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We discuss data representation which can be learned automatically
from data, are invariant to transformations, and at the same time selec-
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1 Introduction

This paper considers the problem of learning ”good” data representation which
can lower the need of labeled data (sample complexity) in machine learning
(ML). Indeed, while current ML systems have achieved impressive results in a
variety of tasks, an obvious bottleneck appears to be the huge amount of labeled
data needed. This paper builds on the idea that data representation, which are
learned in an unsupervised manner, can be key to solve the problem. Classical
statistical learning theory focuses on supervised learning and postulates that a
suitable hypothesis space is given. In turn, under very general conditions, the
latter can be seen to be equivalent to a data representation. In other words,
data representation and how to select and learn it, is classically not considered
to be part of the learning problem, but rather as a prior information. In practice
ad hoc solutions are often empirically found for each problem.

The study in this paper is a step towards developing a theory of learning
data representation. Our starting point is the intuition that, since many learning
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tasks are invariant to transformations of the data, learning invariant represen-
tation from “unsupervised” experiences can significantly lower the ”size” of the
problem, effectively decreasing the need of labeled data. In the following, we
formalize the above idea and discuss how such invariant representations can
be learned. Crucial to our reasoning is the requirement for invariant represen-
tations to satisfy a form of selectivity, broadly referred to as the property of
distinguishing images which are not one the transformation of the other. In-
deed, it is this latter requirement that informs the design of non trivial invariant
representations. Our work is motivated by a theory of cortex and in particular
visual cortex [5].

Data representation is a classical concept in harmonic analysis and signal
processing. Here representations are typically designed on the basis of prior
information assumed to be available. More recently, there has been an effort
to automatically learn adaptive representation on the basis of data samples.
Examples in this class of methods include so called dictionary learning [30],
autoencoders [6] and metric learning techniques (see e.g. [33]). The idea of
deriving invariant data representation has been considered before. For example
in the analysis of shapes [19] and more generally in computational topology [10],
or in the design of positive definite functions associated to reproducing kernel
Hilbert spaces [12]. However, in these lines of study the selectivity properties of
the representations have hardly been considered. The ideas in [22, 28] are close
in spirit to the study in this paper. In particular, the results in [22] develop a
different invariant and stable representation within a signal processing frame-
work. In [28] an information theoretic perspective is considered to formalize the
problem of learning invariant/selective representations.

In this work we develop a machine learning perspective closely following
computational neuroscience models of the information processing in the visual
cortex [15, 16, 26]. Our first and main result shows that, for compact groups,
representation defined by nonlinear group averages can be shown to be invariant,
as well as selective, to the action of the group. While invariance follows from
the properties of the Haar measure associated to the group, selectivity is shown
using probabilistic results that characterize a probability measure in terms of
one dimensional projections. This set of ideas, which form the core of the paper,
is then extended to local transformations, and multilayer architectures. These
results bear some understanding to the nature of certain deep architecture, in
particular neural networks of the convolution type.

The rest of the paper is organized as follows. We describe the concept of
invariance and selective representation in Section 2 and their role for learning in
Section 3. We discuss a family of invariant/selective representation for transfor-
mations which belong to compact groups in Section 4 that we further develop in
Sections 5 and 6. Finally we conclude in Section 7 with some final comments.
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2 Invariant and Selective Data Representations

We next formalize and discuss the notion of invariant and selective data repre-
sentation, which is the main focus of the rest of the paper.

We model the data space as a (real separable) Hilbert space I and denote by
〈·, ·〉 and ‖·‖ the inner product and norm, respectively. Example of data spaces
are one dimensional signals (as in audio data), where we could let I ⊂ L2(R), or
two dimensional signals (such as images), where we could let I ⊂ L2(R2). After
discretization, data can often be seen as vectors in high-dimensional Euclidean
spaces, e.g. I = Rd. The case of (digital) images serves as a main example
throughout the paper.

A data representation is a map from the data space in a suitable represen-
tation space, that is

µ : I → F .
Indeed, the above concept appears under different names in various branch of
pure and applied sciences, e.g. it is called an encoding (information theory), a
feature map (learning theory), a transform (harmonic analysis/signal process-
ing) or an embedding (computational geometry).

In this paper, we are interested in representations which are invariant (see
below) to suitable sets of transformations. The latter can be seen as a set of
maps

G ⊂ {g | g : I → I}.
Many interesting examples of transformations have a group structure. Recall
that a group is a set endowed with a well defined composition/multiplication
operation satisfying four basic properties,

• closure: gg′ ∈ G, for all g, g′ ∈ G

• associativity: (gg′)g′′ = g(g′g′′), for all g, g′, g′′ ∈ G

• identity: there exists Id ∈ G such that Idg = gId = g, for all g ∈ G.

• invertibility: for all g ∈ G there exists g−1 ∈ G such that (gg−1) = Id.

There are different kind of groups. In particular, “small” groups such as com-
pact (or locally compact, i.e. a group that admits a locally compact Hausdorff
topology such that the group operations of composition and inversion are con-
tinuous.) groups, or “large” groups which are not locally compact. In the case of
images, examples of locally compact groups include affine transformations (e.g.
scaling, translations, rotations and their combinations) which can be thought
of as suitable viewpoint changes. Examples of non locally compact groups are
diffeomorphisms, which can be thought of as various kind of local or global
deformations.

Example 1. Let I ∈ L2(R). A basic example of group transformation is given
by the translation group, which can be represented as a family of linear operators

Tτ : L2(R)→ L2(R), TτI(p) = I(p− τ), ∀p ∈ R, I ∈ I,
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for τ ∈ R. Other basic examples of locally compact groups include scaling (the
multiplication group) and affine transformations (affine group). Given a smooth
map d : R→ R a diffeomorphism can also be seen as a linear operator given by

Dd : L2(R)→ L2(R), DdI(p) = I(d(p)), ∀p ∈ R, I ∈ I.

Note that also in this case the representation is linear.

Clearly, not all transformations have a group structure– think for example of
images obtained from three dimensional rotations of an object.
Given the above premise, we next discuss, properties of data representation with
respect to transformations. We first add one remark about the notation.

Remark 1 (Notation: Group Action and Representation). If G is a group
and I a set, the group action is the map (g, x) 7→ g.x ∈ I. In the following,
with an abuse of notation we will denote by gx the group action. Indeed, when
I is a linear space, we also often denote by g both a group element and its
representation, so that g can be identified with a linear operator. Throughout
the article we assume the group representation to be unitary [25].

To introduce the notion of invariant representation, we recall that an orbit
associated to an element I ∈ I is the set OI ⊂ I given by OI = {I ′ ∈ I | I ′ =
gI, g ∈ G}. Orbits form a partition of I in equivalence classes, with respect to
the equivalence relation,

I ∼ I ′ ⇔ ∃ g ∈ G such that gI = I ′,

for all I, I ′ ∈ I. We have the following definition.

Definition 1 (Invariant Representation). We say that a representation µ is
invariant with respect to G if

I ∼ I ′ ⇒ µ(I) = µ(I ′),

for all I, I ′ ∈ I.

In words, the above definition states that if two data points are one the trans-
formation of the other, than they will have the same representation. Indeed, if
a representation µ is invariant

µ(I) = µ(gI)

for all I ∈ I, g ∈ G. Clearly, trivial invariant representations can be defined, e.g.
the constant function. This motivates a second requirement, namely selectivity.

Definition 2 (Selective Representation). We say that a representation µ is
selective with respect to G if

µ(I) = µ(I ′)⇒ I ∼ I ′,

for all I, I ′ ∈ I.
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Together with invariance, selectivity asserts that two points have the same
representation if and only if they are one a transformation of the other. Sev-
eral comments are in order. First, the requirement of exact invariance as in
Definition 1, seems desirable for (locally) compact groups, but not for non lo-
cally compact group such as diffeomorphisms. In this case, requiring a form of
stability to small transformations seems to be natural, as it is more generally
to require stability to small perturbations, e.g. noise (see [22]). Second, the
concept of selectivity is natural and requires that no two orbits are mapped
in the same representation. It corresponds to an injectivity property of a rep-
resentation on the quotient space I/ ∼. Assuming F to be endowed with a
metric dF , a stronger requirement would be to characterize the metric embed-
ding induced by µ, that is to control the ratio (or the deviation) of the distance
of two representation and the distance of two orbits. Indeed, the problem of
finding invariant and selective representation, is tightly related to the problem
of finding an injective embedding of the quotient space I/ ∼.

We next provide a discussion of the potential impact of invariant represen-
tations on the solution of subsequent learning tasks.

3 From Invariance to Low Sample Complexity

In this section we first recall how the concepts of data representation and hy-
pothesis space are closely related, and how the sample complexity of a supervised
problem can be characterized by the covering numbers of the hypothesis space.
Then, we discuss how invariant representations can lower the sample complexity
of a supervised learning problem.

Supervised learning amounts to finding an input-output relationship on the
basis of a training set of input-output pairs. Outputs can be scalar or vector
valued, as in regression, or categorical, as in multi-category or multi-label clas-
sification, binary classification being a basic example. The bulk of statistical
learning theory is devoted to study conditions under which learning problems
can be solved, approximately and up to a certain confidence, provided a suitable
hypothesis space is given. A hypotheses space is a subset

H ⊂ {f | f : I → Y},

of the set of all possible input output relations. As we comment below, under
very general assumptions hypothesis spaces and data representations are equiv-
alent concepts.

3.1 Data Representation and Hypothesis Space

Indeed, practically useful hypothesis spaces are typically endowed with a Hilbert
space structure, since it is in this setting that most computational solutions can
be developed. A further natural requirement is for evaluation functions to be
well defined and continuous. This latter property allows to give a well defined
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meaning of the evaluation of a function at every points, a property which is ar-
guably natural since we are interested in making predictions. The requirements
of 1) being a Hilbert space of of functions and 2) have continuous evaluation
functionals, define so called reproducing kernel Hilbert spaces [24]. Among other
properties, these spaces of functions are characterized by the existence of a fea-
ture map µ : I → F , which is a map from the data space into a feature space
which is itself a Hilbert space. Roughly speaking, functions in a RKHS H with
an associated feature map µ can be seen as hyperplanes in the feature space, in
the sense that ∀f ∈ H, there exists w ∈ F such that

f(I) = 〈w, µ(I)〉F , ∀I ∈ I.

The above discussion illustrates how, under mild assumptions, the choice of a
hypothesis space is equivalent to the choice of a data representation (a feature
map). In the next section, we recall how hypothesis spaces, hence data repre-
sentation, are usually assumed to be given in statistical learning theory and are
characterized in terms of sample complexity.

3.2 Sample Complexity in Supervised Learning

Supervised statistical learning theory characterizes the difficulty of a learning
problem in terms of the ”size” of the considered hypothesis space, as measured
by suitable capacity measures. More precisely, given a measurable loss function
V : Y × Y → [0,∞), for any measurable function f : I → Y the expected error
is defined as

E(f) =

∫
V (f(I), y)dρ(I, y)

where ρ is a probability measure on I×Y. Given a training set Sn = {(I1, y1), . . . ,
(In, yn)} of input-output pairs sampled identically and independently with re-
spect to ρ, and a hypothesis space H, the goal of learning is to find an approx-
imate solution fn = fSn

∈ H to the problem

inf
f∈H
E(f)

The difficulty of a learning problem is captured by the following definition.

Definition 3 (Learnability and Sample Complexity). A hypothesis space H is
said to be learnable if, for all ε ∈ [0,∞), δ ∈ [0, 1], there exists n(ε, δ,H) ∈ N
such that

inf
fn

sup
ρ

P
(
E(fn)− inf

f∈H
E(f) ≥ ε

)
≤ δ. (1)

The quantity n(ε, δ,H) is called the sample complexity of the problem.

The above definition characterizes the complexity of the learning problem
associated to a hypothesis space H, in terms of the existence of an algorithm
that, provided with at least n(ε, δ,H) training set points, can approximately
solve the learning problem on H with accuracy ε and confidence δ.
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The sample complexity associated to a hypothesis space H can be derived
from suitable notions of covering numbers, and related quantities, that char-
acterize the size of H. Recall that, roughly speaking, the covering number
Nε associated to a (metric) space is defined as the minimal number of ε balls
needed to cover the space. The sample complexity can be shown [31, 9] to be
proportional to the logarithm of the covering number, i.e.

n(ε, δ,H) ∝ 1

ε2
log

Nε
δ
.

As a basic example, consider I to be d-dimensional and a hypothesis space of
linear functions

f(I) = 〈w, I〉 , ∀I ∈ I, w ∈ I,
so that the data representation is simply the identity. Then the ε-covering
number of the set of linear functions with ‖w‖ ≤ 1 is given by

Nε ∼ ε−d.

If the input data lie in a subspace of dimension s ≤ d then the covering number
of the space of linear functions becomes Nε ∼ ε−s. In the next section, we
further comment on the above example and provide an argument to illustrate
the potential benefits of invariant representations.

3.3 Sample Complexity of the Invariance Oracle

Consider the simple example of a set of images of p × p pixels each containing
an object within a (square) window of k×k pixels and surrounded by a uniform
background. Imagine the object positions to be possibly anywhere in the image.
Then it is easy to see that as soon as objects are translated so that they not
overlap we get an orthogonal subspace. Then, we see that there are r2 = (p/k)2

possible subspaces of dimension k2, that is the set of translated images can be
seen as a distribution of vectors supported within a ball in d = p2 dimensions.
Following the discussion in the previous section the best algorithm based on
a linear hypothesis space will incur in a sample complexity proportional to
d. Assume now to have access to an oracle that can ”register” each image so
that each object occupies the centered position. In this case, the distribution
of images is effectively supported within a ball in s = k2 dimensions and the
sample complexity is proportional to s rather than d. In other words a linear
learning algorithm would need

r2 = d/s

less examples to achieve the same accuracy. The idea is that invariant repre-
sentations can act as an invariance oracle, and have the same impact on the
sample complexity. We add a few comments. First, while the above reasoning
is developed for linear hypothesis space, a similar conclusion holds if non linear
hypothesis spaces are considered. Second, one can see that the set of images
obtained by translation is a low dimensional manifold, embedded in a very high

7



dimensional space. Other transformations, such as small deformation, while be-
ing more complex, would have a much milder effect on the dimensionality of the
embedded space. Finally, the natural question is how invariant representations
can be learned, a topic we address next.

4 Compact Group Invariant Representations

Consider a set of transformations G which is a locally compact group. Recall
that each locally compact groups has a finite measure naturally associated to
it, the so called Haar measure. The key feature of the Haar measure is its
invariance to the group action, and in particular for all measurable functions
f : G → R, and g′ ∈ G, it holds

∫
dgf(g) =

∫
dgf(g′g).

The above equation is reminding of the invariance to translation of Lebesgue
integrals and indeed, the Lebesgue measure can be shown to be the Haar mea-
sure associated to the translation group. The invariance property of the Haar
measure associated to a locally compact group, is key to our development of
invariant representation, as we describe next.

4.1 Invariance via Group Averaging

The starting point for deriving invariant representations is the following direct
application of the invariance property of the Haar measure.

Theorem 1. Let ψ : I → R be a, possibly non linear, functional on I. Then,
the functional defined by

µ : I → R, µ(I) =

∫
dgψ(gI), I ∈ I (2)

is invariant in the sense of Definition 1.

The functionals ψ, µ can be thought to be measurements, or features, of the
data. In the following we are interested in measurements of the form

ψ : I → R, ψ(I) = η(〈gI, t〉), I ∈ I, g ∈ G (3)

where t ∈ T ⊆ I the set of unit vectors in I and η : R → R is a possibly
non linear function. As discussed in [4], the main motivation for considering
measurements of the above form is their interpretation in terms of biological or
artificial neural networks, see the following remarks.

Remark 2 (Hubel and Wiesel Simple and Complex Cells [14]). A measurement
as in (3) can be interpreted as the output of a neuron which computes a possibly
high-dimensional inner product with a template t ∈ T . In this interpretation,
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η can be seen as a, so called, activation function, for which natural choices are
sigmoidal functions, such as the hyperbolic tangent or rectifying functions such
as the hinge. The functional µ, obtained plugging (3) in (2) can be seen as the
output of a second neuron which aggregates the output of other neurons by a
simple averaging operation. Neurons of the former kind are similar to simple
cells, whereas neurons of the second kind are similar to complex cells in the
visual cortex.

Remark 3 (Convolutional Neural Networks [20]). The computation of a mea-
surement obtained plugging (3) in (2) can also be seen as the output of a so
called convolutional neural network where each neuron, ψ is performing the in-
ner product operation between the input, I, and its synaptic weights, t, followed
by a pointwise nonlinearity η and a pooling layer.

A second, reason to consider measurements of the form (3) is computational
and, as shown later, have direct implications for learning. Indeed, to compute
an invariant feature, according to (2) it is necessary to be able to compute
the action of any element I ∈ I for which we wish to compute the invariant
measurement. However, a simple observation suggests an alternative strategy.
Indeed, since the group representation is unitary, then

〈gI, I ′〉 =
〈
I, g−1I ′

〉
, ∀I, I ′ ∈ I

so that in particular we can compute ψ by considering

ψ(I) =

∫
dgη(〈I, gt〉), ∀I ∈ I, (4)

where we used the invariance of the Haar measure. The above reasoning implies
that an invariant feature can be computed for any point provided that for t ∈
T , the sequence gt, g ∈ G is available. This observation has the following
interpretation: if we view a sequence gt, g ∈ G, as a ”movie” of an object
undergoing a family of transformations, then the idea is that invariant features
can be computed for any new image provided that a movie of the template is
available.

While group averaging provides a natural way to tackle the problem of in-
variant representation, it is not clear how a family of invariant measurements
can be ensured to be selective. Indeed, in the case of compact groups selectivity
can be provably characterized using a probabilistic argument summarized in the
following three steps:

1. A unique probability distribution can be naturally associated to each orbit.

2. Each such probability distributions can be characterized in terms of one-
dimensional projections.

3. One dimensional probability distributions are easy to characterize, e.g. in
terms of their cumulative distribution or their moments.
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We note in passing that the above development, which we describe in detail
next, naturally provides as a byproduct indications on how the non linearity
in (3) needs to be chosen and thus gives insights on the nature of the pooling
operation.

4.2 A Probabilistic Approach to Selectivity

Let I = Rd, and P(I) the space of probability measures on I. Recall that
for any compact group, the Haar measure is finite, so that, if appropriately
normalized, it correspond to a probability measure.

Assumption 1. In the following we assume G to be Abelian and compact and
the corresponding Haar measure to be normalized.

The first step in our reasoning is the following definition.

Definition 4 (Representation via Orbit Probability). For all I ∈ I, define the
random variable

ZI : (G, dg)→ I, ZI(g) = gI, ∀g ∈ G,

with law

ρI(A) =

∫

Z−1
I (A)

dg,

for all measurable sets A ⊂ I. Let

P : I → P(I), P (I) = ρI , ∀I ∈ I.

The map P associates to each point a corresponding probability distribution.
From the above definition we see that we are essentially viewing an orbit as a
distribution of points, and mapping each point in one such distribution. Then
we have the following result.

Theorem 2. For all I, I ′ ∈ I

I ∼ I ′ ⇔ P (I) = P (I ′). (5)

Proof. We first prove that I ∼ I ′ ⇒ ρI = ρI′ . Recalling that if Cc(I) is the
set of continuous functions on I with compact support, ρI can be alternatively
defined as the unique probability distribution such that

∫
f(z)dρI(z) =

∫
f(ZI(g))dg, ∀f ∈ Cc(I). (6)

Therefore ρI = ρI′ if and only if for any f ∈ Cc(I), we have
∫
G f(ZI(g))dg =∫

G f(ZI′(g))dg which follows immediately by a change of variable and invariance
of the Haar measure:

∫

G
f(ZI(g))dg =

∫

G
f(gI)dg =

∫

G
f(gI ′)dg =

∫

G
f(gg̃I)dg =

∫

G
f(ĝI)dĝ

10



To prove that ρI = ρI′ ⇒ I ∼ I ′, note that ρI(A) − ρI′(A) = 0 for all
measurable sets A ⊆ I implies in particular that the support of the probability
distributions of I has non null intersection on a set of non zero measure. Since
the support of the distributions ρI , ρI′ are exactly the orbits associated to I, I ′

respectively, then the orbits coincide, that is I ∼ I ′.

The above result shows that an invariant representation can be defined con-
sidering the probability distribution naturally associated to each orbit, however
its computational realization would require dealing with high-dimensional dis-
tributions. Indeed, we next show that the above representation can be further
developed to consider only probability distributions on the real line.

4.2.1 Tomographic Probabilistic Representations

We need to introduce some notation and definitions. Let T = S, the unit sphere
in I, and let P(R) denote the set of probability measures on the real line. For
each t ∈ T , let

πt : I → R, πt(I) = 〈I, t〉 , ∀I ∈ I.
If ρ ∈ P(I), for all t ∈ T we denote by ρt ∈ P(R) the random variable with law
given by

ρt(B) =

∫

π−1
t (B)

dρ,

for all measurable sets B ⊂ R.

Definition 5 (Radon Embedding). Let P(R)T = {h | h : T → P(R)} and
define

R : P(I)→ P(R)T , R(ρ)(t) = ρt, ∀I ∈ I.
The above map associates to each probability distribution a (continuous) family
of probability distributions on the real line defined by one dimensional projec-
tions (tomographies). Interestingly, R can be shown to be a generalization of
the Radon Transform to probability distributions [17]. We are going to use it
to define the following data representation.

Definition 6 (TP Representation). We define the Tomographic Probabilistic
(TP) representation as

Ψ : I → P(R)T , Ψ = R ◦ P,

with P and R as in Definitions 4, 5, respectively.

The TP representation is obtained by first mapping each point in the distribu-
tion supported on its orbit and then in a (continuous) family of corresponding
one dimensional distributions. The following result characterizes the invari-
ance/selectivity property of the TP representation.

Theorem 3. Let Ψ be the TP representation in Definition 6, then for all I, I ′ ∈
I

I ∼ I ′ ⇔ Ψ(I) = Ψ(I ′). (7)
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The proof of the above result is obtained combining Theorem 2 with the follow-
ing well known result, characterizing probability distributions in terms of their
one dimensional projections.

Theorem 4 (Cramer-Wold [8]). For any ρ, γ ∈ P(I), it holds

ρ = γ ⇔ ρt = γt, ∀t ∈ S. (8)

Through the TP representation, the problem of finding invariant/selective rep-
resentations reduces to the study of one dimensional distributions, as we discuss
next.

4.2.2 CDF Representation

A natural way to describe a one-dimensional probability distribution is to con-
sider the associated cumulative distribution function (CDF). Recall that if
ξ : (Ω, p) → R is a random variable with law q ∈ P(R), then the associated
CDF is given by

fq(b) = q((∞, b]) =

∫
dp(a)H(b− ξ(a)), b ∈ R, (9)

where where H is the Heaviside step function. Also recall that the CDF uniquely
defines a probability distribution since, by the Fundamental Theorem of Calcu-
lus, we have

d

db
fq(b) =

d

db

∫
dp(a)H(b− ξ(a)) =

d

db

∫ b

−∞
dp(a) = p(b).

We consider the following map.

Definition 7 (CDF Vector Map). Let F(R) = {h | h : R→ [0, 1]}, and

F(R)T = {h | h : T → F(R)}.

Define
F : P(R)T → F(R)T , F (γ)(t) = fγt

for γ ∈ P(R)T and where we let γt = γ(t) for all t ∈ T .

The above map associates to a family of probability distributions on the real
line their corresponding CDFs. We can then define the following representation.

Definition 8 (CDF Representation). Let

µ : I → F(R)T , µ = F ◦R ◦ P,

with F ,P and R as in Definitions 7, 4, 5, respectively.

Then, the following result holds.
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Theorem 5. For all I ∈ I and t ∈ T

µt(I)(b) =

∫
dgηb(〈I, gt〉), b ∈ R, (10)

where we let µt(I) = µ(I)(t) and, for all b ∈ R, ηb : R → R, is given by
ηb(a) = H(b− a), a ∈ R. Moreover, for all I, I ′ ∈ I

I ∼ I ′ ⇔ µ(I) = µ(I ′).

Proof. The proof follows noting that µ is the composition of the one to one maps
F,R and a map P that is one to one w.r.t. the equivalence classes induced by
the group of transformations G. Therefore µ is one to one w.r.t. the equivalence
classes i.e. I ∼ I ′ ⇔ µ(I) = µ(I ′).

We note that, from a direct comparison, one can see that (10) is of the
form (4). Different measurements correspond to different choices of the thresh-
old b.

Remark 4. [Pooling Functions: from CDF to Moments and Beyond] The above
reasoning suggests that a principled choice for the non linearity in (4) is a step
function, which in practice could be replaced by a smooth approximation such
a sigmoidal function. Interestingly, other choices of non linearities could be
considered. For example, considering different powers would yield information
on the moments of the distributions (more general non linear function than
powers would yield generalized moments). This latter point of view is discussed
in some detail in Appendix A.

4.3 Templates Sampling and Metric Embedings

We next discuss what happens if only a finite number of (possibly random)
templates are available. In this case, while invariance can be ensured, in general
we cannot expect selectivity to be preserved. However, it is possible to show that
the representation is almost selective (see below) if a sufficiently large number
number of templates is available.

Towards this end we introduce a metric structure on the representation
space. Recall that if ρ, ρ′ ∈ P(R) are two probability distributions on the
real line and fρ, fρ′ their cumulative distributions functions, then the uniform
Kolmogorov-Smirnov (KS) metric is induced by the uniform norm of the cumu-
lative distributions that is

d∞(fρ, fρ′) = sup
s∈R
|fρ(s)− fρ′(s)|,

and takes values in [0, 1]. Then, if µ is the representation in (10) we can consider
the metric

d(I, I ′) =

∫
du(t)d∞(µt(I), µt(I ′)) (11)
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where u is the (normalized) uniform measure on the sphere S. We note that,
theorems 4 and 5 ensure that (11) is a well defined metric on the quotient space
induced by the group transformations, in particular

d(I, I ′) = 0⇔ I ∼ I ′.
If we consider the case in which only a finite set Tk = {t1, . . . , tk} ⊂ S of k
templates is available, each point is mapped in a finite sequence of probability
distributions or CDFs and (11) is replaced by

d̂(I, I ′) =
1

k

k∑

i=1

d∞(µti(I), µti(I ′)) (12)

Clearly, in this case we cannot expect to be able to discriminate every pair of
points, however we have the following result.

Theorem 6. Consider n images In in I. Let k ≥ 2
cε2 log n

δ , where c is a
constant. Then with probability 1− δ2,

|d(I, I ′)− d̂(I, I ′)| ≤ ε. (13)

for all I, I ′ ∈ In.

Proof. The proof follows from a direct application of Höeffding’s inequality and
a union bound. Fix I, I ′ ∈ In. Define the real random variable Z : S → [0, 1],

Z(ti) = d∞(µti(I), µti(I ′)), i = 1, . . . , k.

From the definitions it follows that ‖Z‖ ≤ 1 and E(Z) = d(I, I ′). Then,
Höeffding inequality implies

|d(I, I ′)− d̂(I, I ′)| = |1
k

k∑

i=1

E(Z)− Z(ti)| ≥ ε,

with probability at most 2e−ε
2k. A union bound implies that the result holds

uniformly on In with probability at least n22e−ε
2k. The proof is concluded

setting this probability to δ2 and taking k ≥ 2
cε2 log n

δ .

We note that, while we considered the KS metric for convenience, other
metrics over probability distributions can be considered. Also, we note that a
natural further question is how discretization/sampling of the group affects the
representation. The above reasoning could be extended to yield results in this
latter case. Finally, we note that, when compared to classical results on distance
preserving embedding, such as Johnson Linderstrauss Lemma [18], Theorem 12
only ensures distance preservation up to a given accuracy which increases with
a larger number of projections. This is hardly surprising, since the problem of
finding suitable embedding for probability spaces is known to be considerably
harder than the analogue problem for vector spaces [2]. The question of how
devise strategies to define distance preserving embedding is an interesting open
problem.
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5 Locally Invariant and Covariant Representa-
tions

We consider the case where a representation is given by collection of ”local”
group averages, and refer to this situation as the partially observable group
(POG) case. Roughly speaking, the idea is that this kind of measurements
can be invariant to sufficiently small transformations, i.e. be locally invariant.
Moreover, representations given by collections of POG averages can be shown
to be covariant (see section 5.2 for a definition).

5.1 Partially Observable Group Averages

For a subset G0 ⊂ G consider a POG measurement of the form

ψ(I) =

∫

G0

dgη(〈I, gt〉). (14)

The above quantity can be interpreted as the ”response” of a cell that can
perceive visual stimuli within a ”window” (receptive field) of size G0. A POG
measurement corresponds to a local group average restricted to a subset of
transformations G0. Clearly, such a measurement will not in general be invariant.
Consider a POG measurement on a transformed point

∫

G0

dgη(〈g̃I, gt〉) =

∫

G0

dgη(
〈
I, g̃−1gt

〉
) =

∫

g̃G0

dgη(〈I, gt〉).

If we compare the POG measurements on the same point with and without a
transformation, we have

|
∫

G0

dgη(〈I, gt〉)−
∫

g̃G0

dgη(〈I, gt〉)|. (15)

While there are several situations in which the above difference can be zero,
the intuition from the vision interpretation is that the same response should be
obtained if a sufficiently small object does not move (transform) too much with
respect to the receptive field size. This latter situation can be described by the
assumption that the function

h : G → R, h(g) = η(〈I, gt〉)
is zero outside of the intersection of g̃G0 ∩ G0. Indeed, for all g̃ ∈ G satisfying
this latter assumption, the difference in (15) would clearly be zero. The above
reasoning results in the following theorem.

Theorem 7. Given I ∈ I and t ∈ T , assume that there exists a set G̃ ⊂ G such
that, for all g̃ ∈ G̃,

η(〈I, gt〉) = 0 ∀g /∈ g̃G0 ∩ G0. (16)

Then for g̃ ∈ G̃
ψ(I) = ψ(g̃I),

with ψ as in (14).
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Figure 1: A sufficient condition for invariance for locally compact groups: if
〈gI, t〉 = 0 for all g ∈ g̃G0∆G0, the integral of ηb 〈I, gt〉 over G0 or g̃G0 will be
equal.

We add a few comments. First, we note that condition (16) can be weakened
requiring only η(〈I, gt〉) = 0 for all g ∈ g̃G0∆G0, where we denote by ∆ the
symmetric difference of two sets (A∆B = (A ∪ B)/(A ∩ B) with A,B sets).
Second, we note that if the non linearity η is zero only in zero, then we can
rewrite condition (16) as

〈I, gt〉 = 0, ∀g ∈ g̃G0∆G0.

Finally, we note that the latter expression has a simple interpretation in the case
of the translation group. In fact, we can interpret (16) as a spatial localization
condition on the image I and the template t (assumed to be positive valued
functions), see Figure 1. We conclude with the following remark.

Remark 5 (Localization Condition and V1). Regarding the localization con-
dition discussed above, as we comment elsewhere [3], the fact that a template
needs to be localized could have implications from a biological modeling stand-
point. More precisely, it could provides a theoretical foundation of the Gabor
like shape of the responses observed in V1 cells in the visual cortex [23, 3, 5].

Remark 6 (More on the Localization Condition). From a more mathematical
point of view, an interesting question is about conditions under which whether
the localization condition (16) is also necessary rather than only sufficient.
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5.2 POG Representation

For all ḡ ∈ G, let ḡG0 = {g ∈ G | g = ḡg′, g′ ∈ G0}, the collection of ”local”
subsets of the group obtained from the subset G0. Moreover, let

V =

∫

G0

dg.

Clearly, by the invariance of the measure, we have
∫
ḡG0

dg = V , for all ḡ ∈ G.
Then, for all I ∈ I, ḡ ∈ G, define the random variables

ZI,ḡ : ḡG0 → I, ZI,ḡ(g) = gI, g ∈ ḡG0, (17)

with laws

ρI,ḡ(A) =
1

V

∫

Z−1
I,ḡ(A)

dg, t

for all measurable sets A ⊂ I. For each I ∈ I, ḡ ∈ G, the measure ρI,ḡ
corresponds to the distribution on the fraction of the orbit corresponding to the
observable group subset ḡG0. Then we can represent each point with a collection
of POG distributions.

Definition 9 (Representation via POG Probabilities). Let P(I)G = {h | h :
G → P(I)} and define

P̄ : I → P(I)G , P̄ (I)(g) = ρI,g ∀I ∈ I, g ∈ G

Each point is mapped in the collection of distributions obtained considering all
possible fractions of the orbit corresponding to ḡG0, ḡ ∈ G. Note that, the action
of an element g̃ ∈ G of the group on the POG probability representation is given
by

g̃P̄ (I)(g) = P̄ (I)(g̃g)

for all g ∈ G. The following result holds.

Theorem 8. Let P̄ as in Definition (9). Then for all I, I ′ ∈ I if

I ∼ I ′ ⇒ ∃g̃ ∈ G such that P̄ (I ′) = g̃P̄ (I). (18)

Equivalently, for all I, I ′ ∈ I if
I ′ = g̃I

then
P̄ (I ′)(g) = P̄ (I)(gg̃), ∀g ∈ G. (19)

i.e. P̄ is covariant.

Proof. The proof follows noting that ρI′,ḡ = ρI,ḡg̃ holds since, using the same
characterization of ρ as in (6),we have that for any f ∈ Cc(I)

∫

ḡG0

f(ZI′,ḡ(g))dg =

∫

ḡG0

f(gI ′)dg =

∫

ḡG0

f(gg̃I)dg =

∫

ḡG0g̃

f(gI)dg

where we used the invariance of the measure.
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Following the reasoning in the previous sections and recalling Definition 5,
we consider the mapping given by one dimensional projections (tomographies)
and corresponding representations.

Definition 10 (TP-POG Representation). Let P(R)G×T = {h | h : G × T →
P(R)} and define

R̄ : P(I)G → P(R)G×T , R̄(h)(g, t) = R(h(g))(t) = ht(g),

for all h ∈ P(I)G , g ∈ G, t ∈ T . Moreover, we define the Tomographic Proba-
bilistic POG representation as

Ψ̄ : I → P(R)G×T , Ψ̄ = R̄ ◦ P̄ ,

with P̄ as in Definition 9.

We have the following result:

Theorem 9. The representation Ψ̄ defined in 10 is covariant, i.e. Ψ̄(g̃I)(g) =
Ψ̄(I)(g̃g).

Proof. The map Ψ̄ = R̄ ◦ P̄ is covariant if both R̄ and P̄ are covariant. The
map P̄ was proven to be covariant in Theorem 8. We then need to prove the
covariance of R̄ i.e. g̃R̄(h)(g, t) = R̄(h)(g̃g, t) for all h ∈ P(I)G . This follows
from

R̄(g̃h)(g, t) = R(g̃h(g))(t) = R(h(g̃g))(t) = R(h)(g̃g, t).

The TP-POG representation is obtained by first mapping each point I in the
family of distributions ρI,g, g ∈ G supported on the orbit fragments correspond-
ing to POG and then in a (continuous) family of corresponding one dimensional
distributions ρtI,g, g ∈ G, t ∈ T . Finally, we can consider the representation
obtained representing each distribution via the corresponding CDF.

Definition 11 (CDF-POG Representation). Let F(R)G×T = {h | h : G ×T →
F(R)} and define

F̄ : P(I)G×T → P(R)G×T , F̄ (h)(g, t) = F (h(g, t)) = fh(g,t),

for all h ∈ P(I)G×T and g ∈ G, t ∈ T . Moreover, define the CDF-POG repre-
sentation as

µ̄ : I → F(R)G×T , µ̄ = F̄ ◦ R̄ ◦ P̄ ,
with P̄ ,F̄ as in Definition 9, 10, respectively.

It is easy to show that

µḡ,t(I)(b) =

∫

ḡG0

ηb(〈I, gt〉)dg. (20)

where we let µḡ,t(I) = µ(I)(ḡ, t).
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6 Further Developments: Hierarchical Repre-
sentation

In this section we discuss some further developments of the framework presented
in the previous section. In particular, we sketch how multi-layer (deep) repre-
sentations can be obtained abstracting and iterating the basic ideas introduced
before.

Hierarchical representations, based on multiple layers of computations, have
naturally arisen from models of information processing in the brain [11, 26].
They have also been critically important in recent machine learning successes in
a variety of engineering applications, see e.g. [27]. In this section we address the
question of how to generalize the framework previously introduced to consider
multi-layer representations.

Recall that the basic idea for building invariant/selective representation is
to consider local (or global) measurements of the form

∫

G0

η(〈I, gt〉)dg, (21)

with G0 ⊆ G. A main difficulty to iterate this idea is that, following the devel-
opment in previous sections, the representation (11)-(20), induced by collection
of (local) group averages, maps the data space I in the space P(R)G×T . The
latter space lacks an inner product as well as natural linear structure needed
to define the measurements in (21). One possibility to overcome this problem
is to consider an embedding in a suitable Hilbert space. The first step in this
direction is to consider an embedding of the probability space P(R) in a (real
separable) Hilbert space H. Interestingly, this can be achieved considering a
variety of reproducing kernels over probability distributions, as we describe in
Appendix B. Here we note that if Φ : P(R)→ H is one such embeddings, then
we could consider a corresponding embedding of P(R)G×T in the space

L2(G × T ,H) = {h : G × T → H |
∫
‖h(g, t)‖2 dgdu(t)}

where ‖·‖H is the norm induced by the inner product 〈·, ·〉H in H and u is the
uniform measure on the sphere S ⊂ I. The space L2(G×T ,H) is endowed with
the inner product

〈h, h′〉H =

∫
〈h(g, t), h′(g, t)〉2H dgdu(t),

for all h, h′ ∈ L2(G × T ,H), so that the corresponding norm is exactly

‖h‖2H =

∫
‖h(g, t)‖2 dgdu(t).

The embedding of P(R)G×T in L2(G × T ,H) is simply given by

JΦ : P(R)G×T → L2(G × T ,H), JΦ(ρ)(g, t) = Φ(ρ(g, t)) i.e.

for all ρ ∈ P(R)G×T . Provided with above notation we have the following result.
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Theorem 10. The representation defined by

Q̄ : I → L2(G × T ,H), Q̄ = JΦ ◦ Ψ̄. (22)

with Ψ̄ as in Definition 10, is covariant, in the sense that,

Q̄(gI) = gQ̄(I)

for all I ∈ I, g ∈ G.

Proof. The proof follows checking that by definition both R̄ and JΦ are covariant
and using Theorem 8. The fact that R̄ is covariant was proven in Th. 9. The
covariance of JΦ, i.e. g̃JΦ(h)(g, t) = JΦ(h)(g̃g, t) for all h ∈ P(R)G×T , follows
from

JΦ(g̃h)(g, t) = Φ(g̃h(g, t)) = Φ(h(g̃g, t)) = JΦ(h)(g̃g, t).

Now since P̄ was already proven covariant in Th. 8 we have that, being Q̄ =
JΦ ◦ R̄ ◦ P̄ composition of covariant representations, Q̄ is covariant i.e. g̃Q̄(I) =
Q̄(g̃I).

Using the above definitions a second layer invariant measurement can be
defined considering,

v : I → R, v(I) =

∫

G0

η(
〈
Q̄(x), gτ

〉
2
)dg (23)

where τ ∈ L2(G × T ,H) has unit norm.
We add several comments. First, following the analysis in the previous sec-

tions Equation (23) can be used to define invariant (or locally invariant) mea-
surements and hence representations defined by collections of measurements.
Second, the construction can be further iterated to consider multi-layer rep-
resentations, where at each layer an intermediate representation is obtained
considering ”distributions of distributions”. Third, considering multiple layers
naturally begs the question of how the number and properties of each layer affect
the properties of the representation. Preliminary answers to these questions are
described in [3, 4, 21, 23]. A full mathematical treatment is beyond the scope
of the current paper which however provides a formal framework to tackle them
in future work.

7 Discussion

Motivated by the goal of characterizing good data representation that can be
learned, this paper studies the mathematics of an approach to learn data rep-
resentation that are invariant and selective to suitable transformations. While
invariance can be proved rather directly from the invariance of the Haar measure
associated with the group, characterizing selectivity requires a novel probabilis-
tic argument developed in the previous sections.
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Several extensions of the theory are natural and have been sketched with pre-
liminary results in [3, 4, 21, 23]. The main directions that need a rigorous theory
extending the results of this paper are:

• Hierarchical architectures. We described how the theory can be used to an-
alyze local invariance properties, in particular for locally compact groups.
We described covariance properties. Covariant layers can integrate rep-
resentations that are locally invariant into representations that are more
globally invariant.

• Approximate invariance for transformations that are not groups. The
same basic algorithm analyzed in this paper is used to yield approximate
invariance, provided the templates transforms as the image, which requires
the templates to be tuned to specific object classes.

We conclude with a few general remarks connecting our paper with this special
issue on deep learning and especially with an eventual theory of such networks.
Hierarchical architectures of simple and complex units. Feedforward architecture
with n layers, consisting of dot products and nonlinear pooling functions, are
quite general computing devices, basically equivalent to Turing machines run-
ning for n time points (for example the layers of the HMAX architecture in [26]
can be described as AND operations (dot products) followed by OR operations
(pooling), i.e. as disjunctions of conjunctions.). Given a very large set of labeled
examples it is not too surprising that greedy algorithms such as stochastic gra-
dient descent can find satisfactory parameters in such an architecture, as shown
by the recent successes of Deep Convolutional Networks. Supervised learning
with millions of examples, however, is not, in general, biologically plausible.
Our theory can be seen as proving that a form of unsupervised learning in con-
volutional architectures is possible and effective, because it provides invariant
representations with small sample complexity.
Two stages: group and non-group transformations. The core of the theory ap-
plies to compact groups such as rotations of the image in the image plane. Exact
invariance for each module is equivalent to a localization condition which could
be interpreted as a form of sparsity [3]. If the condition is relaxed to hold ap-
proximately it becomes a sparsity condition for the class of images w.r.t. the
dictionary tk under the group G when restricted to a subclass of similar im-
ages. This property, which is similar to compressive sensing “incoherence” (but
in a group context), requires that I and tk have a representation with rather
sharply peaked autocorrelation (and correlation) and guarantees approximate
invariance for transformations which do not have group structure, see [21].
Robustness of pooling. It is interesting that the theory is robust with respect to
the pooling nonlinearity. Indeed, as discussed, very general class of nonlineari-
ties will work, see Appendix A. Any nonlinearity will provide invariance, if the
nonlinearity does not change with time and is the same for all the simple cells
pooled by the same complex cells. A sufficient number of different nonlineari-
ties, each corresponding to a complex cell, can provide selectivity [3].
Biological predictions and biophysics, including dimensionality reduction and
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PCAs. There are at least two possible biophysical models for the theory. The
first is the original Hubel and Wiesel model of simple cells feeding into a com-
plex cell. The theory proposes the ”ideal” computation of a CDF, in which case
the nonlinearity at the output of the simple cells is a threshold. A complex
cell, summating the outputs of a set of simple cells, would then represent a bin
of the histogram; a different complex cell in the same position pooling a set of
similar simple cells with a different threshold would represent another bin of the
histogram.
The second biophysical model for the HW module that implements the com-
putation required by i-theory consists of a single cell where dendritic branches
play the role of simple cells (each branch containing a set of synapses with
weights providing, for instance, Gabor-like tuning of the dendritic branch) with
inputs from the LGN; active properties of the dendritic membrane distal to the
soma provide separate threshold-like nonlinearities for each branch separately,
while the soma summates the contributions for all the branches. This model
would solve the puzzle that so far there seems to be no morphological differ-
ence between pyramidal cells classified as simple vs complex by physiologists.
Further if the synapses are Hebbian it can be proved that Hebb’s rule, appropri-
ately modified with a normalization factor, is an online algorithm to compute
the eigenvectors of the input covariance matrix, therefore tuning the dendritic
branches weights to principal components and thus providing an efficient di-
mensionality reduction.
(n→ 1).The present phase of Machine Learning is characterized by supervised
learning algorithms relying on large sets of labeled examples (n→∞). The next
phase is likely to focus on algorithms capable of learning from very few labeled
examples (n→ 1), like humans seem able to do. We propose and analyze a pos-
sible approach to this problem based on the unsupervised, automatic learning
of a good representation for supervised learning, characterized by small sample
complexity (n). In this view we take a step towards a major challenge in learn-
ing theory beyond the supervised learning, that is the problem of representation
learning, formulated here as the unsupervised learning of invariant representa-
tions that significantly reduce the sample complexity of the supervised learning
stage.
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A Representation Via Moments

In Section 4.2.2 we have discussed the derivation of invariant selective represen-
tation considering the CDFs of suitable one dimensional probability distribu-
tions. As we commented in Remark 4 alternative representations are possible,
for example by considering moments. Here we discuss this point of view in some
more detail.

Recall that if ξ : (Ω, p)→ R is a random variables with law q ∈ P(R), then
the associated moment vector is given is given by

mr
q = E|ξ|r =

∫
dq|ξ|r, r ∈ N. (24)

In this case we have the following definitions and results.

Definition 12 (Moments Vector Map). Let M(R) = {h | h : N→ R}, and

M(R)T = {h | h : T →M(R)}.

Define
M : P(R)T →M(R)T , M(µ)(t) = mµt

for µ ∈ P(R) and where we let µ(t) = µt, for all t ∈ T .

The above mapping associates to each one dimensional distribution the cor-
responding vector of moments. Recall that this association uniquely determines
the probability distribution if the so called Carleman’s condition is satisfied:

∞∑

r=1

m
− 1

2r
2r = +∞
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where mr is the set of moments of the distribution.
We can then define the following representation.

Definition 13 (Moments Representation). Let

µ : I →M(R)T , µ = M ◦R ◦ P,

with M ,P and R as in Definitions 12, 4, 5, respectively.

Then, the following result holds.

Theorem 11. For all I ∈ I and t ∈ T

µt(I)(r) =

∫
dg| 〈I, gt〉 |r, r ∈ N,

where we let µ(I)(t) = µt(I). Moreover, for all I, I ′ ∈ I

I ∼ I ′ ⇔ µ(I) = µ(I ′).

Proof. µ = M ◦R◦P is a composition of a one to one map R, a map P that is one
to one w.r.t. the equivalence classes induced by the group of transformations G
and a map M that is one to one since Carleman’s condition is satisfied. Indeed,
we have,

∞∑

r=1

(∫
dg 〈I, gt〉2r

)− 1
2r ≤

∞∑

r=1

(∫
dg| 〈I, gt〉 |

)− 1
2r 2r

=
∞∑

r=1

1

C
= +∞

where C =
∫

dg| 〈I, gt〉 |. Therefore µ is one to one w.r.t. the equivalence
classes i.e. I ∼ I ′ ⇔ µ(I) = µ(I ′).

We add one remark regarding possible developments of the above result.

Remark 7. Note that the above result essentially depends on the characteriza-
tion of the moment problem of probability distributions on the real line. In this
view, it could be further developed to consider for example the truncated case
when only a finite number of moments is considered or the generalized moments
problem, where families of (nonlinear) continuous functions, more general than
powers, are considered (see e.g. [1]).

B Kernels on probability distributions

To consider multi-layers within the framework proposed in the paper we need
to embed probability spaces in Hilbert spaces. A natural way to do so is by con-
sidering appropriate positive definite (PD) kernels, that is symmetric functions
K : X ×X → R such that

n∑

i,j=1

K(ρi, ρj)αiαj ≥ 0
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for all ∀ρ1, . . . , ρn ∈ X,α1, . . . , αn ∈ R and where X is any set, e.g. X = R or
X = P(R). Indeed, PD kernels are known to define a unique reproducing kernel
Hilbert space (RKHS) HK for which they correspond to reproducing kernels, in
the sense that if HK is the RKHS defined by K, then Kx = K(x, ·) ∈ HK for
all x ∈ X and

〈f,Kx〉K = f(x), ∀f ∈ HK , x ∈ X, (25)

where 〈·, ·〉K is the inner product in HK (see for example [7] for an introduction
to RKHS).
Many examples of kernels on distributions are known and have been studied.
For example [13, 32] discuss a variety of kernels of the form

K(ρ, ρ′) =

∫ ∫
dγ(x)κ(pρ(x), pρ′(x))

where pρ, pρ′ are the densities of the measures ρ, ρ′ with respect to a dominating
measure γ (which is assumed to exist) and κ : R+

0 ×R+
0 → R is a PD kernel.

Recalling that a PD kernel defines a pseudo-metric via the equation

dK(ρ, ρ′)2 = K(ρ, ρ) +K(ρ′, ρ)− 2K(ρ, ρ′).

it is shown in [13, 32] how different classic metric on probability distributions
can be recovered by suitable choices of the kernel κ. For example,

κ(x, x′) =
√
xx′,

corresponds to the Hellinger’s distance, see [13, 32] for other examples.
A different approach is based on defining kernels of the form

K(ρ, ρ′) =

∫ ∫
dρ(x)dρ′(x′)k(x, x′), (26)

where k : R×R → R is a PD kernel. Using the reproducing property of k we
can write

K(ρ, ρ′) =

〈∫
dρ(x′)kx,

∫
dρ(x)kx′

〉

k

= 〈Φ(ρ),Φ(ρ′)〉

where Φ : P(R)→ H is the embedding Φ(x) =
∫
dρ(x′)kx mapping each distri-

bution in a corresponding kernel mean, see e.g. [7]. Condition on the kernel k,
hence on K, ensuring that the corresponding function dK is a metric have been
studied in detail, see e.g. [29].
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