3.14) plus current conservation, (3.7), the conductor current density,

J , and scalar potential, ®, can be computed {7].

3.1.1 Discretization

Given the magnetoquasistatic assumption, the current within a long thin conductor
can be assumed to flow parallel to its surface, as there is no charge accumulation on
the surface. Thus, for long thin structures such as pins of a package or connector,
the conductor can be divided into filaments of rectangular cross-section inside which
the current is assumed to flow along the length of the filament. In order to properly
capture skin and proximity effects in these long, thin conductors, the cross section of the
conductor can be divided into a bundle of parallel filaments as shown in Fig. 3-2. It is also
possible to use the filament approach for planar structures, such as ground planes, where
the current distribution is two-dimensional. In such cases, a grid of filaments can be used,
as in Fig. 3-3. Once the conductors are discretized into filaments, the interconnection
of the current filaments can be represented with a planar graph, where the n nodes in
the graph are associated with connection points between filaments, and the b branches in
the graph represent the filaments into which each conductor segment is discretized. An
example graph, or circuit, for a single conductor example is shown in Fig. 3-4.
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Current Flow

S filaments

7 filaments

Figure 3-2: Single pin of a pin-connect divided into 5 sections, each of which is a bundle
of 35 filaments.

Figure 3-3: Discretization of a Ground Plane. Segments are drawn one-third actual
width.
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©

Figure 3-4: One conductor, (a) as piecewise-straight sections, (b) discretized into fila-
ments, (c) modeled as a circuit with each box element representing a filament as a resistor
in series with an inductor. Note that each filament has mutual inductance to every other
inductor.
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If the current density inside each filament is assumed to be constant, then the ap-

proximation to the unknown current distribution can then be written as

b
I(r) ~ Z Lawi(r)ly (3.15)

where I; is the current inside filament , ]; is a unit vector along the length of the filament
and w;(r) is the weighting function which has a value of zero outside filament ¢, and 1/a;

inside, where a; is the cross sectional area. By defining the inner product of two vector

(a,b) = /a -bdv (3.16)

and following the method of moments [24], a system of b equations can be generated

functions, a and b, by

by taking the inner product of each of the weighting functions with the vector integral
equation, (3.14). This gives

L : | PR 1
(;Z) Il +]w 4Wa'a1// |1‘-—1"Idv dV I == '/(QA'—QB)dA

j=1
(3.17)
where [; is the length of filament ¢, a; is the cross section, ® 4 and ® g are the potentials on

the filament end faces, and V; and V] are the volumes of filaments i and j, respectively.
Note that the right hand side of (3.17) results from integrating V® along the length

of the filament, and is effectively the average potential on face A minus the average on
face B.

In matrix form, (3.17) becomes
(R + jwL)I, = ‘I‘A - ‘I’B (3.18)
where I € C is the vector of b filament currents,

Ri;=— (3.19)

B R
Li; = Tra; ‘/V ‘/V' i = r’IdV dv (3.20)
Y
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is the b x b dense, symmetric positive definite matrix of partial inductances, and d,
and ®p are the averages of the potentials over the cross sections of the filament faces.
Equation (3.18) can also be written as

ZL, =V, (3.21)

where Z = R+ jwL € CX is called the branch impedance matrix and V; = &, — &5 is
the vector of branch voltages.

Note that one can view, for instance, filament ¢ as a resistor with resistance R;; in
series with an inductor with self-inductance L;; and mutual inductance L;; with filament
j- The circuit obtained from the graph described above is known as the Partial Element
Equivalent Circuit (PEEC) [70, 54].

It is worth noting that in the example discretization shown in Fig. 3-4b and c, the
ends of adjacent bundles of filaments are effectively shorted together at each node. This
approximation is acceptable when the conductor is long and thin and thus the transverse
current is negligible. When the conductor is not long and thin, it may be more appropriate
to join the bundles together with a small grid of short filaments or even by a full 3-D
discretization of filaments in the same manner that the ground plane in Fig. 3-3 is a 2-D
discretization.

Also, the dense L matrix is referred to as the partial inductance matrix since its
definition allow each filament to be modeled as a resistor in series with an inductor.
However, since a filament is straight, it does not agree with the definition of inductance
as a closed loop quantity. The filament inductances represent only part of a loop and are
thus termed the “partial” inductance.

A full description of the connection between the partial inductance concept and the
definition of loop inductance is given in [42]. To describe the idea with a simple example,
consider four filaments connected in a loop as shown in Figure 3-5. If the two ends of
the current source are close enough that the magnetic induction in the gap is negligible
then from (3.1), the voltage across the source is given by [25]

v=—

dt
where ) is the flux linkage, or the magnetic flux linked by the filament loop,

A= / pH - da (3.22)
S

where S is an open surfaf:e with edge defined by the closed contour C defined by the loop
of filaments. The inductance is defined as £ = 2 where i is the current through the loop.
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Sl

Figure 3-5: A four filament loop

This gives the familiar expression from circuit theory,

di '
v=~{ Et- (323)

To compute this inductance on a filament by filament basis, we can write (3.22) using

(3.8) and Stokes’ theorem as,
A= fA(r) -dr. (3.24)
c

Since the integral is now over the loop of filaments, define A\;,7 = 1,...,4 to be the

integral over each filament individually,

A= i:/ A(r)-dr = 24: Aj (3.25)

j=1 Vil =1

where f! _ 18 the line integral along a filament. For illustration, assume the filaments
il
are infinitely thin, then from (3.13),

4
1 £ l '
A(r) =1 e Z /“' o r'ldr (3.26)

which gives

As
2 - £ h dr’ + L de' .- ) -dr (3.27)
i 4z lr — 7| |» — 7|

siti \J fin fitz
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4
= Z Ljx (3.28)
k=1

where L;; are now defined as in (3.20; .nd the total loop inductance is thus

0= Z Z Ljs. (3.29)

We think of L,; as the partial self-inductance of filament 1 and L,; as the partial
mutual inductance to the <.« flaments. For this simple one conductor case where
skin effect is not model- .., computing Y; as in (1.1) is a matter of summing the partial
inductances to compute the total inductance in (3.29) and then ¥; = 1/(r + jwf) where
r is the sum of the resistances of the four filaments. For a general topology, however, we

do not have such a simple expression and instead we must solve the circuit to compute
Y:.

3.1.2 Nodal Analysis Formulation

To solve the Partial Element Equivalent Circuit, current conservation, (3.7), must be
enforced at each of n nodes where filaments connect. This can be written as

Al =1, (3.30)

where A € R™*® is the branch incidence matrix and I, is the mostly zero vector of source
currents at the node locations. Each row in A corresponds to a filament connection node,
and each column to a filament current. Column ¢ in A has two nonzero entries: —1 in
the row corresponding to the node from which filament i’s current leaves, and +1 in the
row corresponding to the node into which filament #’s current enters.

Since V2® = 0, the branch voltages, Vi, can be derived from a set of node voltages,

denoted ®,, as in
A, = V;. (3.31)

Combining (3.21), (3.30), and (3.31) yields

AZ'A'®, = I,. (3.32)

! can now be computed by appropriately setting the

Notice that column i of Z, = Y~
source currents, I,, that correspond to I;; of Figure 3-4 equal to one (unit current through

conductor z), and then solving (3.32) to compute the node voltages, ®,.. The difference
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(a) (b)

Figure 3-6: (a) A single loop modeled as a 3-port so that devices in (b) can be connected
in circuit simulation

of appropriate node voltages gives the entries of V;, the vector of voltages across each
of the conductors. Note that just as the magnetic interaction of individual filaments
could be expressed as a partial inductance, the conductors such as in Figure 1-1 which
correspond to the ports for Y; can be individual sections of conductor and not necessarily
entire loops. However, for valid simulation results, all the conductors which make up a
current path must be included as ports of Y;. In this manner, when Y; is included in a
circuit simulator, the summing as in (3.29) is performed in effect by the simulator. The
advantage of such an approach is that circuit devices can be placed between the sections
which make up a loop as illustrated in Figure 3-6.

In most programs, in order to compute Y;, the dense matrix problem in (3.32) is
solved with some form of Gaussian elimination or direct factorization. These programs
avoid forming Z~! explicitly by reformulating (3.32) into the sparse tableau form [23],

z At I 0

= . 3.33
A 0 o, I (3.33)

Using direct factorization to solve (3.33) implies that the calculation grows at least as
b%, where again b is the number of current filaments into which the system of conductors
is discretized. For complicated packaging structures, b can exceed ten thousand, and
solving (3.33) with direct factorization will take days, even using a high performance
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scientific workstation.

3.2 The Mesh-Based Approach

The obvious approach to trying to reduce the cost of solving (3.33) is to apply iterative
methods. However, such methods converge slowly because (3.33) contains equations
of two different types. Another approach is to reformulate the equations using mesh
analysis, and then apply an iterative method.

This section first describes the reformulation using mesh analysis and then discusses
the use of a Krylov-subspace iterative method known as GMRES (Generalized Minirnal
Residual). Finally, the eigenspectra for the systems generated in (3.33) are compared
to those generated from mesh analysis as insight into the effectiveness of GMRES for

solving both systems.

3.2.1 Mesh Analysis

In mesh analysis [10], a mesh is any loop of branches in the graph which does not
enclose any other branches. Also, the currents flowing around any mesh in the network
are the unknowns, rather than node voltages. Mesh analysis is easiest to describe if it is
assumed that sources generate explicit branches in the graph representing the discretized
problem. Kirchoft’s voltage law, which implies that the sum of branch voltages around

each mesh in the network must be zero, is represented by
MV, =V, (3.34)

where V; is the vector of voltages across each branch except for the source branches, V,
is the mostly zero vector of source branch voltages, and M € R™*® is the mesh matrix,
where m = ' —n +1 is the number of meshes and ' is the number of filaments branches
plus the number of source branches.

The relationship between branch currents and branch voltages given in (3.21) still

holds, and the mesh currents, that is, the currents around each mesh loop, satisfy
M'I, = I, (3.35)

where I, € C™ is the vector of mesh currents. Note that each of the entries in the
terminal current vector, I; from (1.1), will be identically equal to some entry in I,.
And similarly, each of the entries in the terminal voltage vector, V;, will correspond to
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Figure 3-7: One conductor, (a) as piecewise-straight sections, (b) discretized into fila-
ments, (c) modeled as a circuit.

some entry in V,. Fig. 3-7 illustrates the definitions of the above quantities for a single
conductor example.
Combining (3.35) with (3.34) and (3.21) yields

MZM', =V, (3.36)

The matrix MZM! is easily constructed directly [10]. To compute the i** column
of the reduced admittance matrix, Y;, solve (3.36) with a V, whose only nonzero entry

corresponds to V;, and then exiract the entries of I,; associated with the source branches.

3.2.2 Using an iterative solver

The standard approach to solving the complex linear system in (3.36) is Gaussian
elimination, but the cost is m? operations. For this reason, inductance extraction of
packages requiring more than a few thousand filaments is considered computationally
intractable. To improve the situation, consider using a conjugate-residual style iterative
method like GMRES [58]. Such methods have the general form given in Algorithm 3.2.1.

When applying the GMRES algorithm to solving (3.36), the cost of each iteration of
the GMRES algorithm is at least order m? operations. This follows from the fact that
evaluating »* implies computing a matrix-vector product, where in this case the matrix
is MZM" and is dense. Note also that forming MZM"* explicitly requires order m?
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Algorithm 8.2.1 (GMRES Algorithm for Az = b).

guess z°
for k=0,1,... until converged {
Compute the error, rF =b— Azt
Find #**! to minimize rF+!
based on &' and **, i =0,...,k

50 100 150 200 250 300 350 400 450 500
Number of Iterations

Figure 3-8: Convergence history of (A), the Sparse Tableau Formulation, and (B), the
Mesh Formulation for a coarse discretization of the printed circuit board example of
Figure 3-16.

storage. It is possible to approximately compute MZM*Ik in order b operations using
a hierarchical multipole algorithm for electrostatic analysis {20]. Such algorithms also
avoid explicitly forming MZM"*, and so reduce the memory required to order b. Using
the multipole approach for inductance is described in [36].

Regardless of the approach used for matrix-vector products, the iterative approach
will not be advantageous unless the number of iterations to convergence is small. The
convergence behavior of applying GMRES to (3.36) and (3.33) for an example of dimen-
sion 751 is shown in Figure 3-8. The results indicate both that convergence is slow and
that the mesh formulation does not have significant advantages over the nodal form.

However, note that the GMRES algorithm can be directly applied to solving (3.36)
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because the matrix M ZM:" is easily constructed explicitly. This is not the case for the
nodal formulation, (3.32), as either the Z matrix must first be inverted or the sparse
tableau form in (3.33) must be used. We shall see that the sparse tableau form is
disadvantageous because it is a much larger system of equations and it is difficult to

accelerate iterative solution as described in Section 3.3.

3.2.3 Understanding Convergence Rates

The rate of convergence of GMRES for solving Az = b can be related to the eigen-
spectrum of the matrix A. From this fact, the convergence properties of nodal analysis
versus mesh analysis can be compared.

To begin, we note the following connections between matrices with real eigenvalues

and convergence discussed in general in [65] and for inductance in [36]:

o If the eigenvalues are spread over a large irterval, convergence will be slow, while

clustered eigenvalues lead to faster convergence.

e Matrices with eigenspectra which have both negative and positive clusters of eigen-
values will converge slower than those with eigenvalues on only one side of the

origin.
e Eigenvaliues close to the origin slow convergence.

Consider now the spectra resulting from the nodal formulation, (3.33), and the mesh
formulation, (3.36), for the printed circuit board example described later in Fig. 3-16.
The printed circuit board is two thin metal sheets sandwiching 255 small copper lines.

For inductance extraction problems, the high frequency (w — oo) limit gives the
worst case convergence so consider a coarse discretization of this structure yielding a
751 x 751 M LM'* matrix with a condition number & ~ 10%. The condition number gives

a measure of the spread of the eigenvalues of a matrix and is defined as

Amaz(A)

w(A4) = [[4]l2 A7 = 3=

(3.37)
and Ayqz(A) and Apin(A) are the maximum and minimum eigenvalues of A, respectively.

Clearly, MLM?® is always positive definite since L is positive definite and is normal
since L is symmetric. Also, from the spectrum of M LM® shown in Fig. 3-9, one can
see that, while most of the eigenvalues are in the interval [1071°,107], the remaining

isolated eigenvalues are located toward the origin in the interval [10713,1071°]. Such
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Figure 3-9: Eigenvalue spectrum of MLM* for a coarse discretization of the printed
circuit board example

small eigenvalues are not easily cancelled with the polynomial produced by the Krylov-
subspace methods, so they will significantly slow convergence.
The high frequency limit for (3.33) can be written as

L A
§ = [A 0 ] (3.38)

where S is now a real symmetric matrix. The eigenspectrum, A(S), is shown in Fig. 3-10.
While there are fewer eigenvalues close to zero, a large portion of eigenvalues are negative.
Note that for S, since each entry in L ~ 10, the values of L were scaled by 5x10® for
the spectrum in Fig. 3-10 and the GMRES comparison of Fig. 3-8 described below.
Both MLM! and S have an eigenstructure which does not yield fast convergence
with GMRES as was shown in Fig. 3-8. In this case, the mesh formulation, M LM?*,
has no advantage over the nodal formulation, S. Significant improvement is possible,
however, through preconditioning which involves solving an equivalent system with a
more favorable eigenstructure. Preconditioning M L M* and difficulties in preconditioning

S are discussed in Section 3.3.

3.3 Accelerating Iteration Convergence

In Section 3.2.3 it was observed that the GMRES iterative method converged slowly
when applied to (3.36). In general, however, the GMRES iterative method applied to
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Figure 3-10: Eigenvalue spectrum of S, the sparse tableau formulation, for a coarse
discretization of the printed circuit board example
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Figure 3-11: The steps leading to the third row of the preconditioner P (“x” denotes a
non-zero element). Note that for illustration, Ps is drawn as a block along the diagonal.

solving (3.36) can be significantly accelerated by preconditioning if there is an easily
computed good approximation to the inverse of MZM*. We denote the approximation
to (MZM*)~! by P, in which case preconditioning the GMRES algorithm is equivalent
to using GMRES to solve

(MZMY)Pz =V, (3.39)

for the unknown vector . The mesh currents are then computed with I, = Pz. Clearly,
if P is precisely (M ZM")™!, then (3.39) is trivial to solve, but then P will be very ex-

pensive to compute. This section highlights work to develop preconditioners for M ZM".

3.3.1 Local Inversion

An easily computed good approximation to (M ZM*®)~! can be constructed by noting
that the most tightly coupled meshes are ones which are physically close. To exploit
this observation, for each mesh 7, the submatrix of MZM* corresponding to all meshes
near mesh i is inverted directly. Then, the row of the inverted submatrix associated with
mesh ¢ becomes the i** row of P. This is illustrated in Fig. 3-11, where the submatrix is
drawn as a block along the diagonal for illustration. This idea for preconditioning was
shown to work well for capacitance extraction in [47) and in another context in [68]). We
refer to this preconditioner as a “local-inversion” preconditioner, because it is formed by
inverting physically localized problems.

For inductance problems, this preconditioner has been shown to work well for pin-
connect and other similar structures for which most of the meshes are small and thus
what is ‘local’ is obvious. The fact that most of the meshes are small can be observed
from Fig. 3-7 by noticing that most of the meshes, such as those associated with I3,
In6, and 9, are small and consist of only two physically close filaments. Comparatively,

there are relatively few large meshes, such as 10, each which result from the presence of
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Figure 3-12: Two ground plane meshes due to e.ternal sources. One source is connected
between points A and B and the other between C and D.

an external source and include many filaments. The many filaments which are included
in each external source mesh span much of the physical problem domain and therefore
much of the problem can be physically close to these large meshes. For this reason, the
large meshes associated with sources cannot be included in the preconditioner, otherwise
excessively large subproblems would be inverted directly.

The discretization of Figure 3-7 is representative of one pin of a pin-connect type
structure as is shown in Figure 3-15. Since there are relatively few large meshes in a pin-
connect structure and they are physically separate (only one per pin), not including the
large meshes when forming the preconditioner does not significantly slow convergence.

For large ground-plane problems, with possibly hundreds of external sources, the
performance of local-inversion is severely degraded. As for pin-connects, many of the
meshes are small; in this case, most meshes include four filaments (See Fig. 3-3). Each
external source, however, requires the formation of a large mesh traversing the ground
plane between its two contact points as shown in Fig. 3-12. If there are hundreds of these
meshes, in which case many of them will be physically close or even possibly partially

overlapping, local-inversion becomes ineffective since it cannot include large meshes.

3.3.2 Sparsified Preconditioners

Other approaches to preconditioning which might help account for large mesh inter-

actions involve somehow approximately factoring M ZM* or directly factoring an approx-
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imation to MZM!. The idea is then to first compute a sparse factorization
P'=LU (3.40)

and then at each iteration, Pz will be cumputed by solving LUy = z with forward and
backward substitution.

Approximately factoring MZM" using an approach like incomplete LU factoriza-
tion [59)] is ineffective however, because the diagonals of M Z M* are not necessarily greater
than the sum of the off-diagonals and therefore ignored terms can become more signifi-
cant. Another approach is to “sparsify” M ZM", possibly based on the sparsity pattern
of MRM?, and then directly factor the “sparsified” matrix to construct a preconditioner.

Fig. 3-13 shows the results of applying the local-inversion preconditioner, the sparsity-
based preconditioner, plus an example of the sparsified-L class of preconditioners to be
discussed in the next section. The M ZM*® matrix is 751 X 751 and corresponds to the
printed-circuit board example of Fig. 3-16 in the high frequency limit, that is, as w — oo.
The high frequency case is chosen because it has been found to demonstrate the worst
case convergence for the sparsified preconditioners, as discussed in the next section. A
point worth noting here is that for these sparsified preconditioners in the low frequency
limit, w — 0, we have that P~', MZM* — MRM" and therefore (MZM")P — I. The
local-inversion preconditioner shows approximately the same convergence behavior at low
and high frequency.

From Fig. 3-13 it is apparent that local-inversion and sparsity-based preconditioning
only slightly accelerated convergence over no preconditioning. Note that this example

includes approximately 300 large meshes.

3.3.3 Positive Definite Sparsifications of L

To develop a better preconditioner, instead of sparsifying M ZM* as described above,
consider sparsifying the partial inductance matrix, L, and then generating the precondi-
tioner by directly factoring the sparse result, P~! = M(R + jwL,)M*, where L, is the
sparsified partial inductance matrix. We call this class of preconditioners “sparsified-L.”
Note that for the low frequency limit, the whole problem would be factored exactly since
R is diagonal. This section shows that this type of preconditioner is effective for a large
class of problems and that L, must be chosen symmetric positive definite for this type
of preconditioner to be effective.

To motivate the discussion of this section, consider the following two choices for L,:

the sparsest approach to choosing L, would be to take the diagonal of L, or consider
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Figure 3-13: Convergence of GMRES applied to PCB example with no precondition-
ing (A), sparsity-based preconditioning (B), local-inversion preconditioning (C), and
sparsified-L preconditioning using the diagonal of L (D)

sparsifying L based on the magnitude of the elements by zeroing all terms except those
that satisfy L?j > ¢|Li;Ljj|, for some e. This threshold sparsification approach produces
an L, which is not necessarily positive definite. Fig. 3-14 compares the threshold sparsifi-
cation to preconditioning choosing L, as the diagonal of L. Clearly, choosing L, to be the
diagonal of L produced the better preconditioner, yet many more terms were included in
L, for the threshold sparsification.

The high frequency limit

For inductance extraction problems, the high frequency (w -+ oo) limit gives the worst
case convergence, Asw — 00, the preconditioned matrix reduces to (M LM*) (M L,M*)"*.
In what follows, we present results tc show that L, should be chosen to be symmetric
positive definite for this sparsified-L class of preconditioners to be effective. For proofs,
see [36].

Theorem 3.3.1. If L, is symmetric positive definite, then the preconditioned system,
(MLM*)(ML,M")"! has positive eigenvalues.

Theorem 3.3.1 leads to the result that the condition number of preconditioned system
in the high frequency limit is bounded independent of the mesh matrix, M.

Theorem 3.3.2. If L, is positive definite, then
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Figure 3-14: Convergence of GMRES applied to PCB example with threshold precondi-
tioning for ¢ = 10! (A), and diagonal-cf-L preconditioning (B)

k[(MLM*)(ML,M*)™"] < (LL;?)

where, for a matrix with positive eigenvalues A, the condition number £(A) is defined
as £(A) = Max(A)/Mmin(A) and Amax(A) , Amin(A) are the maximum and minimum
eigenvalues, respectively.

The above two theorems lead to the conclusion that one should focus on choosing
positive definite L, matrices. As described above, the sparsest approach would be to
take the diagonal of L. Another approach is to divide physical space into disjoint regions
and then to include in L, only the principal submatrices of L corresponding to the groups
of filaments contained inside each region. Thus, a filament will be included in exactly
one region and by appropriately numbering the branches, L, can be written as a block
diagonal matrix. An immediate approach is for each region, or block, to consist of the set
of parallel filaments in a single section of conductor. Each block will then be no larger
than the number of filaments in a section. For the simple one conductor example shown
in Fig. 3-7, L, would consist of three 4 x 4 blocks. Another choice is to uniformly divide
space into cubes and have each block consists of filaments within a cube. This cube-block
method is easy to impiement since the cube information is needed for implementation of
the multipole algorithm. Note also that the cube-block preconditioner is denser than the
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section-block or diagonal-of-L preconditioners.
Theorem 8.3.3. L, for the cube-block and section-block preconditioners is positive
definite.

Proof. The set of eigenvalues of a block diagonal matrix is the union of the sets of
eigenvalues from each block. Since L is symmetric positive definite, so are all of its
principal submatrices (See, for instance [26], p. 397). Given the block diagonals of L,

are principal submatrices of L, the theorem is proved. a

Performance of Sparsified-L Preconditioners

To compare the relative merits of the diagonal-of-L, cube-block, and section-block
preconditioners, consider the two industrial examples in Figs. 3-15 and 3-16. Fig. 3-15 is
thirty-five pins of a 68-pin cerquad package and Fig. 3-16 is a portion of a printed circuit
board (PCB) that would be placed underneath a Pin-Grid-Array package. The PCB
example consists of two resistive reference planes sandwiching 255 copper lines. Each
plane in the PCB has 53 external contacts not shown in the figure. For this experiment,
the cerquad package was discretized into 3488 filaments which corresponds to 3305 meshes
and each reference plane in the PCB was discretized into a 60 x 60 grid of meshes giving
a total 7501 meshes including the copper lines. The GMRES error in the solution at
high frequency as a function of iteration is plotted in Fig. 3-17 for the cerquad example,
and in Fig. 3-18 for the PCB example. Note that the section-block and diagonal-of-L
preconditioners are identical for the PCB cxample since there is only one filament per
conductor section. As the figures clearly show, the block diagonal preconditioners are
an improvement over the diagonal-of-L and local-inversion preconditioners. It is worth
noting that for the cerquad package example, the number of non-zero elements in the
factored cube-block preconditioner is 43 times that for the diagonal-of-L preconditioner,
possibly prohibiting its use for larger problems. Also, for the pin-connect example, unlike
the PCB example, local-inversion preconditioning did better than diagonal-of-L. This
behavior can be expected since there are only 35 large meshes which must be excluded

from the local-inversion preconditioner.

3.3.4 Difficulties Preconditioning the Nodal Formulation

Preconditioning the S matrix of (3.38) is very difficult since it contains equations of
two different types: those resulting from V, = Z1I, and those from current conservation,

Al, = I,. While it is possible to approximate the inverse of Z, it is difficult to account
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Figure 3-15: Half of a cerquad package. Thirty-five pins shown.

Figure 3-16: A portion of a printed circuit board directly underneath a PGA package.
Two resistive reference planes sandwiching 255 copper lines. Only the outline of the
planes is drawn.
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Figure 3-17: Convergence of GMRES applied to the cerquad example with cube-block
preconditioning (A), section-block preconditioning (B), diagonal-of-L preconditioning
(C), and local inversion preconditioning (D).
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Figure 3-18: Convergence of GMRES applied to the PCB example with cube-block pre-
condit’oning (A), and diagonal-of-L preconditioning (B), and local-inversion precondi-
tioning (C).
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for the effect of the A matrix. In some sense, the A matrix and its position in (3.33) are
in fact responsible for the many negative eigenvalues. As the following theorems show,
for the ideal case of L = I, where I is the identity, S has exactly n negative eigenvalues,
where n is the number of rows of A. Note that L = [ corresponds to the low frequency
limit of a system of conductors discretized into identical filaments.
I B

Theorem 3.3.4. Let C = A 0 and assume AB is nonsingular and diagonaliz-

able, where I is the bxb identity matrix, B € R%", A € R"* and n < b.

Then b — n eigenvalues of C are one, and the other 2n eigenvalues of C satisfy
A(A = 1) = X where X is an eigenvalue of AB.

Proof. See [36] a

Theorem 3.3.5. The matrix S with Z = I has n negative eigenvalues and b positive

eigenvalues.

Proof. Since AA' is positive definite, Thm 3.3.4 gives that the n negative eigenvalues

are given by

A= (1-VI+4N)/2. (3.41)

where X’ € A(AA"). Similarly, another n are positive, and the remaining b — n are equal

to one. a

Even if Z=! could be computed exactly, preconditioning using only Z-! as in

L 0
P=[ ; IJ (3.42)

for the high frequency limit, does not improve the performance of GMRES in part due
to the fact that there are still n negative eigenvalues. This can be shown by a similar
argument as in Theorem 3.3.5 with

t
| | 15

Note that AL~ A! is positive definite since I is positive definite.
This preconditioned matrix, in fact, does not show much improvement in convergence

rate over the unpreconditioned system as shown in Fig. 3-19.
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Figure 3-19: Convergence history for the Sparse Tableau Formulation using L~! as a
preconditioner

3.4 Algorithm Results

As an example of the utility of frequency dependent inductance extraction possible
with FastHenry, consider the two cases of computing the mutual inductance between a
pair of PC board traces over a resistive ground plane, as shown in Fig. 3-20, and the same
pair of traces over a divided ground plane, as in Fig. 3-21. At the near end of each trace,
a source is connected from each trace to the plane below. At the far end, the traces are
shorted to the plane so that each trace has its return paths through the ground plane.
For the divided plane case, the two portions of the plane are electrically connected with
short resistive ‘tethers’ toward the outer edges as shown. The traces are 8 mils wide, 1
mil thick, 8 mils above the 1 mil thick ground plane, and their center to center distance
is 32 mils.

If ore of the sources is set to one volt and the other to zero current will flow down
the excited trace and return through the plane. For the solid plane case, the current
in the plane with a DC source produces a current distribution pattern which spreads
to fill the width of the plane. Similarly in the divided plane case, the current spreads
throughout most of the plane, but narrows as it crosses the tethers. The situation at a
high frequency is quite different. For the solid plane, the ground plane return current is

concentrated directly underneath the trace, but for the divided plane the current leaves
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=

Figure 3-20: Two Traces over a Solid Ground Plane. The return path for the traces is
through the plane. Traces are widened for illustration.

Figure 3-21: Two Traces over a Divided Ground Plane. The return path for the traces
is through the plane. The divided portions are connected together toward the edges as
shown. Traces are widened for illustration.
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Figure 3-22: Current Distribution in Solid Ground Plane at DC and high frequency

the path underneath the trace to cross the tethers (See Figs. 3-22 and 3-23).

This difference has a marked effect on the mutual inductance between the traces as the
frequency rises. For the solid plane, as the frequency rises, the current gathers underneath
the trace and the mutual inductance drops by two orders of magnitude, however for the

divided plane, little decrease is observed with frequency (See Fig. 3-24).

To demonstrate the computational efficiency of the multipole-accelerated code we
call FastHenry, the coarse discretization of the ground plane of the example shown in
Fig. 3-20 was successively refined. As the discretization of the plane is refined, the size
of the problem will grow quickly, making the memory and CPU time advantage of the
multipole-accelerated, preconditioned GMRES algorithm apparent (see Figs. 3-25 and
3-26). As the graphs clearly indicate, the cost of direct factorization grows like m?, the
cost of explicit GMRES grows as m?, but the cost of multipole-accelerated GMRES grows
only linearly with m. In addition, the memory requirement for multipole-accelerated
GMRES algorithm grows linearly with m, but grows like m? for either explicit GMRES or
direct factorization. In particular, for a 12,802 mesh problem, the multipole accelerated

algorithm is more than two orders of magnitude faster than direct factorization, and
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Figure 3-25: Comparison of the CPU time to compute the reduced inductance matrix
for two traces over a solid plane using direct factorization, GMRES, and GMRES with
with multipole acceleration.
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Figure 3-26: Comparison of the memory required using explicit matrix-vector products
and using the multipole algorithm.

uses an order of magnitude less time and memory than explicit GMRES. Note that the
dotted lines in Figs. 3-25 and 3-26 indicate extrapolated values due to excessive memory
requirements.

A significantly more complex problem and one that uses the sparsified-L precondi-

tioner is the high frequency analysis of a portion of a PCB described previously and shown
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7

Precond. Size of Precond. Total Total number | Average # of

type MZM* | factor time | execution time | of iterations | iters. per solve
diagonal-L | 751x751 0.26 450.46 729 41
cube-block | 751x751 6.07 254.35 374 21
diagonal-L | 1099x1099 0.81 1042.57 760 42
cube-block | 1099x1099 11.86 755.12 518 29
diagonal-L | 2101x2101 3.43 1901.58 760 42
cube-block | 2101x2101 44.91 1381.15 502 28
diagonal-L | 4351x4351 15.87 5522.79 842 47
cube-block | 4351x4351 174.13 4609.96 641 36
diagonal-L | 7501x7501 46.24 8894.92 883 49
cube-block | 7501x7501 452.11 7309.18 635 35

Table 3-1: Execution times and iteration counts for diagonal-of-L and cube-block pre-
conditioning of the printed circuit board example. Times are in CPU secouds for the

DEC AXP3000/500.

in Fig. 3-16. To properly model the current flow in the two reference planes surrounding
the copper lines, the planes must be finely discretized. Here again, as the discretization is
refined, the cost of direct factorization grows like m?, the cost of explicit GMRES grows
as m?, but the cost of multipole-accelerated GMRES grows only linearly with m as shown
in Fig. 3-27. For this PCB example, the associated impedance matrix is 18x18, while the
pair of traces over plane example has only a 2x2 impedance matrix. Thus, nine times as
many GMRES solutions are required to compute the PCB example’s impedance matrix.
Even so, for a 10,000 mesh problem, the multipole-accelerated GMRES algorithm is still
over an order of magnitude faster in computation time.

From Table 3-1 it can be observed that the time to compute the preconditioners is
negligible compared to the total execution time, although for larger problems, the time
required to compute the cube-block preconditioner may become significant. Also, the
required number of iterations for either of the preconditioners does not grow rapidly

with problem size.
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Figure 3-27: Comparison of the CPU time to compute the reduced inductance matrix for
the PCB package using direct factorization, GMRES, and GMRES with with multipole
acceleration.



Extensions for the Inductance
Problem

While the methods reviewed in the previous chapter allow the analysis of geometries
with tens of thousands of elements, there is still a need for more. As geometries become
more complex, or higher accuracy is needed, the designer desires faster solvers which can
analyze larger problems.

Geometries with large planar structures require a uniform discretization which can
generate systems with an excessively large number of elements. A method of nonuni-
formly discretizing planar structures becomes necessary and Section 4.1 describes an
approach which allows for hierarchical descriptions and modification while stil] enforcing
current conservation.

Fast convergence of the iterative solver can be accomplished through preconditioning
as was described in Chapter 3. The preconditioning technique chosen can have different
performance for different classes of problems and improvement is always of interest. In

Section 4.2 we explore an alternate preconditioning technique based on the work of [38].

4.1 Nonuniform planar discretization

The inductance methods of the previous chapter work particularly well for problems
with a large number of elements. However, problems of many times the size or complexity
may even exceed the ability of such methods. The next course is to consider ways to

reduce the number of elements a priori without affecting the accuracy of the solution.

For even simple problems such as a. single trace over a large finite conductivity plane,
the number of elements using the discretization in Figure 3-3 can be in the thousands in

order to resolve the current distribution under the trace at high frequencies as shown in

79
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Figure 4-1: On the left is part of the discretization of a plane with the segments drawn
with half their actual width. The arrows mark the direction of current for the filament.
The shaded area defines a cell with the shaded area on the right figure showing the cell
when filaments are drawn at their actual width

Figure 3-22. Because the current crowding underneath the trace is about the width of
the trace, the discretization must be fine to capture the current distribution accurately.
Since the discretizations supported in the previous section must be uniform, then the
discretization must be fine everywhere. To avoid this excess, this section develops a
method of nonuniformly discretizing a plane for the circuit-like discretization scheme
of the previous section. First we consider a standard approach which is shown to be

inadequate.

4.1.1 A standard approach

The interconnected element discretization does not lend itself immediately to an ob-
vious approach for refinement. For instance, discretization schemes for standard finite
element methods have a simple concept of a nonoverlapping element, and it is possible to
divide the element into multiple elements to accomplish refinement. Here, that is not the
case, and we must also enforce current conservation. A common approach when a conser-
vation law as in 3.6 must be enforced is for the discretization to consist of nonoverlapping
“cells” or control-volumes whose net flux through the cell surface is zero [1]. Refining the
discretization involves breaking these cells into subcells. The PEEC discretization can
be cast into such an interpretation by viewing each node in Figure 3-3 as the center of a
cell and the midpoints of each of the node’s filaments as center of a cell boundary edge
as shown in Figure 4-1. The current which crosses any cell boundary is only that of the
filament it bisects, and since current conservation is enforced at the node, it is enforced
also as the flux through the cell.

Then, dividing each cell into four subcells would generate a discretization as shown
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Figure 4-2: A set of subcells

in Figure 4-2. Such a discretization has the advantage that the cells are disjoint so local
refinement is straightforward. It has the disadvantage, however, in that a new condition
must be enforced at the cell boundary. When cells of different levels of discretization share
a cell boundary, the sum of the currents on both sides raust be equal. From Figure 4-3a,
this amounts to requiring I, = Iy + I.. But by only this boundary condition, current
traveling across the boundary is free to jump in the z-direction. If the filaments were only
modeling resistance, this is equivalent to the discretization having a zero resistance path
in the x-direction, which is unphysical. As an example, Figure 4-3b shows that in going
from a fine to coarse discretization and back again, there is a path with zero resistance
in the z-direction. This path has a slope of 10/3 which means this discretization has
an inherent four percent error. Since the goal of a nonuniform discretization is to allow
coarser discretizations without significantly impacting accuracy, this inherent error is

unacceptable.

4.1.2 A different “cell” approach

Instead of the above, consider letting a cell simply be the squares bounded by four
filaments of Figure 3-3. Drawing each filament with zero width gives Figure 4-4. With
this line segment interpretation of cells, refinement is just dividing a cell into subcells.
Any new line segment drawn to divide a cell becomes a new segment and any intersection
of line segments is a new node at which current conservation is enforced. See Figure 4-5.

Since the line segments are no longer evenly spaced, the width of the corresponding
filaments is determined by the distance to the next segment of the same direction. The
cells and corresponding filaments for a sample node are shown in Figure 4-6. Note that
as one travels from coarse to fine discretization, current cannot jump laterally as before.

With this scheme it is straightforward to generate the filaments once the distance to

the closest adjacent line segment is known. Determining such information requires first
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Figure 4-5: Dividing into subcells

Figure 4-6: The three filaments which meet a node

a method of representing the discretization. To allow for arbitrarily fine discretizations,
a hierarchical representation of the discretization is necessary. An example binary rep-
resentation is shown in Figure 4-7. In the figure, the entire plane is the root cell, and
dividing it in half generates two children. Dividing each of those gives grandchildren,
etc.. With such a representation, it is possible to traverse the tree to find the necessary

information to build the filaments.

4,1.3 Results

In this section we show results demonstrating the benefits of a nonuniform discretiza-
tion for two different types of problems. Since resistance and inductance computation are
intertwined, we first look at computing the resistance between two equipotential contacts
to give an idea of the discretization that would be necessary to accurately capture the
resistive part of the magnetoquasistatic calculation. Second, we look at an appropri-
ate discretization to capture both the inductance and resistance of a trace over a finite
conductivity ground plane.

Consider calculating the resistance between two equipotential circular contacts in a
thin plane as shown in Figure 4-8. For a thin plane of infinite extent in z and y, the
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Figure 4-7: The hierarchy of cells defining a discretization

Figure 4-8: Two contacts on a thin plane
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current distribution at DC does not vary in the z-direction and this problem is a matter
of solving a two-dimensional Laplace equation. If d is large compared to r, the resistance

between two well separated cylindrical contacts can be shown to be

R= 1 In (d—r)
ot T

where t is the thickness of the plane and o is the conductivity. From the form of this

equation it is clear that for small radii, the radius must be modeled accurately.

For 7 =0.01 m,d = v2m and 0 = 5.8 x 10’Z, R is calculated as R = 2.71 x 10702,
Using a uniform discretization on a 3m x 3m plane, 70,000 elements were required to
give 8% error. To use a nonuniform discretization, a method of successive refinement
which improves results is needed. Using a simple approach of choosing the cell size such
that the net current in all the filaments is roughly constant, a discretization similar to
that in 4-9 was used to generate an 8000 element problem which resulted in less than 2%
error. A nonuniform discretization is thus feasible to reduce the memory and increase
the accuracy of resistive part of the magnetoquasistatic calculations.

Next, consider computing the loop inductance of a trace over a plane as in Figure 3-20.
A 26 micron wide, 2 mm trace, which is 8 microns above a thick substrate is shorted
to the plane on one end and driven by a source at the other. The plane is 3mm by
dmm and is discretized into 3 filaments in the thickness to capture skin effects. Using
the discretization in zy shown in Figure 4-9 generated a 4884 filament problem which
consumed 50 MB of memory. This was solved in less than 6 minutes on a IBM RS-6000-
3BT computer compared to 188 MB and 65 minutes using a commercial finite-element
solver. The commercial solver did not account for skin effects and the results were within

1% of one another.

4.1.4 Future work

This section developed a method of nonuniformly discretizing planar structures for
inductance computation to save time and memory. One can easily specify a discretiza-
tion, however generating an appropriate discretization is a matter which requires further
investigation. Underneath a trace and near contacts a finer discretization is needed but
it is difficult to determine the error incurred at a particular refinement level. Methods of
adaptive grid refinement are necessary. For capturing the induced currents of the trace
correctly, the adaptive approach of [63] for the capacitance problem could be applied to
the inducltance probiem. The current distribution near contacts is close to that of the

resistance problem. In fact, without inductance the uniform element discretization of
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Figure 4-9: The discretization of a plane with a single trace overtop. Refinement produced
where trace contacts plane and also in the y-direction underneath the trace.
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Figure 4-10: Couplings captured by block preconditioner. Two cubes shown as dashed
squares. Coupling between filaments in different blocks not included in preconditioner

the plane gives exactly the finite difference grid for the pure resistance problem, ie. the
Laplace equation. Methods of adaptive refinement for finite difference methods for the

Laplace equation may be applicable here.

4.2 The Shell Preconditioner

As discussed in Chapter 3, iterative algorithms used to solve the dense systems of
equations resulting from the integral equations of magnetoquasistatic analysis rely on
preconditioning to insure fast convergence. The preconditioning matrix must be a good
approximation to the inverse of the original system and be inexpensive to compute.

Various approaches to preconditioning for magnetoquasistatic analysis have been ex-
plored in Section 3.3 which show that since the original system is positive definite, so must
be the preconditioner. The dominant technique presented involves deriving a positive def-
inite sparsification of the partial inductance matrix. The simplest approach to such a
sparsification is to choose a block diagonal sparsification based on a disjoint covering of
space. In Section 3.3, the set of filaments in a cube formed by the multipole algorithm
are chosen to form a block. Filaments contained in a block will have their coupling terms
included in the preconditioner. Since these are probably the strongest couplings, the
preconditioner will capture the dominant interactions. Such a choice, however, mis<es
couplings which are near the boundary of the cubes as shown in Figure 4-10

A method for stably approximating the partial inductance matrix to any degree of

sparsification but which captures ail the nearby coupling was proposed by [38]. The
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Figure 4-11: Coupling captured by shells
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Figure 4-12: Charge +q in center and -q on shell

central idea of this approach is to assume that the partial element conductor currents
return at some finite and constant radius from their origin rather than from infinity.
The coupling inductances within the “shells” of return current are shifted, while those
outside become zero. This approach will capture all the nearby coupling within the shell
of radius ro as shown in Figure 4-11.

It is easiest to understand the shell idea from a charge point of view. Consider a
charge +¢ at the origin and infinity as the zero potential reference. With infinity as the
zero potential, there is a charge of —¢ at infinity. Consider moving this —¢q charge to a
spherical shell of radius ro from charge +¢ as shown in Figure 4-12. From Gauss’ Law,
the potential outside the shell is zero, and inside it is shifted by the constant ;—1—.

The same idea can be applied to an incremental length of current filament carrying
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Figure 4-13: Current i in center and —i on shell. Reprinted with permission of Byron
Krauter.

current 7 as shown in Figure 4-13. Now, a shell of current in the opposite vector direction

surrounds the incremental filament and the vector potential inside the shell is shifted by

doi
47ro

; and j separated by more than ro and thus L is now a sparse approximation to the

. If this vector potential is used in forming L of (3.18), then L;; = 0 for filaments

original.

It is shown in [38] that if ro is large enough to contain the entire geometry, then
the shifted partial inductance matrix would give identical results to the original matrix.
In {38], if it can be assumed that the coupling farther than some distance, ro, is negligible,
then using this distance as a radius for the shell will give a sparse, positive definite
approximation to the partial inductance matrix which can be used in place of the original
dense partial inductance matrix.

For the purposes of this work, we do not wish to use this approximation as a replace-
ment for the criginal partial inductance matrix, but instead choose an ro to form a good,
sparse preconditioner. By choosing the radius small enough, the resulting matrix will
be sparse enough that this shell approach could be used as a preconditioner. Conductor
segments which are only partially outside the shell can be treated approximately.

Figure 4-14 and Table 4-1 compare using block-diagonal preconditioners to the shell
preconditioner for various radii. Clearly, the shell preconditioner converges in many
fewer iterations, however the overall execution speed up is not as dramatic since the
preconditioner is more dense than the block-diagonal matrix.

In conclusion, in the above implementation, there is no advantage to the new shell
preconditioner. However, even though the shell preconditioner does not offer great ad-
vantages for the problem shown here, it does indicate a more robust method of capturing
all the nearby coupling. As future work, it may then be possible to produce a supe-

rior preconditioner for the small radii preconditioners by more accurately treating the
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Convergence Rates with Various Preconditioners

1

- Diagofial block

- Cube-block ...
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Norm of the Residual

20 30 40
Number of Iterations

Figure 4-14: Results of using various preconditioners to solve for the admittance of
a coarse discretization of a 35 pin package at a high frequency. Cube-block refers to
dividing space into cubes whose side lengths are roughly 1/8th of the package width.
The radii are relative to the cube side length.

Preconditioner avg. # iters | non-zeros | total CPU
type per conductor | in precond time

Block | diagonal-of-L 43.9 4613 1187
Diagonal | cube-block 22.1 101671 729
r=0.25 18.3 24829 590

Shell |r=0.5 13.5 184295 565
Current | r = 0.75 11.1 326579 595
r=1.0 10 432121 656

Table 4-1: Results using various preconditioners for computing the 35 x 35 admittance
matrix

conductor segments that are only partially outside the current shells.



Model Order Reduction for the
Inductance Problem

In Chapter 2 it was observed that a simple first order model, R+sL, where R and L are
single lumped values, is only adequate to capture the behavior of the interconnect over a
limited frequency range. To review, the example in Figure 2-10 showed a slight deviation
from a single lumped model before the first resonance, but later in Figure 3-24 we saw that
the frequency dependence can lead to an order of magnitude deviation in the inductance.
For such large deviations in digital design, perhaps one might chocse a lumped model
which uses the smallest inductance over the frequency range of interest. This however
would underestimate the inductive coupling in other regions. But a design which uses
the worst case, or largest inductance, would be more conservative than necessary.

We therefore desire to derive models which are valid over a broader range but are still
of low order for efficient incorporation in a circuit simulator. While the model reduction
problem is well known in system theory, we require a method which is computation-
ally tractable for very high order systems and also numerically robust. To this end we
investigate using a moment-matching variant of an eigenvalue computation technique
known as Arnoldi’s method to generate low order models for the inductance problem.
Much of what is developed here is also highly relevant to the developments for the full

electromagnetoquasistatic case of Chapter 6.
5.1 Background for Coupled Interconnect-Circuit

Simulation

The end use of interconnect models is for simulation with circuit devices. Since these

devices are generally nonlinear, simulation must be performed in the time domain. The
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inductance methods described in the previous sections, however, have computed the ad-
mittance at individual frequency points only. The most straightforward approach to
including general frequency-domain data in a circuit simulator is to calculate the associ-
ated time-domain impulse response using an inverse fast Fourier transform [60]. Then,
the response of the interconnect at any given time can be determined by convolving the
impulse response with an excitation waveform. Such an approach is too computationally
expensive for use in general circuit simulation, as it requires that at every simulator time
step, the impulse response be convolved with the entire computed excitation waveform.
An alternative approach is to approximate the frequency-domain representation with a
rational function, in which case the associated convolution can be accelerated using a
recursive algorithm [41].

Both these approaches suffer from requiring the frequency domain data be computed
at many discrete frequency points. This can be too computationally expensive since each
point requires solving the mesh impedance matrix, MZM7 in (3.36).

Instead, we would like to go directly from (3.36) to a low order time domain descrip-

tion. The single lumped R, L € R description of Figure 2-4 is of course a first order

model,
(R+sLl)i=v
which can be written in the time-domain as
di .
Lz-t- =—R:+v.

We wish to derive a system of equations of the form

c% =-RI+V (5.1)

where now £,R € RF*¥ and this system captures the frequency dependence of the
inductance and resistance. Since circuit simulators such as SPICE [49] solve nonlinear
systems of ordinary differential equations, systems of the form (5.1) fit naturally into
these solvers.

An obvious choice for £ and R is to use (3.36) which gives

2MLMNI, = —(MRM")I, + NV,

5.2
I, = NTI,. (5:2)

where Z has been expanded to R+ jwL, jw replaced by %, and V; and I, re-introduced
as the terminal quantities from (1.1) where I, = NTIm, V,= NV, with N € R™*!as an

easily constructed terminal incidence matrix. Such an approach is equivalent to placing
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Figure 5-1: Connection of Model Reduction Methods to Inductance

the entire PEEC RL circuit into the circuit simulator as is done in [55]. Unfortunately,
if the PEEC circuit is placed directly into a circuit simulator, at every simulation time
step, one is effectively solving (3.36). For modern complex packaging geometries, such
computation is intractable as shown in Chapter 3. We thus seek a reduced order version
of (5.2) which still captures the dominant frequency dependent behavior, but is small

enough for efficient circuit simulation.

Since in the following development we will be going directly from (5.2) to a reduced
order model, no iterative matrix solution will be necessary but we will still be able to
apply the fast multipole approach for O(n) computation. To illustrate these connections,

we alter the layout figure of Chapter 3 as shown in Figure 5-1.

5.2 Approaches to Model Order Reduction

The topic of model order reduction appears in many disciplines (see for instance [14]).
In control systems, perhaps the best known approaches are that of Truncated Balanced
Realizations [45] (TBR) or Hankel singular values [17]. Other popular approaches are
based on the modal properties of the system, such as the method of Selective Modal
Analysis (SMA) which is known in the power systems community [51]. Unfortunately,
these methods require O(n3) computation since they require explicit knowledge of the
entire eigenspectrum of the system as in SMA, or the Hankel singular values as in TBR.
For complicated packaging structures for which n can easily exceed 10*, such methods

would require days to compute and gigabytes of memory.

In the area of circuit simulation, asymptotic waveform evaluation (AWE) [53] has
popularized the use of model reduction via Padé approximation [4]. Computing Padé
approximates are comparatively inexpensive compared to TBR and SMA. Also, as a
desirable property for circuit simulation, they provide a systematic method for enforcing

successively more accurate representations of the approach to steady-state. To describe
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this more formally, write a single input and a single output of (5.2) generally as

d
Aa—tIm = I, + bu

5.3
y = cTI,. (5:3)

where A = ~(MRMT)"'(MLMT) and b = (MRM7)"'N; and ¢ = N;, where N;
indicates the :** column of IN. Notice that we have chosen to define A as multiplying %Im
rather than the traditional definition on the right, multiplying I,,. This choice avoids
an A whose formation would involve the computation of (M LM7T)~! which would be
an O(n®) dense factorization. Instead we choose A = ~(MRM7T)"\(MLMYT) since
(M RMT7) is a sparse matrix and its factorization can be computed rapidly.

Applying the Laplace transform to (5.3) and then eliminating I,,, (5.3) can be written

as a transfer function and expanded in a MacLaurin series (Taylor series about s = 0),
Yi(s)=c"(I-sA)'b= E mys, (5.4)
k=0

where m; = ¢T A*b is the k** moment of the transfer function. A diagonal Padé approx-

imation of ¢** order is defined as the rational function

bg—18% 4 -+ bys + bo
ag8? +a,_18" 1+ +ay8+1

Y/ (s) = (5.5)
whose coefficients are selected to match the first 2¢ — 1 moments of the transfer func-
tion (5.4). Matching more moments corresponds to more accurate representations of
the approach to steady state since powers of s around s = 0 in the Laplace domain
correspond in the time domain o the response and its derivatives as t — oco.

The Padé approximates can be computed using direct evaluation of the moments
which involves the accurate computation of the vectors {b, Ab, A%, - -, A"'lb}. Ex-
plicitly computing these vectors, however, is ill-conditioned because as k is increased,
A*b and A**'b quickly converge to the dominant eigenvector of A and thus become
linearly dependent to numerical precision (See Figure 5-2). Information in the (k + 1)

moment is thus lost. More numerically robust methods are needed as developed next.

5.3 Order Reduction using Arnoldi Iterations

A more robust approach of deriving a moment matching reduced order model is to
use an Arnoldi process [2]. The Arnoldi process has its origins in eigenvalue computation

but as we shall see, it can be used to generate moment matching reduced order models.
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Figure 5-2: A two dimensional example of A*d converging to a single vector as k grows.

The idea behind this approach is similar to that of [13, 19, 15], and is that of computing
an orthonormal basis for the space spanned by the vectors {b, Ab, A%b, - -, A*~1b} with-
out explicitly computing each of {b, Ab, A®b,---, A*"'b}. The orthogonality between
the basis vectors makes the Arnoldi algorithm a better conditioned process than direct
evaluation of the moments. The space spanned by the vectors is commonly called the
Krylov subspace, denoted KCx(A,b). The basic outline of the Arnoldi process is given in
Algorithm 5.3.1.

After g steps, the Arnoldi algorithm returns a set of q orthonormal vectors, as the
columns of the matrix V;, € R™*9, and a ¢ x q upper Hessenberg matrix H, whose entries
are the Gram-Schmidt orthogonalization coefficients k; ;. These two matrices satisfy the
following relationship:

AV, =V, H, + hjy1,v4€] (5.6)

where e, is the ¢'* column of the identity matrix in R9%9,

The matrices V,; and H can be related directly to the moments. Since v; = &/ ||b][,
and with repeated use of (5.6), it can be shown that after ¢ steps of an Arnoldi process,
for k< q-—1,

A*b = ||bll, A*Vyer = |Ibl, V,H e (5.7)

With this relation, the moments can be related to H, by
my, = ¢’ A*b = ||b]|, <"V, H e,
and so the ¢** order Arnoldi-based approximation to Y;; can be written as

Y (s) = IIbll, "V (X — sHp) " e (5-8)
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g )

Algorithm 5.8.1 (Arnoldi process).

arnoldi(in:A,b,q; out:Vy,vo41, Hy, hjt1,;)

v1 = b/ ||b]l,
for G=1; j<=¢; j++) {
/* Get next vector in space */
w = Avy;
/* Orthogonalize new vector to previous vectors */
for i=1; i<=j—-1; i++4) {
h,"j = wT'v.-
w=w — h;;v;
}
hivai = lwll,
if Chjpr !l =0) {
/* normalize */
Vip1 = w/hj,;

}

}
Vo=[ov,]
} H,=(hi;), ij=1,".q
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corresponding to the state-space realization

[
Hyz = = + eyu

y = (bl Vo)e 59

which can be written as the triplet [A,,b,,¢,] = [H,, ey, ||b]l:¥ " ¢].

Note that the rational function Y:(s) is not a Padé approximation. Equation (5.7)
is only valid for £ < ¢ — 1, thus Yj:(s) has q poles but only matches ¢ — 2 moments.
Conversely, Yf (s) matches 2g — 1 moments. The Arnoldi approach is non-optimal in
a moment matching sense compared to the Padé-via-Lanczos (PVL) approach which
robustly computes a g** order Padé approximant as in [13, 19, 15]. However, it is not
clear the effect on the accuracy of the resultant model as we will see in Section 5.5. Also,
later we will see that one can use the Arnoldi approach to “trade in” these unmatched

moments for properties such as stability and passivity.

5.4 Treating Multiple Inputs and Outputs

The presentation in the previous section described a method of generating reduced
order models using a single input and single output of a multiple input, multiple output
system. Thus, to generate reduced order models for the entire ¥; € R*** would naively
require the generation of t?> different models. If used inside a circuit simulator, these
models would add qt? states to the circuit system, where q is the order of each model.
Intuitively this seems inefficient since all the models share a common system matrix A
and are likely to share many of the same poles.

For the Arnoldi approach, we see immediately that since the computation of H, and
V, involved only b, we can directly replace ¢ = N, in (5.9) with all the outputs, C = N.
The resultant single input, multiple output system will be a model for an entire column
of Y; and will still match ¢ — 2 mor ents for each of the entries of the column. Now one
is required to only compute ¢t different models, one for each of the inputs, b.

We can take this one step further and use a block version of the Arnoldi algorithm
which handles all ¢ inputs at once [59]). The outline of a basic block Arnoldi process is
given in Algorithm 5.4.1.

After g steps, the block Arnoldi algorithm returns a set of ¢ orthonormal blocks as the
block columns of the matrix qu € R™*4, and a tq x tq upper band Hessenberg matrix
H S whose entries are t x ¢ blocks H; ;. These two matrices satisfy a relationship similar
to that in (5.6), namely

AV) =V H)+V . Hy E] (5 10)
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Algorithm 5.4.1 (Block Arnoldi process).
arnoldi(input A, B,q; output V,,",V,,H,HS,H,-.,.I,,-,RI)
{
B=V,R, (QR Factorization)
for G=1; j<=¢q; j++) {
W =AV;
for :=1; z:<=j-—1; i+ +) {
H;;=ViwW
W=W-V,;H,;
1
i
W=V,uH;n,; (QR Factorization)
V)=V, V]
H: = (I{:’,J’)a Lj=1,--",q
}
J

where E, is the matrix of the last ¢ columns of the identity in R%**9,

From (5.10), the ¢** order block Arnoldi-based approximation to Y;; can be written

Y'4(s) = RCTV; (I-sH!) ' E, (5.11)

corresponding to the state-space realization using the triplet [4,, B,,C,] = [H 2, E, R V:TC]
where R, results from the QR factorization of B.

The total cost of computing the matrix transfer function using the block Arnoldi
algorithm is O(tq) resulting in an approximation ot order tq.

5.5 Complexity Comparisons

The efficiency of a model reduction technique has two facets. The first is the com-
putational cost of generating the reduced order model and the second is the compact-
ness of the reduced model for a given level of accuracy. To address the first, because
L is dense, the dominant cost of an Arnoldi process is the matrix-vector product,
Az = —(MRMT)"'(MLMT)z computed at each step of the process. In practice, the
matrix-vector cost dominates even when the dense part, (M LM T)z, is rapidly com-
puted with a fast potential solver such as the hierarchical multipole-algorithm discussed
in Section 3.2.2.
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# nonzeros in

Method # mv prods A, B, |C,
Padé 2tq ~ 3t2q | t2q | t3q
Arnoldi iq ~ tq® | tq | t3q
Block Arnoldi q ~L1g? | tg | tq

Table 5-1: Costs for a ¢** order approximation of a t-input, t-output system (number of
matrix vector products and number of nonzeros in the system matrices).

To address the second facet, the compactness is judged by the number of nonzero
entries in the triplet [A,, B,, C,] of the reduced system. For instance, for block Arnoldi,
A, = H , is upper-block Hessenberg which has roughly 1¢? nonzero entries. The number
of nonzeros in these matrices is directly related to the computational cost of including
them in circuit simulation.

Table 5-1 compares the number of matrix-vector products and also the number of
nonzeros in the reduced-order matrices for computing models for a t input, # output
system via Arnoldi, block Arnoldi, and a F'adé approximant (computed via a numerically
robust Lanczos algorithin [13]). Note that non-block Arnoldi needs to build ¢ ¢** order
models but Padé must build 2 such models.

To compare accuracy of the reduced model for a fixed amount of work to generate the
model, consider computing models for the small set of package pins shown in Figure 5-3.
To compute the resistance and inductance matrices, the pins were discretized into three
filaments along their height and four along their width producing a system of size m =
887. This discretization allows the modeling of changes in resistance and inductance due
to skin and proximity effects. Since there are seven pins, the model to be produced has
only seven inputs and seven outputs.

For the admittance between pins 1 and 2, Figure 5-4 shows the relative error for
Padé and Arnoldi, and block Arnoldi admittance models with model order 4, 8, and 56,
respectively. The model order was chosen such that the computation would require 56
matrix-vector products for each method. It is worth noting that Padé, Arnoldi, and block
Arnoldi match 7,6, and 6 moments, respectively, for each entry of Y ,(s), yet Arnoldi gives

a more accurate approximation.
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Figure 5-3: Seven pins of a cerquad pin package.
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Figure 5-4: Relative error for Y§ (s) and Y (s). Each method required 56 matrix-vector
products.
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# nonzeros in

Method | Order | # mvprods | A, | B, | C,

Padé 8 112 1764 | 392 | 392
Arnoldi 8 56 252 | 56 | 392
Block Arn. | 14 14 98 | 98 | 98

Table 5-2: Order of approximation, number of matrix vector products and number of
nonzeros in the reduced-order matrices for approximation yielding an accuracy of 5%.

Finally, to demonstrate that block Arnoldi can be superior for both facets, we compare
the models based on a fixed accuracy. Table 5-2 compares the computational cost and
the complexity of the reduced order models for a desired accuracy of 5% pointwise error.
In particular, for each entry of the reduced order admittance matrix, Y "(s),

2 Y9 - Vi)
Y i;(jw)l
for w in the frequency range shown in Figure 5-4. The table shows that block Arnoldi

0.05

requires the fewest matrix-vector products, and thus requires the least computation to
generate the model. The table also shows that the reduced-order matrices for block
Arnoldi have the fewest total nonzero entries and are thus the most efficient for subsequent
circuit simulation.

It is worth noting that a block version of the Padé-via-Lanczos algorithm has also

been developed in [13] and would have similar performance az above.

5.6 Coupled Simulation Results

To demonstrate using these models in circuit simulation, we wish to observe the
crosstalk between the pins in Fig. 5-3. Assume the five middle lines carry output signals
from the chip and the two outer pins carry power and ground. The signals are driven
and received with cMOS inverters. The drivers are capable of driving a large current
to compensate for the impedance of the package pins. The inductance of the pins is
modeled as described in the previous sections, and the capacitance is assumed to be 8pF.
The interconnect from the end of pin to the receiver is modeled with a capacitance of
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Figure 5-5: The middle pin’s receiver when four adjacent pins switch 1ns after the middle
pin.

5pF. A 0.1uF decoupling capacitor is connected between the driver’s power and ground
to minimize supply fluctuations.

Since we have a reduced model for the inductance instead of a single L value, the
model for the admittance matrix is incorporated into SPICE as voltage-controlled current
sources (VCCS). As a sample time domain simulation, imagine that at time ¢, = 4ns
the signal on the middle pin of Fig.5-3 is to switch from high to low and the other four
signal pins switch from low to high but due to delay on chip, the other four pins switch
at ¢; = 5ns. In this case, significant current will suddenly pass through the late pins
while the middle pin is in transition. Due to crosstalk, this large transient of current has
significant effects on the input of the receiver of the middle pin, as shown in Fig. 5-5.
Note that the input does not rise monotonically. Fig. 5-5 also shows that the bump in

the waveform is carried through to the output of receiver, as a large glitch.

5.7 Guaranteeing Stability and Passivity

Padé approximants, whether via direct moment matching or via a Lanczos-type
method as in [13], suffer from a significant drawback: For a passive original system,
there is no guarantee that the approximant is passive or even stable.

Similarly, there is no guarantee for the Arnoldi approximants generated by the algo-
rithms in the previous section. However since the development of the original Arnoldi
algorithm in the previous sections, two important modifications regarding the stability
and passivity of the Arnoldi algorithm have been developed [61, 50]. These results can
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be viewed as exploiting the observation that a ¢** order Arnoldi approximant matches
g —2 moments, but a ¢** order Padé approximant matches 2q — 1 moments. These extra
unmatched moments can be “traded in” to guarantee stability or passivity. The stability
and passivity results are essential for model order reduction and will be reviewed here.

5.7.1 A Guaranteed Stable Arnoldi Algorithm

It is possible to derive a version of the Arnoldi algorithm for which stability is guar-
anteed. While the passive algorithm described next in Section 5.7.2 is also stable, the
following is useful for its insights into state-space transformations and the Arnoldi algo-
rithm.

The main result in [61] was that the Arnoldi algorithm applied to (5.3) under a change
in state-space coordinates,

I.=ctr, (5.12)
will generate a guaranteed stable reduced order model, H,, where stability implies all
eigenvalues have nonpositive real parts.

To avoid computations with £}, one can use a modified version of the Arnoldi algo-
rithm which uses a “hiding the square-root” trick commenly used when preconditioning
Conjugate-Gradient schemes [18]. The key idea is that most of the operations involve
inner products of the form

(ctu) " chy. (5.13)

If £ is symmetric, which is the case for RLC circuits, then (5.13) can be rewritten as
uT Ly, which no longer requires the square root. The presence of the matrix £ can be
construed as endowing R™ with an induced dot product, (z,y) C= yT Lz, thus leading
to what is termed a modified C-orthogonal version of the Arnoldi Algorithm.
Additionally, because £ and R are symmetric for the inductance problem, H, will
be tridiagonal (block tridiagonal for block Arnoldi) which is comparable to PVL in its
number of nonzeros. This special structure also implies that the back orthogonalization

can be truncated to only two steps.

5.7.2 Guaranteed Passivity

Very recently, a modification to the Arnoldi algorithm to guarantee passivity has
been developed. I addition to the eigenvalues (and thus poles) of the system having

nonpositive real parts, for passivity, the zeros must also. Passivity is important because
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an interconnection of merely stable systems is not necessarily stable, but the intercon-
nection of passive systems in passive. For the inductance problem, which is cast as a
system of R and L, the original system is passive since it is composed of passive circuit
components. We thus require that the reduced order models preserve this quality.

In [50], given the original system of m states,

sz = —Rz+ BV (5.14)
Ig = Ctl'. (515)

the idea is to use the Arnoldi vectors V, where 0 < ¢ < m in a congruence transform (37]

to preserve passivity. This corresponds to the reduced system

sLx = —Rz+ BV, (5.16)

where £ = VqTCV,,, R = VqT'RVq, B= VqTB, and C = VqTC. The main result in [50] is
that this reduced order model matches ¢ — 2 moments and is proven passive under the

following conditions:
1. B=C
2. 2ZT(R+RT)z >0 forall 2
3. 2T(L+ LT)z >0 for all 2

For inductance extraction, the first condition is satisfied since port models always
have every input pair as an output pair. The second and third conditions are satisfied

since R and L are both symmetric positive definite matrices.

5.8 Beyond Inductance Extraction

This chapter developed the Arnoldi algorithm as method of efficiently generating
guaranteed passive reduced order models for the inductance problem. For problems in
which accurate inductance is important, these models can replace the single lumped R
and L of the simple models of Chapter 2 for improved accuracy.

As we also saw in Chapter 2, decoupling the inductance and capacitance does not
adequately predict the response of the interconnect at higher frequencies. In Part II we
couple these quantities which requires many of the same issues described previously in

this part.
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Coupled Capacitance and
Inductance Extraction

In Chapter 2 it was observed that the simple circuits of Figures 2-3,2-4, and 2-5 were
not adequate to accurately capture even the first resonant frequency of the interconnect
shown. In this chapter we develop an approach for low order model generation for intex-
connect which does not neglect displacement current as in Part I. Instead, it solves the
full quasistatic Maxwell’s equations which we term “electromagnetoquasistatic” analysis
or EMQS.

In Section 6.1 we see that we can extend the Fartial Element RL circuit interpretation
to the EMQS domain to form a distributed RLC circuit representation of the governing
integral equations. A mesh analysis approach is then pursued to exploit many of the
developments of the mesh formulation for the inductance problem.

With the return of displacement current (capacitive effects), passive model order
reduction is not straightforward as before. As Section 6.2 describes, care must be taken
in choosing an appropriate state space realization from the discretization.

Previously in Chapter 5, the computational cost of generating a reduced order model
for the inductance problem was on the same order as solving for the inductance and
resistance at a single frequency point. In particular, the matrix-vector product cost at
each iteration of a single frequency solve of MZM" in (3.36) was roughly the same as
computing a matrix vector product with R™'L = (MRM*)"'(MLM") in the Arnoldi
algorithm. Thus, a single frequency solution which takes 40 iterations to converge would
be roughly the same as computing a 40th order reduced model.

For the electromagnetoquasistatic (EMQS) problem, this is no longer the case. Each
matrix-vector product for model order reduction requires a solution to a capacitance
problem. To make computation of a reduced order model tractable, the computational
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Figure 6-1: Outline of Chapter

cost of these many full capacitive solves must be reduced. Aa approach which “recycles”
the Krylov subspaces to this end is described in Section 6.3.1.

Computing reduced order models with A = R~L represents an expansion of the
transfer function of (5.4) about s = 0. In Section 6.3.3 we shall see that this choice is
not adequate, and the need to expand about nonzero s is important. While expansions
about s = 0 require a capacitive solve at each step, expansions about nonzero s unfortu-
nately require solutions of the full EMQS equations. Fortunately, the mesh formulation
lends itself to effective preconditioning as will be shown in Section 6.4. With a means
for efficient multipoint approximations, the chapter concludes by showing that efficient
generation of compact reduced order models iz possible. An outline of the riapter is

illustrated in Figure 6-1.

6.1 Formulation and Discretization

This section derives the linear system solved to determine the admittance relation, Y.
It begins by deriving an integral equation from Maxwell’s equations and then discusses the
circuit-like discretization to generate a linear system. Following a mesh based approach
has a slightly different character for the electromagnetoquasistatic problem and it will
be contrasted against nodal analysis.

6.1.1 Integral Equation Formulation

Several integral equation-based approaches have been used to derive Y, associated
with a given package or interconnect structure [55, 7). The approach followed here is
the standard integral equation approach based on a “superposition” of the sources point
of view whose derivation can be found in many places [25, 27] and will be reviewed
here. These integral formulations are derived without the quasistatic assumption. From

Maxwell’s equations under Laplace transformation,

VxE = —suH (6.1)
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VxH = seE+J (6.2)
V-(E) = p (6.3)
V.- (pkH) = 0 (6.4)

where s is the Laplace transform complex frequency.
Taking the divergence of (6.2) and using (6.3) gives the charge conservation,

V.J=-sp. (6.5)

From this point, we wish to eliminate the field quantities, F and H, in favor of the
current density, J, and applied voltages. From Gauss’ Law of magnetic flux, (6.4), the

magnetic flux can be written as
pbH=Vx A (6.6)

where A is the vector potential. Applying this to (6.1),
Vx(E+sA)=0. (6.7)
This implies that there exists a scalar function, ®, such that
—Vo=F +sA (6.8)

where @ will be (alled the scalar potential. We require one final relation to relate the
vector potential, A to the current density, J. To uniquely determine A, we must also
specify its divergence. In Chapter 3, the Coulomb gauge was chosen, but here we choose
the Lorentz gauge,

V.A=—eusd, (6.9)

and using (6.6) in (6.2), and the identity, V x (V x A) = V(V - A) — V2 A, we arrive at

VA - pes’A = —pd (6.10)
and thus
o J('I)ec/clf—f'l ,
A(r) = ypn [, =] dv (6.11)

where V' is the volume of all conductors and ¢ = —'m-

To derive a similar relation for ®, use (6.8) in (6.3) which gives
V. .e(-VO®—-3s4)=p.

Applying (6.9) gives
V20 — pes’® = —p.
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An integral relation between the chargs density and scalar potential is then

nsfc|t-r|
<1>(,-)=471re / pr)e dv'. (6.12)
VI

r — |

To derive an integral equation for the potentials and currents alone, we note that

inside the conductors, by Ohm’s law,
J=0E. (6.13)

where o is the conductivity. Equation (6.13) can be used to show that p is essentially
zero on the interior of conductors. Using (6.13) and (6.3) in (6.5),

d o

d—f =—=p (6.14)
gives

p = poe ¢ (6.15)

which states that the charge inside a conductor is zero for all time apart from any initial
charge which dissipates very quickly. Charge is thus restricted to the boundary and (6.5)
becomes
V.-J(r) = 0, reD (6.16)
n-Jr) = —sps(r), resS (6.17)
where D is the union of the interior of all conductors and S = 8D are the surfaces. For

regions of S which correspond to terminals, Sierminats € S, we allow for external current,
J: and then (6.17) becomes

n- (J(r) - Jt) = —sp,(f), T € Sterminals- (618)

S, Sterminals, and D are illustrated in Figure 6-2.
Substituting (6.11) and (6.13), into (6.8) yields the following integral equation,

No8/c|P-T|
I, ﬂ/ I(r)e &' = —Va(r). reD (6.19)
|4

o Az |r— 7|

Equation (6.19) with boundary conditions (6.17) and sources injected via (6.18) can
now be solved for the conductor current density, J , and scalar potential, ® where ® is

1N p8/c|T-T|
O(r) = — / pa(r')e dv', r e R3. (6.20)
S

4me [r— 7|

now
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< Sterminals

Figure 6-2: The interior D, surface S, and terminal Si.rminats regions of a conductor

The relation between J; and ® on Sierminats can be used to compute Y;(s).
In this work, we consider structures which are small compared to the smallest wave-

length of interest, that is,
%|r —r| 1= eI x 1, (5.21)

Using this approximation, (6.20) and (6.11) become

1 ps(r') 3
o(r) = tme | r- r,'dv , r € R, (6.22)
S
1
A(r) = £ ﬂdv', r e R (6.23)

4T |r — »'|
V'

This approximation provides the convenience that the kernel of the integral operators,
|1'-1_1"I’ is independent of s and thus the matrices derived in the next section are frequency
independent.

6.1.2 Discretization

The integral equations in the previous section are exactly those used in the original
PEEC derivation [55]. As was done in Chapter 3, we will first follow the approach given
there to generate a discretization of (6.19) and (6.20) and then derive the mesh formulated
approach.

To generate a finite dimensional system to numerically solve (6.19), consider using a

piecewise constant method of moments [24] scheme as for the inductance problem.
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Figure 6-3: A cube of conductor with surface discretized into panels

The discretization for J is identical to the inductance problem and gives the relation
in (3.18), repeated here,
(R+sL)I! =&, - &p (6.24)

where Ibf € C* is the vector of b filament currents,

R = L (6.25)

aga;

is the b x b diagonal matrix of filament DC resistances,

l. . l.
Lij=—— — 3 gqvrav (6.26)
4ma;a; v S | — |
' J

is the b x b dense, symmetric positive definite matrix of partial inductances, and &, and
®p are the averages of the potentials over the cross sections of the filament faces.

For the charge, the surface of the conductors is divided into panels, as shown for a
cube in Figure 6-3 each which holds a uniform charge density. The approximated charge

density can then be written as

po(F) = Z o(P)g, res.

where v;(r) is oune if 7 is on panel 7, zero otherwise.

As in Chapter 3, the filaments are each made branches in a network circuit graph
and the junction between filainents are the nodes of the graph. To enforce (6.17), the
panels are added to the circuit at nodes on the surface of the conductors. For the cube
in Figure 6-3 above, the circuit of filaments and panels at a corner is shown in Figure 6-4
and the placement of panels on one of the surfaces of the cube is shown in Figure 6-5.
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Figure 6-4: Discretization and intercoanection of filaments and panels at a corner of the
slab. Rectangles are filaments, shaded squares ars panels. Reprinted with permission
from Nuno Marques
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e Node point

. 1 Panel

|:] Current segment (drawn 1/3 actual width)

Figure 6-5: The placement of filaments and panels on the top surface of the cube

The last relation is that of the potential, ®, to the charge, ¢, from (6.22). Approx-
imating the average over the face, ®,, by its value at the appropriate node point, the

potential becomes

®, = P'g,, (6.27)

where ®,, € C" is the vector of the n node voltages, g, € C* is the charge on each of p
panels, and P’ € R("tm)*ne jg the potential coefficient matrix given by

1 1 '
Fj= Ajdmey | |ri — r’|dV (6.28)

P;

where p; is the surface of panel j, A; is its area, r; is the :** node location, n. = p is the
number of node points on the surface and n; is the number of internal node points. P’

can be divided separately into its contribution to the internal and external nodes by

P
P=1|" 6.29)
[ pi ] (6.29)

where P € R™*" and P‘ € R™*™,
The above relations, (6.24), (6.27), and (6.17), respectively, give the following linear
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system,
Z 0 AT I 0
0 P -I 9 | =10 (6.30)
A, sI 0 ®, I,

where Z = R+ sL, I is the 1dent1ty matrix of appropriate dimension, I; are the terminal
currents, AT = [AT AT] is the noda.l incidence matrix providing the differencing of &,
and A, enforces the boundary condition (6.17).

Eliminating ®, and g gives

(sR+s’L+ ATP'A)I] = ATP'I, (6.31)

This is the PEEC formulation of [55]. In the original work, the elements were created
as circuit elements and sent to a circuit simulator which would effectively assemble and
solve (6.30).

It is worth noting that in the interior of conductors, (6.30) does not ezplicitly enforce
current conservation as in (6.16). Thus, while an exact solution to the integral equation
will satisfy current conservation, there is no guarantee that the discrete version will also.
Additionally, the asymmetry of (6.30) makes passive model order reduction difficult since
positive semidefiniteness (conditions 2 and 3 in Section 5.7.2) is difficult to determine.

Finally, as for the inductance problem, (6.30) is poorly conditioned for iterative so-
lution, and thus we seek a different formulation more amenable to iterative solution.
The advantages for iterative solution will become apparent for multipoint model-order

reduction in Section 6.4.

6.1.3 An Alternate Formulation

To derive a different formulation so the we can apply passive mode! order reduction,

for » € D consider explicitly enforcing current conservation, (6.16),
v.J(r,8)=0, reD (6.32)

but no longer enforcing the relation between charge and potential, (6.20). The two choices

are equivalent, since with charge only on the boundary, (6.20) is equivalent to
V20 — pes®d =0, reD (6.33)

and taking the divergence of (6.8) and using the gauge condition, (6.9), and Ohm’s law,
(6.13), we arrive at
%V - J = =V2® + pes’d
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Thus (6.33) is equivalent to (6.32).

In the rest of this section, we derive a nodal formulation using this new condition.
This nodal form will be similar to Modified Nodal Analysis from circuit simulation [69].
From a nodal form, it is straightforward to derive a mesh formulation as is shown in the
next section. It is possible to skip directly to deriving a mesh formulation by deriving
mesh quantities as “divergence-free” basis functions and following an approach similar
to [3], however such an approach does not illustrate the connection to circuit methods
and will not be followed here.

Before modifying (6.30) to enforce V - J(»,s) = 0, we first wish to alter it to allow
multiple panels to be connected to a single surface node. The panel discretization can
then be refined independent of the filament discretization to capture, for instance, the
sharp changes in charge density at an edge which does not necessarily correspond to

changes in the potential. Equation (6.30) then becomes

-

Z o0 -AT AT [1[ 0
0 P —-AT 0
. o 0 (6.34)
0o P 0 - 4 0
| A sA, 0 0 [ || |&

where @, has been divided corresponding to internal and external nodes, A, sums the
charges at each node and AZ' requires that the potential of all the panels at a node are
equal. Next, for convenience, replace the panel charge with the current into the panel,
£4, = I7. Enforcing current conservation, V - J(r,s) = 0, on the interior now involves

replacing the set of equations involving P* with A.-Ibf =0,

Z 0 -AT AT [FH 0
P/s —AT 0 I? ]
0 Pls —4, b (6.35)
A, A, 0 0 oc I
A 0 0 0 | L i i | 0 |
Combining each of the 2 x 2 blocks in (6.35) into single blocks gives
Zgm —AT I 0
EM bl = [ (6.36)
A 0 Qn L If

which is similar in form to the sparse tableau matrix for the inductance problem, (3.33).
As for the inductance problem, the poor conditioning leads us to derive a mesh
analysis version of (6.36).
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6.1.4 A Mesh Analysis Formulation

To derive a mesh analysis version of (6.36) from that of Chapter 3, we need only
add meshes for the new branch currents associated with panels, If. Since the panel
node voltages in (6.27) are voltages relative to infinity, we can view the panel branches
as connecting the panel node to the zero volt node at infinity. Then the panel branch

voltages are given by

VP=9, -0=9,. (6.37)

Witk this definition for the panel branch voltages, Zgps becomes the constitutive relation

for the . lectromagnetoquasistatic problem

%44 Z 0 I’
Vi=]| b | = b | = Zgml,. 6.38
" ["] [0-"/3”15] o o)

With panels defired as branches in the circuit, we can now define meshes for them which
pass through infinity, as shown in Figure 6-6. There are now three types of mesh currents:
those involving only filaments on the interior as for the inductance problem, IZ,, those on
the surface which include both a filament and two panels, I, and those involving only
panels for nodes with multiple panels, If,. This categorization leads to three block rows

in the new M maitrix,

M; 0 v v/
MV, = | M;, M, [ V’;] =V ]=V (6.39)
0 M, b

Applying M as before, we get the system,
MZgyMTI, =V, (6.40)

which has a matrix structure similar to that of the mesh formulated inductance problem,
(3.36).

Note that in the integral formulation, the sources were known injected currents, J,
and the potential and charge were unknown on Sierminats- In the mesh formulation, the
potential will be specified on Sierminats With J; and the charge as unknowns. J, will be
added as an unknown by adding a branch to the circuit for the source, and requiring a
mesh relation for the source as shown on the left in Figure 6-6. This will be described in

more detail in Section 6.2.
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[ filament (x-directed current)
Bl surfuce panel (charge)
— branch currents (Ib)
- -= mesh currents (Iin)

Figure 6-6: A circuit describing the mesh quantities for a 2 conductor TEM line termi-
nated with a load Z;. Reprinted with permission from Nuno Marques

n

Figure 6-7: The cross section of a two-dimensional transmission line. Units are in microns
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Figure 6-8: Impedance looking into a matched transmission line for the discretized system

6.1.5 Formulation Results

To show that the above formulation gives correct results consider modeling a long
two conductor transmission line with this 3D tool. If the line is chosen very long, using
2D TEM transmission line analysis approximates the results well. Figure 6-7 shows the
2D cross section of a two-conductor transmission line derived from a multichip module.
Using other electromagnetic tools, the 2D inductance per unit length and capacitance per
unit length were computed. With these values, the characteristic impedance of the line
was computed as Zy = 97.43(). By using a matched termination the input impedance is
theoretically constant, Z(f) = Z,, for all frequencies f. The two coaductors are each 1
cm long and discretized into 558 filaments, and 768 panels. Such a discretization leads
to a 2033 state system. As seen from Figure 6-8, the EMQS approximation matches to
within 1 percent the exact solution up to nearly 30 GHz. The inability to obtain an
error significantly less than 0.1 percent may be due to either resistive effects modeled
by the mesh formulation which were not in the 2D simulation, or inaccuracies in the
computation of Zj.

Note that the wavelength at 30 GHz is 1 cm which is the length of the structure
modeled. It thus seems that for this example, the applicability of EMQS can extend
beyond the small-compared-to-a-wavelength regime. This topic will be addressed in
Appendix A.

As a second example, consider analyzing a printed circuit board connector from Tera-
dyne, Inc, as shown in Figure 6-9 and 6-10. There are 4 thin pins surrounding the middle



120 CHAPTER 6. COUPLED CAPACITANCE AND INDUCTANCE EXTRACTION

Figure 6-9: A 5 conductor connector

ground conductor which widens in the center to provide shielding. Here the number of
states in the original discretized system is 3018 which was generated from 845 filaments
and 1182 panels.

One of the pins is driven by a source at one end and terminated with a 50 2 resistor at
the other as shown in Figure 6-11. Frequencies in the gigahertz regime are high enough
that the return current in the middle ground conductor will be bunched underneath
the pin overhead as shown in Figure 6-11 and previously observed for inductance in
Figure 3-22. Note that if the structure were very long, the current distribution along the
length would be uniform, except at the junction between sections A and B as shown in
Figure 6-11. Therefore, a 2D solution would give accurate results.

To compare to the 2D solution, the connector was stretched by a factor of ten in its
length direction. The impedance of the interconnect can be computed by performing two-
dimensional transmission-line analysis on sections A and B separately, and then cascading
the results. From Figure 6-12 we see that the mesh formulated approach matches well to
the 2D analysis for entry (1,1) of the impedance matrix, Z,(s) = Y (s)™!.

Next, consider comparing the two methods using the actual lergth of the connec-
tor. The 2D analysis should give exactly the same results as before, just shifted down
by a factor of ten in frequency. However, the 3D region is more significant and from
Figure 6-13, we see the results diverging.

Finally, to show strong 3D effects, the connector length is shrunk by half, and we
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Figure 6-10: Some dimensions of the connector
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Figure 6-11: Current in connector
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o vz 3 4 8 & 7 8 @
froquency x 10

Figure 6-12: Two-dimensional analysis (solid line) compared to EMQS (dashed line) for
the connector at 10x its normal length

TR
x10°

Figure 6-13: Two-dimensional analysis (solid line) compared to EMQS (dashed line) for
the connector at its normal length
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Figure 6-14: Two-dimensional analysis (solid line) compared to EMQS (dashed line) for
the connector at half its normal length

see a large difference in the results in Figure 6-14. In particular a resonance, previously
above the maximum frequency of the previous plots, has moved to a lower frequency. To
explain this physically, the current in the 2D model can “jump” from the middle pins in
section A to directly underneath the pin in section B, skipping the lateral flow in the 3D
region illustrated in Figure 6-11. For the 3D model, the current must travel this path
and this extra distance changes the effective length of the interconnect, thus shifting the
resonance downward.

We now have a mesh formulated EMQS approach to which fast iterative techniques
could be applied for single frequency solves. But computing the frequency response above
via single frequency solves would be very expensive. Also, for coupled circuit simulation,
the value of Y';(s) at a single frequency is of little use. For this reason we turn to model-
order reduction in Section 6.2 to generate a low order version of (6.40). The issue of

single frequency solution will reappear for multipoint expansions in Section 6.4.

6.2 Deriving a State-Space Realization

We seek to apply methods of model order reduction to (6.40). We thus need to derive
a first order state-space realization of the second order system (6.40). Care must be taken
to derive a realization that has appropriate properties for passive model order reduction.
Additionally, as for R in Chapter 5, we wish the corresponding R for (6.40) to be both
sparse and nonsingular for expansions abeut s = 0.
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6.2.1 A standard approach

To follow an approach similar to the standard approach for deriving a system of first
order ordinary differential equations from a single higher order equation, we separate

(6.40) into powers of s

M Btasl 0 M' = MRM* + sMLM* + s"*MPM! (6.41)
0 P/s '
where
. [ 0 ]
R = (6.42)
00
- -
. L
i = 0 (6.43)
00
~ 0
p=12°]. (6.44)
0 P

Defining s1,, = I, and, as before, V, = NV; and I; = N*I,, then gives

3[MT,M‘ 0][{m] [-MRM' 'MPMe][{’“]+[N:|V,(6.45)
o I)]|iIn 0

I 0 I
t In,
L = [N'O]| . (6.46)
I, |
wheie I is the identity matrix. We abbreviate the above as
sz = —-Rz+ BV (6.47)
I, = C'z. (6.48)

To apply the methods of Chapter 5, we must be able to efficiently compute matrix-
vector products of the form R™Lz. Thus we require that R be nonsingular. Unfortu-
nately, this is not the case for R in (6.45). To see this, note that if

_MDMt _AfDAL
MrM MPM {'" =0 (6.49)
I 0 I

then by the second row, I, = 0. Thus from the first row, R is nonsingular only if
M B M! is also. However, M PM! contains the singular P. The singularity of P does not
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Figure 6-15: PEEC model circuit for only MPM!

necessarily imply the singularity of M PM! and one may ask whether the particular circuit
form of M may make MPM* nonsingular. To show singularity persists by an example,
note that if we simplify the problem by letting P be diagonal, then each of the panels
is a capacitor to ground (point a infinity), with C; = 1/P; and solving M PM!'I, =0is
solving a circuit as in Figure 6-6 with panels replaced by resistors and all other circuit
elements replaced by shorts. If all meshes without panels are removed so that no row
in MPM* is all zeros, we arrive at a circuit such as shown in Figure 6-15. This circuit

could represent the discretization of a single straight wire with a source at both ends.

If all the capacitors are the same, C; = C, then

- -

1 -1 0 ©
= 1]1]-1 2 -1 0
MPM' = — .
C 0 -1 2 -1 (6.50)
| 0 0 -1 1 |

which admits a nonzero solution, I,,, = K, where K is any constant, and thus M P M
is singular. Physically, with no sources present, the actual current through any resistor
must be zero in the bottom circuit of Figure 6-15, and I,,, = K is a still a solution since

the actual current through any resistor is zero.
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6.2.2 A nomnsingular R

The singularity of MPM?* implies that the I,, are not linearly independent. Thus, to
derive a nonsingular R, a different I,, must be chosen which are linearly independent.
Note that the original realization had state variables

JEA
Ia

m
In

] = I? (6.51)

m

In

=3 -

but the state equations involving IZ, in (6.41) are already first order since they do not
involve panels. One could write a state-space system in which entries of I, are only
included in I, if they involve entries with 1. This corresponds to

-I,{lj

15
] = | (6.52)
I,
P

L™

since I, meshes do not involve panels. Unfortunately, the example circuit of Figure 6-15
had no I, meshes, but was still singular.
Since it seems the singularity of P causes difficulty, consider choosing the new state

variables as V! instead of In. The relations will involve P alone,

sVP = PI? = P[M}, M]] [ In ] : (6.53)

I

Additionally, write Z = R + sL of (6.24) as

Zi Zi Ll 1w
BE|ELE] e

where the superscript and subscript ¢ represents filaments only used in meshes on the
interior (M), and s represents filaments which are also used in meshes with panels (M,).
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Using (6.39), (6.38), and (6.53) in (6.40) gives a first order system,

Zmt  Zmgs 0 0 [ I RZE

sz' Zma 0 Mp‘ I’.ﬂ — ‘,O’ (6 55)
0 0 0 M, A B 7 '
0 -PM%L —-PMT sI | |V | 0 |

Where ij = MjZfM}r, me, = MJZJ,M};, Zm, = MI.Z,M};, me = R.,,-.! +ijmf,
and similarly for Z,, and Z,,.

From (5.2), the terminal currents and voltages are related to their corresponding mesh
quantities by V,=N Ve, It = NT1I,. Letting 3T = [N7 0] and separating out terms
multiplying s gives the desired state-space form:

Lmy Lmy, 0 O I,"“ -Rmy ~Rmy, 0 0 I,{. Vu!
. L, Lm: 0 0 I, - -R7,, -Bms 0 -My,, o || v
0 o o0 o0 r 0 0 0o -M, (4 144
0 o o I 144 o PMI  PMT o 14 0
sLr = -Rz + BV,
I = BTz
(6.56)

The R above can be shown to be nonsingular under the condition that no node is
connected to the circuit via only panels. In circuit language, there can be no cut-sets of
capacitors. Unfortunately, the point at infinity is a such a node. As an example, consider
a loop of conductor similar to the line of conductor from Figure 6-15. The two ends of
the loop will be connected to a source as shown in Figure 6-16. R will be nonsingular if
and only if the DC solution (s = 0) to the PEEC circuit is unique. At s = 0, s = 0,
and letting P be diagonal for simplicity, the PEEC circuit is given in Figure 6-16 with
the point at infinity drawn at the center. If the source is zero, then the DC solution is
that of Rz = 0, where zT = [IZ 174 T]. Even if I,, = 0, the voliages at nodes A, B, C,
and D specified by V) can be set to an arbitrary constant (with the point at infinity 0)
and Rz = 0 since the sum of voltages around any loop is still zero. Thus R is singular.

More formally, the potential described above is that of a Laplace’s equation with pure

Neumann boundary conditions and is thus unique only to a constant. To see this, at
s=0,(6.17) is

n-J=0 (6.57)
and (6.8) with (6.13) becomes
% - Vo (6.58)
Looking at the normal component of (6.58),
ln. -J = _o2 (6.59)

o on
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Figure 6-16: A loop of conductor and a coarse representative circuit

AN

Figure 6-17: The new circuit with proper sources applied

Node B

and thus g—:— = 0on S — Sierminals. It 18 well known that if g—: were specified on all of
S, then the solution for @ is unique only up to a constant. But if ® is specified on any
portion of the boundary, then the solution to ® is unique. But what is done in Figure 6-16
is to specify a value for the difference ®4 — ®p, and not ® itself. Thus if & is a solution,

then so is ® + K for any constant K.

To make the solution unique, for each conductor of the geometry, ® must be specified
over some terminal. Such a condition is enforced in circuit terms by using voltage sources
to the point at infinity as shown in Figure 6-17. In the figure, the old source is replaced

by two sources connected to the point at infinity.
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6.2.3 A Realization for Practical and Passive Model Order
Reduction

With the nonsingular R of (6.56), the matrix-vector products of the form R™Lz
needed for model order reduction are now possible. R, however, contains the dense
matrix P which implies that for each matrix-vector product, computing R~y requires
a dense matrix solve. Additionally, R + RT is not necessarily positive semidefinite as
required for passive model order reduction. It is straightforward to modify the system
for passive model order reduction as shown next.

Consider multiplying the last row of (6.56) by P~ to give

Lmy Lmy, O 0 ],‘L "'le "Rm]a 0 0 Ivln Vn!
T
o| Lmge Lme 0 O 13 _ -R}, -Rms 0 -M, ol v
0 0o o0 o L (] 0 0 =M, 7, vy
- P P
0 o ¢ p? v ] ML, MI o v o
sLx = -Rz+ BV
I = BTz
(6.60)

Note that B is left unchanged due to its lower block of zeros. To show that £ + £T and

i Ry.; Rpmyp O 0
RT w 00

R+RT =2 f(')‘f' R(')’ 00 (6.61)
[0 0 0 0|

are both positive semidefinite, note that the top left 2 x 2 block of £ and R are of the
form WFWT where F is either R or I from Section 6.1 and WT = [M}r M};] Since R
and L are both positive definite, so is W FW7. If P is generated via a Galerkin approach,
then it too is positive definite, and since £ is a block diagonal matrix consisting of blocks
which are each positive semidefinite, then so is £ + L.

Note that the equations of the third row of (6.60) represent algebraic relations. These
relations are from the meshes I?, shown in Figure 6-6. These meshes explicitly enforce
that the voltage on the two panels of each mesh are exactly equal. Since these conditions
are algebraic, they lead to zero rows in £. It is possible to eliminate these excess state
variables and the algebraic conditions by following, for instance, tree-link analysis as
described in [39]. Unfortunately application of such a technique would require the use of
P~! multipie times, which, since P is large and dense, is computationally inefficient. In
addition, such analysis would destroy the structure of R, which is necessary for passive

model order reduction as will be described shortly.
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Note that the block structure of (6.60) is similar to the nodal form, (6.35) and at
this point in the development the advantages of pursing a mesh form are not apparent.
Even though both are different realizations of the same system, a nodal form may have
benefits over a mesh form. One advantage of (6.35) is that if there are no internal nodes,
then the corresponding £ of (6.35) is nonsingular and smaller than the mesh formulated
L. The nonsingular £ could be used for expansions about s = co. The results pursuing
model order reduction for (6.35) will not be described here, but the interested reader is
referred to [44).

Since R is a diagonal matrix, and M is sparse, then R is now sparse. However, to
form the first block of £ requires order f? operations and memory since L € R/*/ is
dense. Similarly, to form the second block, P~! requires p* operations and memory to
form P, and then order p® operations to invert. For complex geometries with tens of
thousands of filaments and panels, such growth rates are severely limiting. In the next

section we discuss a more efficient technique for generating reduced order models from
(6.60).

6.3 Model Reduction for the Electromagnetoqua-

sistatic Problem

In this section we describe a fast algorithm for computing a reduced order model about
the expansion point s = 0 for the system in (6.60). To review, the idea of model order
reduction is to reduce (6.60), which can be on the order of tens of thousands, to a much
smaller system which still captures the dominant behavior of the original system. For
moment matching techniques, one wishes to derive a rational function whose moments,
or terms in the Taylor series expansion, match that of the original admittance function,
Y.(s), up to some order. From (6.60), the admittance function can be expanded about

s =0 as

Y.(s)=BT(R+sC)"'B= E mys*, (6.62)
k=0

where the moments are obtained from
m, = —BT(R1L)*R'B.

Thus we seek an approximation, Y ,(s) = E:o_o my.s*, such that my; = i, k =

1,...,9. Since Y(s) represents a passive circuit, we require ¥ ,(s) also be passive,
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Algorithm 6.3.1 (Iterative Scheme for Pq =v).

guess q°
Initialize the search direction
w® = v - Pq°
for k=1,... {
Select w* € span{w®, Pw®,..., P*'w°}
such that the new sclution
gt = ¢t + w*
minimizes ||r¥|| = ||v — Pq¥||
if ||r*|| < tolerance, return solution gf

}

which can be guaranteed via the numerically stable Arnoldi-based PRIMA model order
reduction algorithm [50] described in Section 5.7.2.

6.3.1 Recycled iterative solver

Application of any moment matching echeme about s = 0 requires the computation of
repeated matrix-vector products with the matrix (R™'£) in order to obtain a reduced-
order model. For instance, an Arnoldi type algorithm requires ¢ — 1 such products
to produce an order ¢ model. However, because the partial inductance matrix L and
potential coefficient matrix, P~!, which appear in £, are both large and dense, many
muitiplications by £ can be prohibitively expensive. In particular, if done directly,
multiplication by P~?, would require an initial dense matrix factorization which is O(p®)
operations. For modern packaging structures, for which p exceeds ten thousand, such a
factorization is prohibitive.

The expensive factorization can be avoided by noting that the computation ¢ = P~ 'v
is equivalent to solving for the panel charges, q, given a set of voltages, v. It is thus
possible to use a preconditioned, Krylov-subspace iterative method to solve Pq = v as
outlined in Algorithm 6.3.1 [59). Note that the dominant cost of each iteration is the
O(p?) computation of a dense matrix-vector product, Pw, to acquire the next vector in
the subspace.

In the standard approach, for every product L, the iterative algorithm would be
called to solve P~'v, generating a new subspace, span{w®, Pw®, P*w?°,...}, and a new
gset of search direction, w;. If the number of L2 products is large, the advantage of an



132 CHAPTER 6. COUPLED CAPACITANCE AND INDUCTANCE EXTRACTION

Figure 6-18: Two dimensional illustration of the search direction space for two different
calls to the iterative algorithm. Here, the search directions Pw* and Pib* are close so
the spaces they span are similar.

iterative method would be degraded by the large number of total Pw products necessary.
However, even though w? is different for each solve, it may be that the space spanned
by {w®, Pw®, P*w®,...} is similar, as is illustrated in Figure 6-18. One is thus lead
to consider reusing the search directions from the previous solves [64, 52]. While the
recycled vectors are not optimal for the next v, the cost of computing the solution along
those directions is negligible compared to a single Pw product. The recycled algorithm
using the Krylov-subspace method known as Generalized Conjugate Residual (GCR) [59]
is shown in Algorithm 6.3.2.!

The O(p?) operations of the iterative algorithm can be reduced further by using a
multipole-accelerated iterative algorithm [47] whose cost and memory has been shown to
grow only as O(p). Similarly, the computation of the product M;L M, j‘ can be performed
in O(f) operations also via the multipole-algorithm [35].

6.3.2 First Results

In this section we present first results from model order reduction. 2
Consider generating a reduced order models of order 10, 20, 40, and 80, for the matched
2D transmission line of Figure 6-7. From Figure 6-19 and 6-20, as the model order is

increased, a model which matches to higher frequency is generated. For a reduced order

Note that using a recycled version of the GMRES algorithm would have avoided the need to store
both sets of w and pw but was not implemented here.

ZNote that, due to its simplicity of implementation, our implementation uses a collocation approach
rather than a Galerkin approach to compute the entries of P. Such an approach is not guaranteed to
give a positive semidefinite P 4+ PT but has yet to cause nonpassive models.
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Algorithm 6.3.2 (Recycled GCR Algorithm for Pq = v).

GCRrecycled(input P,v, {w!,w?,..., w?}, {pw!, pw?,...,pw?},p, tol;
output ¢, {w!,w?, ..., w™}, {pw!,pw?,...,pw™},m) {

r=v /* Initial error */
k=0
Repeat until ||r|| < tol {
k=k+1
if (k < p)
/* Use previous direction */
w = w*
pw = pw*
else
/* Compute new direction */
w=r

pw = Pw /* « Do dense matrix-vector preduct */
for j=1,...,k {

/* Orthogonalize (H is Hermitian transpose) */
NH

4= gpwtl pw
lipw|| )
pw = pw — ﬂ_pw’
w=w — fw’
k

w'=w
pw* = pw
}

end

/* compute new solution and error */

w) r
“—%ﬁﬁ'
9=q+aw
r=7r—apw

}
/* set number of vectors to return */
if (k > p)
m=k
else
m=p
end
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Figure 6-19: Impedance looking into a matched transmission line for various reduced
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Figure 6-20: Relative error for models for matched transmission line

model with 1 percent error, a 20th order model is valid up to 6 GHz, a 40th order model
up to 12 GHz, and an 80th order model past 20GHz (to about 26GHz).

Next, to demonstrate the efficiency of the recycled iterative scheme, consider refining
the discretization of the transmission line of the previous example and extracting a 50th
order model. Figure 6-21 shows the number of floating point operations (flops) required
for direct factorization with back substitution, a non-recycled Krylov-subspace method, a
recycled Krylov method, and multipole-accelerated recycled Krylov method, for various
levels of discretization. Our implementation, called FASTPEP, uses direct matrix-vector
products and thus the multipole-accelerated times are projected based on flop counts
from multipole-accelerated capacitance and inductance codes [47, 35]. The residual error
tolerance of the iterative algorithm had to be chosen as 107 so that the difference between

models produced by the iterative scheme versus direct factorization differed by less than



6.3. MODEL REDUCTION FOR THE ELECTROMAGNETOQUASISTATIC PROBLEM 135

10’
Size of Systam (# of State Variabies)

Figure 6-21: Flop count for different methods of computing P~ 'x.
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Figure 6-22: Various reduced order models for the connector

1% up to 100 GHz. As can be seen from the figure for an original 15409 state system,
the recycled scheme performs an order of magnitude faster than direct factorization, and
similarly, the multipole algorithm would provide ancther order of magnitude speed up.
Note that the CPU time comparison would be similar to the flop count comparison for
the direct factorization and direct recycied iterative scheme, however the overhead in

arranging the multipole computation would shift its curve slightly upward.

As the next example, we generate reduced order models for the 3D connector of
Figure 6-9 with slightly different terminating conditions. The results of generating models
with 80 and 250 states are compared to the exact response in Figure 6-22. Note the strong
improvement from 80 to 250 states.
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s

Figure 6-23: A ladder circuit to model 2D TEM transmission line

6.3.3 Quality of the Models

The methods of the last section provide efficient generation of a reduced order model,
but the quality of the model, with or without acceleration techniques, is discouraging.
For instance, there only seem to be a few resonances in the full model of Figure 6-22 yet

a 250 state model was required to match the response past just the first resonance.

To investigate this problem, consider the two dimensional line of length lcm from
Figure 6-7. The line is divided into 40 sections along its length. Each section has a 9
filament bundle, and each node has 12 panels leading to a 1704 element circuit. The line
is shorted at the far end instead of being matched in order to emphasize the resonances.
The admittance is then computed through a number of thc resonant frequencies of the
line using both the full model and a 21st order reduced model.

For comparison, given the exact per unit length 2D line parameters, L' and C’, a
similar 40 section ladder circuit is constructed as shown in Figure 6-23. The resistance
per unit length is chosen to roughly match the actual resistance at the first resonance
(and thus not at DC!). The admittance is computed for both this 80th order model and
also a 21st order reduced model. The four admittance functions are shown in Figure 6-24.
The solid lines in each figure represent the full PEEC model and the full ladder model.
The solid lines show qualitatively the same results: there is a periodic resonance with
the first occuring when the 1 cm structure is half a wavelength long. The resonant peaks
show a decay for the PEEC model since it captures skin effects. Similarly, one might
hope that because the frequency behavior of the two is roughly the same, the model order
reduction results for similar order would be the same. However, the 21st order reduced
models are very different. The PEEC 21st order model loses accuracy before the third
resonance, however the ladder model does not begin to degrade until the sixth.

To understand this phenomenon, Figures 6-25-a and 6-25-b plot the poles of the
admittance function for the four cases. In Figure 6-25-a, the poles of the exact admittance
lie evenly spaced on a vertical line in the s plane. Since the model order reduction was
performed about s = 0, one would expect a trend of pole matching starting at the origin
and moving outward as shown. In Figure 6-25-b, the full PEEC model has two sets



6.3. MODEL REDUCTION FOR THE ELECTROMAGNETOQUASISTATIC PROBLEM 137

— Ladder exact — PEEC exact
--- Ladder 21th order --- PEEC 21th order

0.15;¢ 1 0.15

0.1} .

Admittance

0.05

40 60 100
Freq (GHz)

(a)

Figure 6-24: Responses of various models for the transmission line. a) Exact and reduced
ladder circuit. b) Exact and reduced PEEC.

of vertically spaced poles. The complex conjugate pairs with real part in [—10°, —108]
are exactly pole-zero cancelled and do not affect the frequency response perhaps due
to symmetry in the two conductor geometry. The conjugate pairs with real part near
—5 x 10719 correspond to the vertical line of poies in Figure 6-25-a and are the dominant
poles of the system, responsible for the resonances in Figure 6-24-a. Note that they
do not lie along a vertical line due to skin effects. In addition, there are also a large
number of purely real poles. By noting the scaling of the plot, these real poles are the
closest to the origin (see closeup in Figure 6-26). For this reason, moment matching
about the origin tends to capture these poles first instead of the poles responsible for the
resonant behavior. These real poles result from the discretization of the conductor into
bundles of filaments. Since these filaments are mostly in the interior of the conductor, it
is difficult to excite these modes from the conductor terminals and so the the effect on
the frequency response of this large cluster of poles near the origin is weak; in fact all of
these poles are nearly or exactly cancelled by zeros and thus do not have a strong effect
on the admittance. In addition, as the order is raised beyond 21, most additional poles

are matched near the origin resulting in very slow convergence to the full model.

While the general behavior of moment-matching model order reduction algorithm
along the jw axis is not as well understood as methods such as Truncated Balanced
Realizations [45], we can gain some insight into trends involved in the process by returning

to the origins of the Arnoldi algorithm in eigenvalue computation.

To relate the eigenvalues to the poles of the transfer function, note that the poles are
the values of s which make (R + s£) singular in (6.62). Similarly, the eigenvalues of the
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Figure 6-25: Pole locations for a) RLC ladder model and b) the PEEC models. Note
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The Arnoldi method’s origin is in that of eigenvalue decomposition. The eigenvalues

matrix are precisely those values of A which make (A\] — R~ L) singular. Thus s =

of the Arnoldi H, matrix provide estimates for the eigenvalues of A = R™!L, and
the orthogonal V, provide for a projection of A into this space, VqTAVq =H, Itis
know that Krylov subspace methods such as Arnoldi, produce an H, which converges
to outlying eigenvalues, i.e. well separated eigenvalues, more rapidly than those in a
cluster [65]. From the eigenvalue plot of Figure 6-27 corresponding to the reciprocal of
the values in Figure 6-25, we see that poles nearest the origin correspond to eigenvalues
farthest from the origin and well separated (note the x-scale is in log units). Thus, the

model order reduction problem above will have an accurate estimate for those poles first,
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Figure 6-27: The eigenvalues (1/s) of the PEEC model. Note axis scaling

and converge toward the eigenvalues close to the origin last, as seen by the two conjugate
pairs of eigenvalues with real part near 10~!2 and 10~ of the 21° order model which
have not converged to poles of the full model. Thus the poles nearest the origin are
captured accurately first.

Left out of the above discussion is the influence of the input vectors, B. While A by
itself determines the poles of the system, A, B ard C determine the position of the zeros
of the transfer function. As we shall describe in a moment, a pole should not appear in
the reduced order model if B indicates that it is exactly or nearly cancelled by a zero.
But as discussed before, many of the poles along the real axis are canceled to machine
precision or have very small residues compared to the poles along the jw axis. Yet, as
observed in Figure 6-25, these weak or zeroed poles appear in the model before those
with a larger component in B.

What we see is that while the influence of B may be important for the first few
iterations, its influence is quickly diminished by roundoff errors. To illustrate this, first
note that a pole which is exactly cancelled by a zero should theoretically never appear in
the reduced order model because a cancelled mode is not in one of either the controlla-
bility or observability spaces defined by K,(A, B) = span{B, AB, A’B, ..., A"B} and
Ka((AT),C) = 3pan{C,(AT)C,(AT)2C,. ..,(AT)"C}, respectively [30]. In the above
example, the modes turn out to be in neither space and thus one would expect that can-
celled poles could not appear in the Arnoldi model which is based on a Krylov subspace
K«(A,B) = span{B, AB, A’B,..., A*B} C K.(A, B).
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However, because of finite precision arithmetic, directions are introduced intc B cor-
responding to cancelled modes. To understand this, let A = R~'L and write its eigen-

decomposition as

AX = XA (6.63)

where X = [z;z,...], with each z; as an eigenvector, and A is the diagonal matrix of
eigenvalues. For illustration, assume A is a normal matrix such that X can be chosen as an

orthonormal matrix and that the eigenvalues are distinct and are ordered A\; > A2 > ....

Let B = z,, so that A; is the only uncanceled mode. Then new directions are
introduced in finite precision arithmetic after a matrix-vector product: Ab = Mz, + ey
where ¥ is a random vector and ¢ is on the order of machine precision. The next vector
of the Arnoldi iteration, p' = Ab— Ab = ey is no longer 0 and contains components of

cancelled modes.

Next, cancelled modes will appear before real ones since at each iteration, the er-
roneous component of z; will be magnified by );. For instance, if B contains no z,
component, B = £, + £3+ 4 + - - - then at the iteration, k, at which (eAz)* > ();)F, the

cancelled mode (Az) will have a larger component in p* than z;.

6.3.4 Improving the model

The cluster of real, weak poles near the origin is not limited to the transmission line
example and has been observed in most examples. We thus seek a geometry independent
means of avoiding the matching of the weak poles near the origin. One thought is the
expansion about s = co which would select those poles last and model generation would
involve L~'R. But for most discretizations, there are multiple panels at the nodes, and
thus £ is singular. The nodal formulation approach could be used for such expansions

as pursued in [44].

Another approach is to use some multipoint scheme [8, 16]. The idea of such a
scheme is to match moments corresponding to multiple values of s rather than just
s = 0. However for any finite expansion point, matrix solution with (R + soL) is required
at each iteration, which is computationally expensive since £ has dense blocks. To reduce
the computational cost of this solution, fast techniques of iterative solution are developed

in the next section.
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6.4 Efficient Multipoint Approximation

As observed in the last section, moment matching about s = 0 generates particularly
poor results due to the large cluster of poles near the expansion point. The next course
is to consider expanding about some other point or points. Such multipoint expansions
have been explored previously for explicit moment matching in [8], and for the Krylov
subspace techniques in [16, 22]. Recently, a provably passive multipoint rational Arnoldi
algorithm has been derived for the reduction of RLC circuits with multiple inputs and
outputs [11].

For expansions about points 3¢ # 0, the moments become
k
m, = -B" {(R+s.L)'L} R'B.

Thus, to apply any maultipoint scheme for the large dense systems of (6.60), one must be
able to compute not only Lz rapidly, as in the last section, but also

(R + 8.L)7y. (6.64)

Again, (6.64) is too large for direct factorization and one is led to iterative solution.

6.4.1 Iterative Seclution

Iterative solution of

- ] - p- -
FR'"J + some Rm!a + 30mea 0 0 Y1 T
T T
z=(R+sL) 'y = Regots0liy, BRms+tsolms 0 M, Y2 | _ |22
0 0 0 M, Ys T3
I 0 MT MI soP7'| |94 EA
(6.65)

is particularly expensive because each matrix vector product of an iterative algorithm
requires an inner solve for P~1. Thus, the model reduction algorithm would have 3 levels
of nested loops: 1) the Arnoldi moment-matching iteration, 2) for each moment matched,
an iterative solve of (6.64), and 3) at each iteration for (6.64), a soluticn with P~1.
Fortunately, this last inner iteration can be avoided by realizing that computation of
(6.64) is very close to solving the mesh formulated circuit of (6.60) at a single frequency so
given an input vector y. Thus we can return to solving the second order form, (6.40), to
I Iv{;
compute | z; | = | I% |, and then compute V;} separately. However, (6.65) differs

I3 I,.’;.
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from (6.60) since y, is not generally zero, yet the last entry in the input for (6.60) is
always zero. Thus, to eliminate V;’, we use

Ia
sVP = PIM, M]] [ I’: ] + Py,. (6.66)
in place of (6.53) and arrive at
I, N
MZguM' | I, | = | v2— 2 M,,Py, | . (6.67)
I; Ys — ',%MpPyat

After solving (6.67), 4 = V¥ can be directly computed from (6.66). This approach avoids
the inner computation of P~z but more importantly, it returns us to the familiar mesh

matrix, (6.40), to which we can apply the effective preconditioning techniques of Part I.

6.4.2 Preconditioning

To follow the approach of Section 3.3, consider preconditioning with a block diagonal

version of Zgps. Thus, the preconditioner will be a factored version of
R+sel 0 1
M o, M (6.68)
0 P / So

where I and P are block diagonal. The results for a single solve for the backplane
connector of Figure 2-1 discretized into 5112 panels and 2592 filaments are shown in
Figure 6-28.

The performance is good compared to no preconditioning, but one can impreve this
preconditioner by noting that for fast capacitance extraction in [47], it was found that
block diagonal preconditioning for P is not adequate to capture the strong coupling
involved in charge interaction. For that reason, in [47] the overlapped preconditioner, or
local-inversion preconditiorer as it was named in Section 3.3, was developed. Since we
know this preconditioner works well for P, we wish to use it here in (6.68). Note that we
are not pre and post multiplying P by M as in Section 3.3 since we want only to find an
approximation to the inverse of P.

To apply the local inversion preconditioner in the mesh formulated preconditioner of
(6.68), it must be positive definite as discussed in Section 3.3. While this preconditioner
is not guaranteed to be positive definite, we have found from experiment that it produces

good results implying it must be “close” to positive definite. This can be explained by
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Figure 6-28: Convergence of iterative solver for one solve of M ZgyM7T using a block
diagonal preconditioner.

realizing that each row of the preconditioner, C, comes from the inverse of a small P
matrix. The P matrix is cloge to what is known as an “M™ matrix whose inverse is
known to be diagonally dominant [67]. Since each row of C is likely to be diagonally
dominant, then C is likely to be positive definite.

The preconditioner of the form (6.68) requires an approximation for P, but C is an
approximation of P~!. Thus, (6.68) would become

M [ R+ soL 0_1 ] M (6.69)

requiring an inversion of C, destroying its sparsity. C~! would be too dense to then
factor efficiently as a submatrix of (6.68).

Fortunately this inversion can be avoided. The form of (6.40) was desirable because
it avoided the inverse of P. Now, to avoid the inversion of C' we can return to the first
order form, (6.60), for the preconditioning step. More specifically, the preconditioning

step requires computing z,

. Tl n T
R+80L 0
M _ M‘ Y2 T9 . (6.70)
( [ 0 € ] )

Y3 I3
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Instead solve

. . . . - 1 - L
Rny+ 30Lmy Rmgs+30Llmgs 0 0 B Ty
o o . .
Rmfa + 30me3 Rys + 3oL, 0 Mpa Y2 _ T2 (671)
0 0 0 Mp y3 z3
i 0 MZ; Mg' s0C i i 0 ] | T4

and discard z4. The matrix is sparse and can be computed rapidiy with LU factorization.

With this new preconditioner, the iteration count is smaller as shown in Figure 6-29
and also the number of nonzeros is considerably less as shown in Table 6-1. The table and
figure also include a block preconditioner with smaller blocks than in Figure 6-28. This
smaller block preconditioner had roughly the same number of nonzeros in the unfactored
matrix as the local inversion preconditioner, yet it was worse in all respects, as shown in
the table.

The local inversion preconditioner required less time, fewer iterations and had many
fewer nonzeros in the factored matrix. Since the CPU time to factor each of these is
so small, choosing a denser preconditioner could significantly improve results. Such an
optimization will not be pursed here. Note that for a denser preconditioner, the CPU
time advantage of the local inversion preconditioner would become considerably more
significant.

These results give considerable improvement, however the stagnation for first ten

or so iterations requires further investigation. The shell preconditioning ideas of the
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Preconditioner | Number of non-zeros Factor time

iterations | before factor | after factor | (CPU secs)
Block Diag 1 49 288622 894175 14.2
Block Diag 2 55 152974 675278 9.4
Local Inversion 47 143438 276561 4.5

Table 6-1: Nonzeros and CPU time for factorization of only the preconditioner. Local
Inversion is for a block diagonal L and local inversion based C

Section 4.2 could be attempted here. Also, if multiple moments are to be matched at a
given 3o, recycling can further improve results as we see in the next section.

6.4.3 Recycling

Just as for s = 0, if many moments are to be matched at a given sp, then the
Krylov subspace from previous moments can be reused. Consider now computing multiple
moments at sp = j * 5 x 10,

For each iterative solve, we see that the number of iterations decreases as shown in
Figure 6-30. The 23 solves required a total of 422 matrix-vector products, compared to
the roughly 23 * 47 = 1081 that would be required without recycling, representing over
a factor of two speedup. This speedup is counterbalanced by the memory consumption
in storing the back vectors. For the above problem, storage of the dense L and P
matrices with 5112 panels and 2592 filaments requires 263 MB. Storage of the back
vectors with 6858 complex entries each requires 46 MB, which is over 17 percent of
the total storage. For this small problem, such memory is acceptable, but for larger
problems which require multipole or precorrected-FFT acceleration, such consumption is
unacceptable. By noting that the most benefit from recycling comes from the first few
solves in Figure 6-30, the storage of these back vectors could be stopped when memory

consumption is a concern.

6.4.4 Recap

To recap, we noted that the dominant cost of applying Arnoldi-based model order
reduction was in the repeated computation of Az where, for a nonzero expansion point
S0, A = (R + 8,L)' L. Since the submatrices of £ are L and P! which are dense ma-
trices of dimension 10* to 10° a practical algorithm must avoid O(n3) computation suck
as the explicit formation of P~! or (R + 8,L)~'. In Section 6.3.1 we used an iterative
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Figure 6-30: Convergence of iterative solver for M Zgp MT using recycling. Numbers for
each line correspond to solve number. With more vectors from recycling, the later solves
converge faster.

algorithm to avoid forming P~! in the computation of £z. Applying a preconditioned
iterative algorithm was straightforward since it was identical to capacitance computation
as explored in [47]. Since many solves must be performed, a recycling algorithm was em-
ployed for further speedup. To compute the (R + 8,L) 'y portion of the Az product,
iterative solution is not as straightforward. Since P~! is contained within (R + 8,L),
iterative solution would require two levels of nested solve. Fortunately, we can return
to a pure mesh form for this computation and then the iterative solve is instead for
(MZgpmM*)™. Not only does this form avoid the nested solve, but also provides a good
method of preconditioning from the previous work of Part 1. To apply these precon-
ditioning ideas to include the added capacitive portion of Zgys, we saw that the best
preconditioning approach for capacitance required us to return to the (R + 8,L£) block
form for just the preconditioning step. All these pieces provided for iterative solution in

fewer than 50 iterations and even fewer with recycling.

6.4.5 Results of Model Order Reduction about s # 0

With multipoint models now computationally tractable, we can begin to investigate
generating low order models. In this section we give results of expansions about nonzero
3 to give insight into the properties of the resulting models specific to interconnect anal-

ysis. The general topic of multipoint model generation via Krylov subspace methods is
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addressed in detail in [22].

Expansion points

In this section we explore choosing a single nonzero s as an expansion point and
discuss the quality of the resultant reduced order models.

Consider choosing ss € R and 3¢ > 0. From Section 6.3.3 where 3o = 0, a pole, s;, is
captured first when the value :'. is well separated from the other poles. Thus poles close
to the origin were captured first. For 3o # 0, poles for which 0—|-I'To is well separated come
first. Since all the poles have Re(s) < 0, no pole will be closer than the distance so. In
particular, the weak poles at the origin appear more as a cluster and we would expect
to capture the “separated” eigenvalues away from the origin more readily. Additionally,
the choice of a real expansion point implies solution of (6.67) will not involve complex
arithmetic.

The results for various so for a PEEC model for a 2D TEM transmission line are
shown in Figures 6-31 and 6-32. We see that for s = 0, many poles are matched at
the origin. sp = lell does slightly better but still places multiple poles near the origin,
8o = 3ell does quite well, and sp = 1lel2 does not seem to capture any single pole
accurately. To explain sy = 1lel2, the expansion point is too far away, and the entire
region of poles appears as a distance cluster for which convergence to any one pole is
slow. These results demonstrate that choosing an appropriate real expansion point is
difficult.

Instead, consider choosing sp € C. In fact, choosing purely imaginary expansion
points is the common choice since it is the response along the jw axis which is of interest.
As with choosing the origin, the poles nearest the expansion point will tend to appear
in the model first. For modei reduction for interconnect analysis, we can exploit that
the only large dense cluster of poles is at the origin, and thus in choosing an imaginary
expansion point away from the origin, the algorithm will not stagnate as for s = 0.

The advantage of complex so comes at a cost. Solving (6.67) will involve complex
arithmetic and is thus four times as expensive as the real case. However, to maintain a
real reduced order model, moments must be matched at conjugate pair points, sg and s,
It was pointed out in [57] that the z = z, + jz; and z* = z, — jz; resulting from solving
(6.67) at so and s, respectively, generate only two independent vectors, z, and z;, for
the Arnoldi algorithm. These directions can be computed with a single solve of (6.67)
and thus the cost of a complex expansion point is only double that of a real one.

For the TEM example, we choose 3o = £75x10!! and in Figure §-33 we see that model
order reduction matches the dominant poles starting at 35 x 10!'* and moving outward
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Figure 6-31: Poles of reduced model for 2D two conductor TEM line for different real

expansion points.
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Figure 6-32: Poles of reduced model for 2D two conductor TEM line for different real

expansion points.
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Figure 6-33: Admittance and poles of reduced model for 2D two conductor TEM line for
complex expansion point.

as desired. Note that almost every pole matched corresponds to a pole responsible for
the resonant peaks.

To take advantage of the ability to do multipoint expansions, consider matching
many moments at multiple points along the imaginary axis. Consider choosing 6 points,
S0 =0,%51x10", +52x10", +53x 10", +54x 10", +55x 10! and matching 1,4, 4,4,4,4
moments at each, respectively. The results for this 21° order model are shown in Fig-
ure 6-34 where we see that this approximation accurately captured the dominant poles to
a frequency comparable to that for the RLC ladder network of Figure 6-25-a and 6-24-a.

While the results in Figure 6-34 were the underlying goal, the choice of expansion
points and number of moments to match at each did not come without trial and error.
For instance, consider an 11th order model matching 2 moments at each point instead of
4 in the previous example. The results in Figure 6-35 show tha! even though the model
roughly captured the poles, it did not capture their magnitude well and thus did not give
a very accurate frequency response. Comparing to Figure 6-34, perhaps the influence
of all the weak poles near the origin has an effect at these higher frequency and more
moments should be matched at zero. This is not the case as showa in Figure 6-36. We
now match 5 moments at s = 0 instead of 1, and while the response for the first two
resonances near s = () improved, near the third around 40 GHz, it has worsened. Also, the
pole for the second resonance has moved away from its exact value but the magnitude of
the resonance is close to the exact. Both these examples indicate that strictly observing
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Figure 6-34: Admittance and poles of reduced model for 2D two conductor TEM line for
complex expansion points sp = 0,71 % 10", +52x 10, 53 x 10!, +-54 x 10, +35 x 10!
and matching 1,4,4,4,4,4 moments at each.

pole locations is not a direct measures of error in the frequency response.

These examples illustrate the need for sophisticated methods of error analysis and
expansion point and order selection. For the provably passive multipoint Krylov-subspace
Arnoldi schemes used here, some of ideas of Grimme [22] might work here.

The point of the above discussion was to describe the need for automatic multipoint
methods, but such methods could not be applied unless the the algorithms of this chapter
make problems for n > 10* computationally possible. Next we show that indeed they do.

Results for a Practical Example

Finally, consider a real example to show the computational efficiency of multipoint
expansions via the algorithms of this chapter. We generate a 50th order model for the
half of the backplane connector of Figure 2-1. The discretization generated 1560 panels
and 480 filaments. For simplicity, only one input and one output is modeled, B = b,
corresponding to exciting only one of the middle pins. Assume we desire an accurate
frequency response up to w = 10'1, Since poles tend to be matched outward from the
expansion point, we match 48 moments about a midpoint so = j5 x 10!° and then two
at so = 0 to insure accurate capture of the DC behavior. To match moments at multiple
points, as in the previous section, we use the algorithm in [11]. The self-admittance of

the excited pin is shown in Figure 6-37. The result is compared to a much higher order
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Figure 6-35: Admittance and poles of reduced model for 2D two conductor TEM line for
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Figure 6-36: Admittance and poles of reduced model for 2D two conductor TEM line for
complex expansion points sg = 0,£51x 10, 72 x 10", £53 x 10", £54 x 10!, +55 x 101!

and matching 5,2, 2,2, 2,2 moments at each.
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Figure 6-38: Poles of reduced model and higher order model for part of the backplane
connector

model of size 250. The 50th order model matches well up to around 15 GHz, compared
to the poor response of a 50th order model for which all moments were matched at s = 0.
The poles captured in the reduced model are shown in Figure 6-38. The many real poles
in the original model are greater than 107 and are out of range of the plot.

To observe the computational efficiency, Figure 6-39 shows the total CPU floating
point operations (flops) required to generate a 50th order model for the full connector
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Figure 6-39: CPU flops required to generate a 50th order model.

for various levels of discretization. As can be seen, if (6.67) were solved by direct fac-
torization, the flops would grow as O(r3), but with the iterative solver, the growth is
only O(n?). Note that for a modest problem size still under 10* elements, the iterative
algorithm is an order of magnitude faster than direct factorization.

With efficient iterative solution in place, the Multipole algorithm could be directly
applied to bring the operation count and memory growth to O(n). The benefits of such
an approach are shown in Figure 6-40. We see that using multipole acceleration is roughly
a factor of 5 improvement in both time and memory over dense matrix vector products.

6.5 Closing

In this chapter we developed a mesh formulated approach for passive model order
reduction of the full quasistatic Maxwell’s equations. We found that model reduction
about s = 0 stagnates due to a common feature of the PEEC method which generates
clusters of poles near the origin. The advantage of the mesh formulation became apparent
for computing multipoint expansions because the first order state-space form could be
reformulated in a pure mesh form for just the computationally intensive portion of the
Arnoldi algorithm. From a pure mesh form, effective preconditioning and multipole
acceleration could be applied to give an algorithm of nearly O(n) flop and memory
growth which, for n & 104, was 50 times faster and consumed 5 times less memory than
direct factorization. Such growth rates make such algorithms essential as problems near
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Figure 6-40: Projections using a multipole algorithm for the dense matrix vector product
for the 50th order connector model. a) Flop count for the total matrix vector product
times. b) Memory consumption.

n = 10°.

Issues remain for the choice of expansion points. Having the exact response and the
exact position of the poles for the two conductor problem of Figure 6-34 gave guidance
for choosing the so. Even with such information, the choice of moments to match at sq
required some trial and error to derive a good model; But even worse, for real problems
the exact information is not available. For n > 10* computing all the poles would
be more expensive than the direct factorization we avoid. For this reason, methods of

automatically choosing these points and expansion order are necessary.



Summary and Future Work

7.1 Summary

This thesis presented techniques for efficient parasitic extraction to model and simu-
late complicated three-dimensional interconnect structures. For complicated structures,
the size of the linear systems that must be solved exceeds 10* and direct factorization
approaches were impractical.

The focus was first in a regime for which accurately modeling the resistance and induc-
tance was necessary. As reviewed in Chapter 3, computing the inductance at individual
frequency points could be accelerated with a preconditioned iterative solver. When each
iteration of the solver is computed with the Fast Multipole algorithm the overall algc-
rithm is reduced to G(n). While the growth rate provided orders of magnitude speedup
over direct factorization approaches such as Gaussian Elimination, we saw in Chapter 4
that developing a nonuniform discretization for planar structures can reduce n itself by
an order of magnitude.

The algorithms of Chapter 3 and 4 capture the frequency dependent resistance and
inductance at specific frequency points only. However, often the end use of interconnect
models is for simulation with nonlinear devices. Such simulation must be performed in the
time domain and knowledge of the resistance and inductance at individual frequencies
is not adequate. Chapter 5 discussed methods of efficiently generating compact yet
accurate time domain descriptions of the interconnect. Explicitly computing the terms
of the power series to compute a Padé approximant is an ill-conditioned approach which
limits the accuracy of the models beyond a very low order. Instead, the Arnoldi approach
was developed to generate numerically robust models. Since a ¢** order Arnoldi model
does not match the optimal number of moments of the power series it is not a Padé
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approximant. This loss of moments however, did not seem to impact the accuracy.
Additionally, the freedom in not matching as many moments permitted the development
in [50] of a variant of the Arnoldi algorithm which preserved passivity. The Arnoldi
approach as a circuit reduction technique is applicable to not only the RL domain as in
Part I but also the RLC domain of Chapter 6.

As the frequencies of interest for these interconnect structures approach or exceed the
point where the structures are self-resonant, single lumped models are no longer valid
and thus a distributed RLC approach was pursued in Chapter 6. The derivation of the
distributed RLC model from Maxwell’s equations followed a mesh formulation approach
to exploit algorithms for efficient iterative solution. In order to apply Arnoldi-based
model order reduction and also to capture the steady state behavior in simulation, care
was taken to insure that the first order state-space form of the mesh formulation had a
DC solution.

With a mesh formulated approach for passive model order reduction of the full qua-
sistatic Maxwell’s equations, we found that model reduction about s = 0 stagnates, that
is, the reduced order transfer function along the jw axis converges slowly to the exact
transfer function. This behavior was attributed to the large clusters of poles near the
origin, a common feature of the PEEC RLC method. A common solution to such a prob-
lem is to match moments about some s # 0. Computations for the Arnoldi algorithm
for s # 0 however, would be extremely expensive due to the required nested dense itera-
tive solve. The advantage of the mesh formulation then became apparent for computing
expansions at s # 0 because the first order state-space form could be reformulated in a
pure mesh form. From a pure mesh form, effective preconditioning and multipole accel-
eration could be applied to give an algorithm of nearly O(n) flop and memory growth
which, for n &~ 10%, was 50 times faster and consumed 5 times less memory than direct
factorization. This improvement in performance is modest since these growth rates will

make such algorithms essential as problems near n = 105.

7.2 Future Work

Chapter 6 derived a computationally efficient method of automatically generating
passive reduced order models for complicated three-dimensional interconnect under the
quasistatic assumption. We saw that an accurate low order model could be generated
for the backplane connector. However the method is not fully automatic in regard to
error control. An accurate model was generated only after comparing the response of the

reduced model to the exact model. Unfortunately, the exact response is generally not
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available for comparison. It is thus not clear how to fully automate the generation of a
good model.

Methods to investigate include the Complex Frequency Hopping [8] approach which
provides a heuristic for multipoint model generation, and more recently the work of [22]
develops error estimates along the jw axis which can be used with a muitipoint passive
block Krylov-method in [11].

But instead of pursing a multipoint approach, perhaps a reformulation of the integral
equation can avoid the many weak poles near the origin which stalled the expansion
about s = 0. For instance, the many weak poles can be connected to the many interior
filaments required to capture skin effects. Perhaps a surface integral formulation similar
to that of [66] would not have such poles and expansions about s = 0 would be sufficient.

Even with a surface formulation for which we can match all moments at s = 0,
when have enough moments been matched? That is, how can we say precisely when the
error is small. Methods involving truncated balanced realizations [45] have long been
used in the system theory field for model order reduction. However, such an approach
requires the O(n?®) solution of the Lyapunov equation which limits the use of such an
approach. Recently, Krylov subspace techniques have been applied to solving the Lya-
punov equations for balanced truncation [28] with limited success and perhaps warrant
further investigation.

Finally, all the methods of this thesis rely on the quasistatic assumption. Model re-
duction approaches which use the full Maxwell’s equations (full-wave) are much more
computationally expensive as investigated in [52). There is thus a strong need to deter-
mine to what extent in frequency the quasistatic assumption is valid. In Appendix A it
was roughly investigated in the frequency domain, however this comparisen should be
more carefully investigated in both the frequency domain and the time domain to deter-

mine when this large computational penalty of full-wave calculations must be taken.



158 CHAPTER 7. SUMMARY AND FUTURE WORK



Quasistatic Versus Full Wave
Analysis

In this appendix we approximate the admittance for the full Maxwell’s equations
and compare it with quasistatic analysis to explore the limits of quasistatic analysis.
We will analyze the two-conductor line of uniform cross section previously shown in
Figure 6-7. We saw in Figure 6-8 that driving a 1 cm version of this line with a matched
load produced good results up to 30 GHz where the structure is one wavelength long.
Similarly in Figure 6-24 we saw that if the line is shorted instead of matched, quasistatic
analysis captures the location of the resonances correctly.

In this section we will look at this phenomenon in more detail. The width and
thickness of the two conductors is 37 pm and 15 um, respectively, as before. The length
is extended to 2cm so that at 30 GHz, the structure is two wavelengths long. The
structure is terminated with a 10 § resistor. In the next experiments, we will vary the
separation between the conductors.

To apply the quasistatic formulation of Chapter 6, the conductors are discretized into
200 sections along their length. Skin effect is not modeled and thus each section consists
of one filament giving a total of 400 filaments. A similar approach is used for the panels
except only one panel on each section is used instead of covering all four sides of the
conductor. Even though such a discretization is poor for matching analytic results it is
adequate for comparison to full wave as will be done next.

To compute full wave solutions, we no longer assume that the phase term, e*/cI" -7l ~
1 and must use (6.11) and (6.20) for the potentials. The L and P matrices which would

result from this change we write as L/*!! and P/*# and could be approximated as
L{iull — L'_J_c-gro
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where L;; is the entry in the quasistatic partial inductance matrix from (6.26) and ro
is the center to center distance between filaments i and j. The same approach could
be used for P/*!. This center to center approximation of the e*/<I" ="'l term is poor for
nearby filaments. Using this approximation, the comparison to the quasistatic solution
was found to be poor even for low frequencies for which the quasistatic solution should

compare well. For this reason the phase term is neglected for ro < 122,

2y 10-2
Lijec™ ifrg > e

. 10—2
L,'J' if To S 21

full _
L;" =

Thus this experiment only observes the effect of the “far away” phase terms on the ad-
mittance. The length -l—g;—z corresponds to using a quasistatic approximation for filaments
not more than three away along a conductor. Note that at 30 GHz, the neglected phase
a distance 12" is

&5 = 0.96593 + 0.25882;

which corresponds to a 25 percent error and at 3 GHz
&% = 0.99966 + 0.02618;

which is 2.6 percent in error.

Using this approximation, the admittance at discrete frequency points was computed
for separations 0.01,0.1,1cm with the conductivity of copper. At this conductivity, the
DC resistance of the conducting loop, without the 10 Q termination, is 1.5). The mag-
nitude, phase, and error are shown in Figures A-1, A-2, and A-3. For comparison, the

figures also show the solution for a truncated quasistatic solution where

0 if g > n

Ltrunc _
.. = . 2
Y L,'J' lf To S 1

and similarly for P'**"¢, The truncated solution is included to compare e¥/<IT-T'l 1 to

./c|1‘—1"|
T

The results show that for small separation in Figure A-1, the quasistatic solution does

~ 0.

well and the truncated quasistatic does not. In other words, the distant phase terms can
be neglected, but not the entire L;;. When the separation increases to 0.1cm, quasistatics
is superior to truncated and is roughly accurate to one percent until the structure is haif
a wavelength (7.5 GHz). As the frequency rises, the error is below 10 percent until the
structure is a wavelength long (15 GHz). Note that the magnitude of the admittance
appears accurate in Figure A-2, but the phase deviates above 15 GHz. Finally, for large
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Figure A-1: Magnitude, phase, and error compared to full wave for a two conductor
copper (o = 5.8 x 107(€tm)~!) transmission line, 1 cm long, separated by 0.01cm.

separation in Figure A-3, the behavior is captured only qualitatively. The phase is quite
different and the height of the resonances is overestimated.

Skin effect was not modeled, and thus the loss was underestimated. Since the maxi-
mum error occurs at the resonance points, we next observe if higher loss would damp the
resonances and improve the comparison. The conductivity was decreased by two orders
of magnitude. At this conductivity, the DC resistance of the conducting leop, without
the 10 ) termination, is 150Q2. The actual skin effected resistance at 30 GHz is 3012.
Even with the higher loss, the results shown in Figures A-4, A-5, and A-6 show only
improvement at the resonances and are otherwise similar as before.

In summary, these results suggest that if error up to a few percent can be tolerated,

then quasistatics can be used to capture the admittance parameters for structures on the
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Figure A-2: Magnitude, phase, and error compared to full wave for a two conductor
copper (o = 5.8 x 107(22m)™1) transmission line, 1 cm long, separated by 0.1cm.

order of a wavelength long with separations small compared to a wavelength. For larger

separation, quasistatics captures the behavior only qualitatively.

These results rely on the nearby phase terms (ry <

10—2
24

) being negligible. This

assumption should be tested more thoroughly by computing L/ more accurately for
p 8 8 Ly y

the nearby terms.
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Figure A-3: Magnitude, phase, and error compared to full wave for a two conductor
copper (o = 5.8 x 107(2m)~!) transmission line, 1 cm long, separated by lem.
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resistivity (o = 5.8 x 10°(2m)~!) transmission line, 1 ¢m long, separated by 0.01lcm.
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Figure A-5: Magnitude, phase, and error compared to full wave for a two conductor high
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