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Master of Science in Mechanical Engineering
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Abstract

This thesis provides a new framework for understanding how conditions, people, and environments
of the Intensive Care Unit (ICU) effect the likelihood the preventable harm will happen to a patient
in the ICU. Two years of electronic medical records from seven adult ICUs totalling 77 beds at Beth
Israel Deaconess Medical Center (BIDMC) were analysed.

Our approach is based on several new ideas. First, instead of measuring safety through frequency
measurement of a few relatively rare harms, we leverage electronic databases in the hospital to
measure Total Burden of Harm, which is an aggregated measure of a broad range of harms. We
believe that this measure better reflects the true level of harm occurring in Intensive Care Units
and also provides hope for more statistical power to understand underlying contributors to harm.

Second, instead of analysing root causes of specific harms or risk factors of individual patients,
we focus on what we call Risk Drivers, which are conditions of the ICU system, people (staff,
patients, families) and environments that affect the likelihood of harms to occur, and potentially
their outcomes. The underlying premise is that there is a relatively small number of risk drivers
which are common to many harms. Moreover, our hope is that the analysis will lead to system level
interventions that are not necessarily aiming at a specific harm, but change the quality and safety
of the system.

Third, using two years of data that includes measurements of harms and drivers values of
each shift and each of seven ICUs at BIDMC, we develop an innovative statistical approach that
identifies important drivers and High and Low Risky States. Risky States are defined through
specific combinations of values of Risk Drivers. They define environmental characteristics of ICUs
and shifts that are correlated with higher or lower risk level of harms.

To develop a measurable set of Risk Drivers, a survey of current ICU quality metrics was
conducted and augmented with the clinical experience of senior critical care providers at BIDMC. A
robust machine learning algorithm with a series of validation techniques was developed to determine
the importance of and interactions between multiple quality metrics. We believe that the method

3



is adaptable to different hospital environments.
Sixteen statistically significant Risky States (p < .02) where identified at BIDMC. The harm

rates in the Risky States range over a factor of 10, with high risk states comprising more that 13.9%
of the total operational time in the ICU, and low risk states comprise 38% of total operating shifts.

The new methodology and validation technique was developed with the goal of providing a
basic tools which are adaptable to different hospitals. The algorithm described within serves as the
foundation for software under development by Aptima Human Engineering and the VA Hospital
network with the goal of validation and implementation in over 150 hospitals.

In the second part of this thesis, a new heuristic is developed to facilitate the optimal design of
stochastic manufacturing systems. The heuristic converges to optimal, or near optimal results in
all test cases in a reasonable length of time. The heuristic allows production system designers to
better understand the balance between operating costs, inventory costs, and reliability.

Thesis Supervisor: Retsef Levi
Title: J. Spencer Standish Professor of Management, Professor of Operations Management

Thesis Supervisor: Stanley Gershwin
Title: Senior Research Scientist, MIT Department of Mechanical Engineering
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Chapter 1

Introduction

This thesis is presented in two unrelated parts. Chapters 1-5 are focused on developing a new

risk management methodology to understand and control adverse events in healthcare environ-

ments. Chapter 6 presents an efficient algorithm to help manufacturing companies design profitable

production systems.

1.1 Company Background

Deaconess Hospital was founded in 1896 by the Methodist Deaconesses to care for the Boston

residents. The 14-bed infirmary was run by religious women who were passionate about caring for

the sick and the poor of "every creed and race and social condition." In 1916, Beth Israel Hospital

was founded by the Jewish community in response to the growing population of immigrants in

Boston. With 45 beds, Beth Israel served kosher food and conducted religious services according

to the Jewish faith. Like the Deaconess, Beth Israel offered, "medical and surgical aid and nursing

to sick or disabled persons of any creed or nationality."

After tremendous growth, historic research accomplishments and partnerships with the Har-

vard Medical School, Beth Israel and Deaconess Hospital merged in 1996 to form the Beth Israel

Deaconess Medical Center (BIDMC).

In 2011, BIDMC launched The Center for Healthcare Delivery Science. The mission of the cen-

15

dd-



ter was to ensure an " integrated approach to understanding healthcare systems." The Center for

healthcare Delivery Science is independent of any single academic department and supports cross

functional disciplines to better understand healthcare delivery. Projects have spanned anaesthesia,

critical care, gastroenterology, nephrology, nursing, orthopaedics, pharmacy, primary care, psychia-

try, social work, and surgery. Progression towards higher reliability is demonstrable by both internal

and external metrics. Internally, projects have decreased harms such as ventilator-associated pneu-

monia, bloodstream infection, and surgical site infection. External recognition for BIDMC's quality

improvement efforts include the Truven Healthcare " top 100 hospitals," which consistently recog-

nized BIDMC as one of 15 top academic medical centers nationally. BIDMC has also earned an

"A" in Leapfrog's first-ever hospital safety grades and was selected as one of their top 65 hospi-

tals in the country in 2011-the fifth time in six years. Additionally, BIDMC was awarded the

Society of Critical Care medicine's 2010 Family-Centered Care Award, which recognizes innovation

to improve the care provided to critically ill patients and their families and is given to only one

hospital in the country each year. Lastly, in 2013, BIDMC was selected for the American Hospital

Association-McKesson "Quest for Quality" award, which is given to the one hospital nationally that

is best able to demonstrate progress among all six dimensions of quality as defined by the Institute

of Medicine.

Today BIDMC sees nearly three quarters of a million patients annually at its Boston and satellite

hospital locations. In addition to the main campus in the Longwood Medical Area of Boston,

BIDMC has hospitals in Milton, Needham and Plymouth, outpatient clinics in Boston, Chestnut

Hill, Lexington and Chelsea and is affiliated with health centers in Dorchester, Roxbury, Allston,

Quincy and other areas.

1.2 Gordon and Betty Moore Foundation

The Gordon and Betty Moore Foundation is a private philanthropic organization established by

Intel co-founder Gordon and his wife Better to "create positive change for future generations." The

foundation establishes strategies and partners to fund "lasting, meaningful change" in environmental

16



conservation, patient care and science. The patient care programs imagine a world, "where medical

harms no longer occur. Where technology is connected and systems talk to each other. Where

doctors, nurses, patients and families work as a team and decisions about health care are shared.

Imagine a health care system that is so finely tuned it can eliminate preventable harms, cut health

care costs and give patients and families the voice and care they deserve."

In September 2013, BIDMC was awarded $ 5.3 million dollars through the Gordon and Betty

Moore Foundation for their proposal titled " Optimizing ICU Safety through Patient Engagement,

System Science and Information Technology." Three work streams are supported by the Foundation,

evolving into eight outcomes. This project falls under the purview of the first workstream, "

Managing Risky States to Prevent Harm," and is concerned with identifying risky states and leading

harm indicators.

As part of the Grant, BIDMC became a member of the Libretto ICU Consortium. The Libretto

ICU Consortium includes the Beth Israel Deaconess Medical Center, Brigham and Women's Hos-

pital, Johns Hopkins University Hospital and University of San Francisco Medical Center. This

collaborative was formed to support efforts which aim to eliminate preventable harms and unnec-

essary costs by engaging patients and families in their own care within a re-designed, supportive

healthcare system.

Funded by the Gordon and Betty Moore Foundation, each center is collaborating on solutions

that will be scalable and spreadable to ICU patients in all hospitals. While each member of the col-

laborative is developing their own approach, a measurement and evaluation representative from each

center has worked together over the past year to work to define standard measurement definitions

for seven preventable harms that ICU patients experience (Table 1.1). Other collaborative groups

are working collectively on methods to increase patient and family engagement and to improve end

of life discussions and decision making.

Beth Israel Deaconess Medical Center's iong-term goal is to eliminate preventable harm in

healthcare. Working with the Libretto Consortium represents a critical milestone in that journey

by addressing three fundamental, interrelated barriers to the elimination of preventable patient

harm on a broader scale: (1) unreliable systems of care, coupled with a lack of technical expertise

17



Harm

a. Central Line Associated Bloodstream Infections (CLABSI)
b. Latrogenic harm from ventilators
c. Ventilator associated events (including pneumonia and avoidable patient days on ventilator)
d. Deep Venous Thrombosis (DVT)-Pulmonary Embolism (PE)
e. ICU-Acquired delirium and weakness
f. Loss or diminution of respect and dignity afforded to patients and families
g. Inappropriate care and excessive intensity of care

Table 1.1: Harms Standardized by The Libretto Consortium

as to how to improve those systems; (2) failure to adequately engage patients and families in their

own care; and (3) failure to spread successful innovation into non-academic hospital settings.

1.3 Brief History of Healthcare Safety and Quality

One of the earliest documented breakthroughs in the improvement of healthcare delivery was the

adoption of washing hands between patients. At the General Hospital of Vienna in 1846, Ignaz

Semmelweis observed there was a stark difference in fever rates among pregnant women between

the First Clinic and the Second Clinic [Semmelweis 1983]. The first clinic was staffed by students

and physicians, whereas the Second Clinic was run by midwives. He noticed that physicians who

went directly from the autopsy suite to the obstetrics ward had a "disagreeable odor" on their

hands, even after washing their hands with soap and water before they entered the obstetrics clinic.

He postulated that the puerperal fever was caused by "cadaverous particles" transmitted from the

autopsy suite to the obstetrics ward via the hands of students and physicians. In May 1847, he

insisted that students and physicians clean their hands with a chlorine solution between each patient

in the clinic. The maternal mortality rate in the First Clinic dropped and remained low for years.

This represented the first evidence indicating that an operational change to the way that healthcare

providers did their regular work, in this case hand washing with an antiseptic agent between patient

contacts, could improve the quality of healthcare delivery by reducing the transmission of contagious

diseases.
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More recently, the Institute of Medicine, a government funded organization dedicated to improv-

ing healthcare quality, published a 1999 study entitled To Err is Human: Building a Safer Health

System, which estimated that over 98,000 patients in the US die annually due to preventable med-

ical errors. In 2001 the same institute published a follow-up report called Crossing the Quality

Chasm: A New Health System for the 21st Century which detailed a nationwide shortcoming to

provide quality healthcare. In particular, they claim that US hospitals lack" ... the environment,

the processes, and the capabilities needed to ensure that services are safe, effective, patient-centered,

timely, efficient, and equitable."

In the early 2000s, healthcare organizations began to measure healthcare quality, leading to

major improvements. In 2002 The Joint Commission on Accreditation of Hospitals developed

nationally standardized quality measures for conditions such as heart failure, acute myocardial

infarction, pneumonia and pregnancy. The commission required all accredited hospitals to begin

reporting metrics on these standards, and they began publishing the data in 2004. Also in 2004, the

Centers for Medicare and Medicaid Services instituted a financial incentive program to reward and

penalize hospitals that did not report their metrics. The Joint Commission developed six national

measures of quality for ICUs, but implementation efforts were suspended before they began in 2005

due to an organization move to refocus efforts on surgical operations. In the second half of the last

decade, the Joint Commission and Center for Medicare and Medicaid Services have expanded their

reporting requirements and publications for public consumption.

In 2009, studies found significant improvements in the measure of healthcare quality that were

enforced by the Joint Commission. For example, in 2002, 87.3% of eligible patients with acute

myocardial infarction were discharged with beta blockers. In 2009 that metric rose to 98.3%.

While many of the Joint Commission's metrics accurately measure activities that improve patient

outcome, not all of their proposed metrics were easy for hospitals to comply with and not all of

the measures led to better patient care. In 2010 the Joint Commission published a revised set

of metrics with the goal of maximizing the likelihood of improved patient care while minimizing

unintended complications and non-value added work for healthcare providers. However, once again

these metrics have not been implemented in a meaningful way. In fact, a recent multicenter study
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showed that there is no comprehensive benchmark set of metrics for healthcare quality in critical

care [Martinez et al., 2013].

1.4 Project Background

The Intensive Care Unit (ICU) is a complex healthcare environment that provides advanced life

support for critically ill patients. It is estimated that patients experience 1.7 medical errors per

day in the ICU [Pronovost et al., 2005]. BIDMC has 7 adult intensive care units with a total of

77 patient beds. Each ICU specializes in an area of medicine, as shown in the table below, and is

equipped to provide support for patients from other ICUs. Across the hospital, BIDMC records over

700 adverse events or near misses every year in it's voluntary reporting system, which is expected

to vastly underreport incident rates [Taylor et al., 2004].

Unit Abbr. Specialty Capacity

Medical ICU MICU Medical Patients 16
Surgical ICU SICU Surgical Patients 7
Trauma Surgical ICU TSICU Trauma and Surgical Patients 13
Cardiovascular ICU CVICU Cardiovascular patients 14
Finard 4 Fin4 Medical, General Critical Care 13
Coronary Care Unit CCU Heart Patients 7

Table 1.2: Critical Care Wards at BIDMC

Preventable harm in the critical care environment is a contested concept with several authorities

in the field considering a veirty of methods to identify and measure these concepts [Pronovost

et al., 2005, Classen et al., 2011]. The Libretto ICU Consortium is currently defining a narrow set

of preventable harms that are common across institutions. Later sections in this thesis describe

different events and preventable harm that are measured at BIDMC's ICUs (See Table 3.1).

This project is the central component for three deliverables from the Moore Grant with the

objective of providing tools to address the issues of reducing preventable harm in critical care:

Output 1: Measurement Strategy including a definition of the burden of harm in the ICU and

a measurable, meaningful decrease in the burden of harm.
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Output 2: Managing Risky States to Prevent Harm with a model for measuring and managing

the leading harm indicators that create "risky states," including a dashboard alert system coupled

with a mitigation approach.

Output 3: Spread of these strategies and models to Community Hospital Partners, including

IT applications.

1.4.1 Outline

This thesis will present a measurement strategy and model to show that measures of the conditions

of the ICU, the people in the ICU and the environment of the ICU that affect the likelihood of

harms and their magnitude can be used to suggest working environments (states) that might lead

to greater frequency of preventable harm. Nearly 38% of ICU shifts will be classified as low risk

states which are significantly below the mean. About 13% of shifts will be classified as significantly

high risk states.

Preventable harm and near misses are more than ten times more likely to occur than in the low

risk states. It will be shown that high risk states are characterized by combinations of elevated

metrics related to workload, acuity, and unfamiliarity with tasks, as well as other measures.

Low risk states will be shown to correlate with lower values of the same metrics, and that risk

states remain low during the elevation of a single measure.

Chapter 2 provides a review of prior work on safety and risk management at the BIDMC and

other hospitals; prior work has focused primarily on single interventions for specific adverse events.

A new approach to risk management and safety is proposed which considers aggregated metrics for

ICU wards and their impact on multiple harms. s.

Chapter 3 describes the methodology for aggregating and measuring preventable harm. It goes

on to show how the Intensive Care Unit environment, people and processes can be quantified and

measured. This measurement strategy sets the foundation to design system level interventions to

reduce the likelihood of many adverse event

Chapter 4 describes the mathematical models used to identify the prevalence of preventable

harm in different groups of shifts. Validation techniques to confirm that the mathematical models
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are stable and accurate.

Chapter 5 presents the results of the modelling methodology. It is shown that combinations of

adverse environments, such as high workload, new nurses and high numbers of overflow patients,

are indicators for increased exposure to adverse events. It is also shown that the ICU is relatively

safe when only one indicator for high risk in present.

Chapter 6 discusses these observations and suggests directions for future research.

Chapter 7 presents unrelated work in mixed integer nonlinear programming. A heuristic is

developed to help production system designers know when to invest in more reliable processes.
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Chapter 2

Background and Preliminaries

This chapter begins with a review of traditional approaches to risk management and safety in

hospitals and ICUs in particular, with a discussion of some of their weaknesses. We begin with a

more general review of the psychological basis for cognitive errors and move to reviewing current

risk management and safety practices in healthcare environments. We highlight the pros and cons of

current practices, and in the final section, outline a new paradigm of environmental risk management

to address some of the shortcomings of current methods.

2.1 Review of Human Errors

In spite of the rigorous training processes and highly qualified individuals that work in healthcare

delivery teams, many errors continue to occur, particularly in the critical care environment. We

delve into prior work on human errors because a basic understanding of why errors happen can

foster new ways to understand, measure and mitigate errors.

Many psychologists have researched the basis for human errors, but Reason [1990] provides a

unified framework that describes the main themes for cognitive errors. He proposes a foundational

model for brain function, claiming that much of human daily activity is controlled automatically

and effortlessly by the brain. A person does not consciously demand the flexion of each individual

muscle when they take a step, or pour a glass of water. Instead, we carry a set of mental schemata
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that control each minute action that is repeated. These schemata are unconsciously operated for

short periods of time by the brain and require few mental resources. Working to complement the

schematic control mode is the conscious part of the brain called the attention control mode, which is

used for problem solving and monitoring of the schematic control mode. The attention control mode

is slow, sequential, draws a great deal of mental resources, and has limited capacity. In contract,

the schematic mode is fast, effortless and operates in parallel.

Rasmussen and Jensen [1974] suggest three cognitive modes for human performance that connect

to Reason's model for operating modes. The first mode is skill-based operation, a phase during

which actions are governed by the schematic control mode and are largely preprogrammed. The

second phase is rules-based, which combines aspects of schematic control and attention control; new

problems are solved with rules that are similar or familiar to problems previously solved and stored

in the unconscious system. The third mode is knowledge-based, in which novel situations require

heavy reliance on the attention control mode to seek new solutions in unfamiliar environments.

Reason and Rasmussen classify errors for each of the three cognitive modes. Skill based errors

are called "Slips," and refer to unconscious errors in automatic activity. Slips can occur from a

lack of additional checks. Rule based errors occur when the problem solving area of the brain is

active and the wrong rule or schema is chosen - often due to a misperception of the situation and

subsequent misapplication of a rule, usually one that is frequently used and may seem to be a close

substitute. This type of error can occur more frequently when the conscious part of the brain is

overloaded, and can be influenced by practice. Knowledge based errors occur when an individual

confronts a novel problem with which he or she has no prior experience. The pattern matching ability

of the brain fails, and habits can alter matching or calculations and lead to mistakes. Flavours of

these errors include biased memory (psychological biases that enhance or impair information recall),

availability heuristic (over-reliance on immediate examples), confirmation bias (searching to confirm

one's beliefs) and overconfidence (over-reliance on personal judgement) [Leape, 1994].

24



2.2 Traditional approaches to risk management and safety

in healthcare

In general, there is no broadly adopted set of quality metrics for ICUs [Martinez et al., 2013]. As

a result, many institutions measure the same harmful outcomes in different ways. For example,

Berenholtz et al. [2002] finds that mortality rates in ICUs was a common measure for ICU quality.

However, its widespread adoption as a standard of measure was quickly opposed, due to issues with

co-morbidities and geographic region leading to "requirements for risk adjustment and burdensome

data collection" that were not properly accounted for with the crude measure [Pronovost et al.,

2001].

Additional debates over measurement standards and meaning have been waged over the meaning

of ICU lengths of stay (LOS), average mechanical ventilation and patient satisfaction [Berenholtz

et al., 2002]. However, broad adoption of these measurements failed largely due to the complexity

of measuring adherence to specified procedures and the broad range of difference between hospital

goals, patient expectations subsequent disagreements over the meaning of the metrics.

Patient measures:

Even though there are no global standards, a great deal of work has been done to measure

harmful events in the ICU and to connect these single contributors to specific healthcare delivery

errors on individual patients utilizing well-known techniques borrowed from systems engineering.

Most metrics have been developed to measure patient treatment and outcomes; De Vos et al.

[2007] reviews over 62 different ICU metrics and identifies only 11 quality indicators that are relevant

to Dutch hospitals, such as spikes and drops in individual glucose levels and the number of unplanned

extubations.

Successful interventions at the level of improving a single process have been demonstrated widely,

resulting from the application of lean, six sigma, and total quality concepts appear in over thirty

recent publications which are summarized by Mazzocato et al. [2010]. Some of the tools to inves-

tigate sources of risk in these works include the 5 Whys, value stream mapping and failure modes

and effects analysis, all of which follow the treatment path of one patient at a time. The corrective

25



actions for each individual process that evolve from these investigations include 5S, Kanbans, and

the specification of "Standard Procedures."

Interventions:

These tools have allowed for significant progress in the reduction of the frequency of specific

healthcare delivery errors and harms. Perhaps one of the most successful examples is the use of

check-lists in both the ICU and the Operating Room [Haynes et al., 2009]. In medicine, a check-list

is a list that specifies processes steps which must be completed one after another during a medical

intervention. Ideally the items on the list are checked off by a practitioner or a clinical team member

as they are completed, ensuring that the specific tasks are finished. In an 18 month intervention

study, check-lists that dictated standard work, process completion and inspection steps have been

shown to reduce the rate of catheter related bloodstream infections in ICUs by 66% [Pronovost

et al., 2006]. Other studies show that check-lists have improved attention to procedural adherence

and clinical staff morale without impacting mortality rates or other ICU quality metrics [Simpson

et al., 2007].

Check-lists seem to be effective in reducing the frequency of "slip" errors in the critical care

environment because they remind a trained practitioner which patterns to follow in a given situation.

However, they are not an effective tool for preventing rules-based errors because they do little to

intervene in cases of misperception. While check-lists provide built-in double checks and can help

eliminate some mistakes, the addition of the extra steps and the creation of a complex set of rules

can actually increase errors; complex check-lists can increase errors particularly in situations where

the care path is not fully predictable.

Additionally, these lean, or system engineering based tools, does a good job at targeting repeat-

able phenomena. Processes or interventions that recur in the same manner while holding all the

other variables constant can be mapped and improved, allowing practitioners to shift from attention

control mode to faster, more proficient and more robust actions in schema mode.

These tools do not match many of the observed harms in the Critical Care Environment at

BIDMC, particularly when used on care processes in the ICU that are highly complex and unpre-

dictable. There are approximately 700 patient safety events reported annually at BIDMC. While
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the majority of these events represent an intercepted risk to safety (i.e., "near miss") as opposed

to actual patient harm, each of these events is considered an important indicator on the quality of

care in the hospital.

These 700 safety events consist of a wide range of harm events actions, many of which have

a very low probability of re-occurrence, but a very high impact should they occur. A root cause

analysis (RCA) is conducted for each major adverse harm event that resulted in serious patient

harm, and a detailed mitigation plan is developed to eliminate or at least reliably reduce the risk

of another patient experiencing that specific type of harm. Typical mitigation strategies cham-

pioned by BIDMC's Department for Health Care Quality and Patient Safety include additional

training, automated alerts, and process standardization. However, the corrective actions developed

after a given adverse event occurs do not necessarily offer an effective means to address other low

probability, high impact risk events.

With the current system at BIDMC, measurements are focused on solving one problem at a time

and are treated somewhat independently from the other events and systems that operate within the

hospital. The reporting system is a lagging indicator, showing harm only after it occurs instead of

warning about approaching issues. Due to the independence of each investigation, finding solutions

can be costly in time and money, and may impact other hospital systems in unpredictable ways.

Lean, root cause analysis and check-list based tools work well for repeatable situations, but are

not as efficient in helping practitioners with novel, rare, complex, and not fully predictable problems

that challenge the conscious mind and help them solve new situations which they face on a daily

basis.

Early Ward Measurements:

De Vos et al. [2007] considers ward level indicators, such as bed utilization, nurse to patient ratio,

and intensivist availability. These system level workload indicators are potentially powerful, but

when interpreted without context they can be mis-leading as due to the multitude of explanatory

factors that may indicate elevated levels in these metrics but not an effect on harmful outcomes to

patients. An example of this is the issue of readmission: Chen et al. [1998] suggests that the number

of readmissions to the ICU within 48 hours of discharge is an indicator of ICU quality. However,
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Angus [1998] points out that readmission alone is not a sufficient metric, as it may be a sign of

many clinical decisions, such calculated decisions to temporarily move a patient out of the ICU

while the don't need critical care, managing with chronic conditions that require re-hospitalization,

or taking the risk of an early discharge at the request of the patient or healthcare proxy.

2.3 New approach to healthcare safety and risk manage-

ment

Managing preventable harm in the ICU with a systems engineering approach is a new problem

in medicine with a sought after solution [Pronovost and Bo-Linn, 2012. Successful paradigms for

engineering system safety have recently been demonstrated in the airline and computer security

industries [Leveson, 2011]. These approaches treat human errors as a symptom of poor system

design and suggest problem solving architectures to measure system performance and conditions

that influence reliable outcomes. Leveson suggests several motivations for new approaches to safety:

Fast Pace of Technological Change:

In the beginning of the 20th century, it took nearly thirty years to translate a basic technical

discovery into a commercial product. Today technologies are commercialized in two to three years

and may be obsolete in five. The rapid growth and introduction of new technology shrinks the

opportunity to learn from past mistakes and increases the continuous training required to leverage

new products.

Changing view of public safety:

In today's healthcare society, individuals have limited control over the risks to which they are

exposed when seeking medical treatment. Consumers are demanding that healthcare institutions

develop various forms of oversight and regulation to control rising costs and malpractice.

This thesis deals with the following challenges to system safety in healthcare delivery environ-

ments such as the ICU:

1. Specific adverse events are relatively rare, making them difficult to characterize and analyze

statistically.
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2. There are many contributing factors that may impact adverse harm events, obscuring causal

analysis.

3. System studies can be costly and time consuming.

Our approach is based on several new ideas. In particular, instead of tracing individual harmful

events and seeking to understand their respective causes, this thesis seeks to understand the en-

vironmental factors that increase the occurrence of multiple types of harms. Next we outline the

major ideas underlying the approach taken in this thesis to overcome the three challenges above:

1. Different types of harm events can be measured and aggregated to create a notion of "Total

Burden of Harm." The "Total Burden of Harm" refers to the totality of undesirable harm

events that may or may not cause a tangible harmful outcome to a patient.

2. There are measurable environmental factors, called "Drivers," are common to many harms.

Drivers are conditions of the ICU, the people in the ICU and the environment of the ICU that

affect the likelihood of harm occurring and the magnitude of the respective outcome. Drivers

are not specific to a particular incident or patient, but describe more generic conditions of the

healthcare environment.

3. Statistical approaches could be applied to cluster observations of drivers around observations

of harms to find ranges of driver values in which more or less harms occur. These discrete

clusters in driver parameters space are collectively called "Risky States," and are defined

though combinations of drivers and their respective range values.

To make these definitions more illustrative, consider briefly an example of a car which has an

accident. The specific accident could be caused by the fact that the driver could not stop on time,

lost control of the vehicle, or experience a mechanical failure. However, snow roads, fog, badly

maintained car, lack of safety measurements, tired or incompetent driver are all examples of drivers

what would increase the likelihood of a car accident and the magnitude of its potential outcome.

The Risky State of the car would be the range of specific conditions that are correlated with a

probability of an accident; for example on roads with more than 1 inch of snow with a driver that
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has slept less than 6 hours in the last day, the chance of crashing would likely be higher than if the

driver had slept for more than 6 hours.

Specific harms in the healthcare environment are relatively infrequent, so by aggregating indi-

vidual harms together and treating them as a general undesirable phenomenon, one could hopefully

apply powerful statistical tools to draw conclusions about common drivers that apply to all types of

harm. The full definition of the Total Burden of Harm and all the harms that could be considered

therein was developed by Hu [2015], and includes nearly 4,000 harmful events over two years in the

ICUs at BIDMC. The harms defined by the Libretto ICU Consortium comprise only 2.5% of these

events. The analysis in this thesis focuses on harms which are directly attributable to the same

shift on which they occur, capturing 12% of the Total Burden of Harm at BIDMC.

To demonstrate how the risk driver framework described above could be applied in the ICU

environment, a preliminary review of 20 serious adverse events reported from BIDMC ICUs was

conducted. Each of these cases was reviewed in depth with the hospital team and Dr. Retsef Levi

to identify risk drivers or conditions among the staff, ICU unit or organization as a whole that may

have contributed to the event.

One example of a risky state revealed in this preliminary review is the fundamental mental

condition of clinicians failing to recognize that they face a "special" scenario that falls outside of

their routine practice. This risky condition could arise in various settings; for example, when a

neurology patient is placed into a unit that typically does not routinely care for neurology patients,

or when an interventional procedure is done in an ICU when that is not typically the location where

the procedure is performed. The practitioner's unfamiliarity with the changes in their environment

exposes them to rules-based errors.

The risk driver framework developed in this thesis provides a view of how drivers can affect

multiple events and harms. This framework is a fundamental shift from the current approach to

patient safety, which focuses on highly specific activities that are tightly linked to a single specific

type of harm, such as check-list interventions for catheter-related bloodstream infections [Pronovost

et al., 2006]. The results of this preliminary analysis have been used to develop an early model to

identify high risk conditions in the ICU setting.
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A pervasive challenge to this type of approach is the so-called curse of dimensionality; with so

many influential factors driving healthcare delivery errors, it quickly becomes impossible to acquire

enough data to create a model for even modest combinations of independent variables [Bellman

et al., 1961] to identify causes for each individual type of harm.

Fortunately, recent advances in machine learning have simplified the task of determining which

features of a problem are relevant and how to model them. Classification trees, originally developed

in 1984 [Breiman et al., 1984] have been used with success to determine the salient features of

multidimensional problems [Kira and Rendell, 1992]. Chapter 3 will explore the definitions and

methods that were used to predict harm.

By leveraging dimensionality reduction and clustering techniques from machine learning, many

factors can be considered simultaneously. Aggregating rare harmful events provides sufficient sta-

tistical to discover patterns within the healthcare environment may emerge which influence error

rates.

31

.......... .......



32



Chapter 3

Measurement Methods

The goal of this chapter is to develop a descriptive framework for shifts and harms the ICU. The

measurements in this chapter differ from other healthcare measures in that they are aggregated to

the unit and shift level, instead of the patient level. Specifically, each shift and each ICU ward

are described through a set of Risk Drivers (conditions) that can be thought of as the independent

variables and an aggregated indicator of whether some harm event occurred in the respective shift

or ward. In what follows, we describe the set of harms (discussed briefly in Section 3.1) and in more

detail in Hu [2015] and the set of drivers that constitute our model.

Our model aims to describe the environmental conditions of the ICUs at BIDMC over time (shift

by shift). The goal of the statistical modelling described in chapter 4 is to identify High Risk and

Low Risk States. States are defined through a combination of drivers and their respective ranges of

values. The statistical model aims to partition the driver space into states, whereas high/low risk

state have higher/lower harm rates than the average overall shifts in the ICU.

To identify High and Low Risk States, we rely on aggregating individual patient data. This

aggregated approach has several advantages:

1. Consideration of a larger spectrum of harm.

Many ICU quality efforts consider only one healthcare delivery harm at a time [Pronovost

et al., 2006, Mazzocato et al., 2010, De Vos et al., 2007]. Consideration of multiple harms

may lead to a different understanding of the environment when are correlated with preventable
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harm.

2. Improved statistical power.

The aggregation of harm allows the use of more powerful statistical techniques. Rare events

that characterize individual harms at BIDMC can be difficult to predict. By aggregating them

together into a "Total Burden of Harm," statisical power is improveed and conclusions can

be drawn about undesirable harms in general.

3. Foundational work to develop leading indicators of harm.

Classification of hospital shifts as "High Risk" or "Low Risk" based on retrospective analysis

lends insight into the level of safe operating conditions on those shifts. If it becomes possible

to estimate the majority of events on future shifts, levels of risk can potentially be predicted

and mitigated before harms occur.

4. Interventions may be systematic and effect the reduction of multiple types of harm.

Since measurements are made at the unit level and conclusions may be drown about multiple

types of harm, an intervention that alters the state of a shift may reduce the likelihood of

harm occurring.

One of the primary technical challenges to a holistic approach to healthcare system safety is the

wide variety of reported harm incidences and scarcity of repetition of each particular type of harm.

Investigating the chain of events that led to each of the 700 harms in BIDMC's reporting system was

intractable. Instead, we use the "Total Burden of Harm," which reflects the aggregation of different

types of harms. The Total Burden of Harm allows for enough repeatable observations of harm to

use powerful statistical tools. These tools help us understand the influences that a single driver, or

combination of drivers, has on multiple types of harm. We seek to understand the environmental

drivers that contribute to multiple types of harm, with the hope that interventions in these drivers,

such as redistribution of workloads, better mixes of staff experience or new technologies, will reduce

the Total Burden of Harm.

The definitions of specific harms and drivers presented in this section were developed and re-

fined over a year of cross functional workshops that brought together senior staff in critical care.
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Physicians, nurses, nurse managers, department chiefs, data scientists, statisticians and engineers

worked together to determine environmental drivers and harms that could be measured and had

meaningful definitions. Disparate databases were mined and combined from hospital departments,

including electronic medical records, billing, staffing and utilization monitoring systems, spanning

two years from 2012 through 2013. Over 10,000 critical care shifts in six adult Intensive Care Units

were analyzed. The wards included the MICU, SICU, TSICU, CCU and Finard 4. The CVICU was

eliminated from the dataset as an outlier because its use is combined as a surgical recovery room.

3.1 Definition of Harm in Healthcare Delivery

We rely on the work of Hu 2015 for definitions of the Total Burden of Harm in the ICUs at BIDMC.

Table 3.1 summarizes the harms considered in this thesis. These harms were identified though three

primary sources. First, consultation with the institute for Health Improvement's Trigger tool [Griffin

and Resar, 2009] led to the development of an innovative automated large scale search though the

medical IT recods at BIDMC to identify harms. Second, representatives from the Libretto ICU

Consortium aided the development of the definitions and measurements of other harms. Finally,

additional harms were developed based on the clinical expertise of the senior nurses and physicians

in the ICUs at BIDMC and a review of over thirty harms from the BIDMC incident reporting

system.

The harms in Table 3.1, which are considered in the remainder of this thesis, represent the subset

of harms which occur instantaneously on a given shift. For example, a patient who falls in the ICU is

considered an instantaneous harm because the harm event clearly occur on that shift. In contrast, a

ventilator associated infection may develop over several shifts, and its precise time of occurrence can

be difficult to ascertain. The full definition of the Total Burden of Harm was developed by Agnes

Hu, 2015 and includes nearly 4,000 events over two years in the ICUs at BIDMC. The analysis in

this thesis is focused on harms which are instantaneous and capture 12% of the Total Burden of

Harm. About 3.5% of shifts over the two year data set have at least one of these instantaneous

harms. Each shift that is associated with the value 1 if a harm occurred and 0 otherwise.
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Harm Definition

Arrest
Code Purple

Fall
Hemoglobin

Handoff

Identification

Lab

Medication

Safety

Cardiac Arrest or Code Blue
Shifts on which hospital police was dis-
patched to the unit
A patient falls, or nearly falls, in the ICU
A shift with an abrupt drop in hematocrit
greater than 4 within 24 hours, given it hap-
pens after 2 hours of admission to the ward
Errors or near misses in which information
transfer between healthcare providers con-
tributes to mistreatment of patients.
Errors or near misses in which the wrong pa-
tient was given an intervention
Errors or near misses related to lost, misun-
derstood, or preprocessed lab procedures
Errors or near misses related to wrong dose,
or wrong medication
Errors or near misses related to safety distur-
bances in the unit

Table 3.1: Harms which are attributable to shifts
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3.2 Development of Drivers

In this section we describe the set of drivers that are included in our model. As already denoted, the

development of the set of hypothesized drivers was done in collaboration with a multidisciplinary

team. The team used several approaches to hypothesize what conditions (drivers) could affect harm.

First, we relied on the understanding of human errors [Reason, 1990]. Second, we reviewed a sample

of over thirty past incidents to develop categories of potential drivers. Third, we used the collective

clinical and operational experience of the team supported by data analysis to propose additional

drivers.

The goal of this approach was to establish a set of measures that are recorded in the Electronic

Medical Records at BIDMC and give insights into the nature of the work related activities, health-

care providers, and patients who are in the ICU during the period of study. We refer to these

measurements as "Drivers." These drivers are categorized in four groups: Acuity, Unfamiliarity,

Workload, and Other.

Measures of acuity collectively describe severity of illnesses patients. Senior clinicians from

BIDMC hypothesized that high levels of acuity may be correlated with adverse outcomes. It may be

the case that high levels of acuity may expose healthcare practitioners to greater rates of knowledge-

based errors because they are caring for complicated patients with multiple complications with no

clear standard of care.

Drivers related to unfamiliarity were developed to capture situations which the ICU operated

in irregular conditions. These conditions may lead to rules-based errors, particularly if the staff

does not identify that they are performing irregular operations. These drivers may include staffing

decisions that place healthcare providers in wards to which they are not usually assigned, or rare

patient needs that are in some way unique or unusual.

Workload drivers measure how busy the nursing staff is during the shift. It is hypothesized

in this thesis that high workloads lead to increased rates of preventable harm because rule and

knowledge based errors may become more frequent as the brain becomes more heavily loaded.
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3.2.1 Time Unit

As already noted, drivers and harms in our model relate to a twelve hour work period between 7am

and 7pm, known as a shift. BIDMC is open for a night and day shift every day of the year. Many

activities that occur in the ICU can be attributed to a person, who is schedule to work on a shift,

which allows activity levels to be determined to a twelve hour granularity. Personnel change at the

end of a shift, and the presence of a new team affects many of the drivers, marking a natural shift

into a distinctly new environment.

There are many other activities which have recorded timestamps, such as administration of

medications, but anecdotal evidence indicates that the time stamps on many records are in general

inaccurate by several hours because practitioners often complete several tasks before doing their

record keeping. Due to the breadth of the investigation, this inaccuracy would make automated

investigation of ICU activities intractable for an analysis on an hour-by-hour basis. The investigation

also considers the differences between night shift and day shift activities, implying that aggregations

over multiple shifts may average away important sources of variance between shifts.

3.2.2 Acuity Drivers

In a medical setting, the word "Acuity" is often used contextually to convey several different mean-

ings. We define "Acuity" as the severity of an illness. We use several commonly used measures of

acuity in this work:

1. Sequential Organ Failure Assessment score, or SOFA. The SOFA score was developed to mea-

sure the acuity of patients in the ICU [Vincent et al., 1996]. SOFA scores are evaluated several

times over a shift for patients who require mechanical breathing support called ventilators.

In this work we use the maximum SOFA score on a shift, which has been shown to be a good

predictor for acuity [Janssens et al., 2000]. We aggregate the SOFA score for each patient in

a ward over a shift as follows:

V

Ward Sofa = max(SOFAk), (3.1)
k=1
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where V is the number patients on a ventilator during the shift in the ward and SOFAk is

all of the SOFA scores for patient k during the shift.

2. Length of Stay in the ICU

The Length of Stay measures the average duration of time the patients have been in the ward

since they were admitted to the ICU.

N

LS = N E MIN(ES, DT)k - WATk, (3.2)
k=1

where N is the number of patients in the ward during the shift for which the Length of Stay

is calculated, ES is the time the shift ended, DT is the time and day on which the patient

was discharged from the ward, and WAT (Ward Admission Time) is the time the patient

was admitted to the ward. The clinical intuition from hospital staff at BIDMC suggests that

both short stays and long stays could be indicators of elevated risk; short stays indicated that

newly arrived patients require urgent critical care, and long stays indicated that the patient

was remains too unstable to be transferred to a step-down unit. In general, long lengths of

stay are considered undesirable and have been suggested as a patient level quality metric for

the ICU [De Vos et al., 2007]

3. Length of Hospital Stay

The Length of Hospital Stay measures the average amount of time the patients have been in

the ward since they were admitted to the hospital.

N

LS = N E MIN(ES, DT)k - HAT, (3.3)
k=1

where ES, DT and N are the same as before and HAT is the time and day the patient was

admitted to the Hospital.

4. First 24 hours:

The fraction of patients in the ICU who were admitted on shift or in the previous two shifts.
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Experts in the ICU consider recent admission the unit an indicator of acuity because the

ICU is designated as an acute treatment facility. Patients are sent there because they need

advanced care. We compute this driver in the following way:

1 N k 1 if LSk < 36 Hours

F2N E k, (3.4)
k1  

6 k 0 if LSk > 36 Hours

3.2.3 Unfamiliarity

These drivers capture shifts in the ICU in which staff dealt with unusual situations. High levels

of irregular environments, patients, or procedures can place high cognitive loads on staff and allow

human errors to creep into healthcare delivery.

1. Float Nurse:

A float nurse is a nurse who is working in a ward to which they are not usually assigned. For

example, a nurse hired and trained in the Surgical ICU may on occasion work in the Medical

ICU. BIDMC has a "Float Nurse Pool", which consists of nurses who are trained to work in

any ICU - this metric does not include nurse from this pool. The measure is the fraction of

nurses in the room who are "Floating:"

1 s k 1 if Nurse k is "Floating" (
FN = -( S 6, (3.5)

S k=1 k= 0 if Nurse k is at "Home"

Where S is the total number of nurses that are assigned to a shift. Float nurses are easily

identified from the staffing records at BIDMC. Each record shows the shift assignments for

each nurse and also the ward each nurse was actually qualified to work in.

2. New Nurse:

Fraction of Nurses in the room who have been hired to work in the ICU's within the last year

I S k if Nurse k was hired within the prior year
NN = - 1 , (3.6)

S = 0 if Nurse k was not hired within the prior year
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Where S is the total number of nurses that are assigned to a shift. New nurses are identified

from the staffing records at BIDMC by calculating the difference between the nurse's hire

date and the date of the shift which was worked by the nurse. If the elapsed time is less than

one year, the nurse is considered "new."

3. Rare Procedures:

A rare procedure is a medical intervention that has been performed less than 90 times in a

ward over the two year period. Procedures which are rarely performed require the brain to

operate outside of their regular routine, exposing clinicians to rules-based or knowledge-based

errors.

6 = 1 if a rare procedure occured
RP = 6 (3.7)

P = 0 if a rare procedure did not occur

4. Boarding Patient:

A patient is considered "Boarding" when they are assigned to ward that does not usually

care for patients with the needs described by the medical service that is providing care.

Table 3.2 was developed with the aid of senior physicians at BIDMC and describes which

medical services are considered at home in each ward. Electronic medical records indicate

each patient's service and location, and if a patient is not in their "home" ward, they are

considered "boarding"

B1 N = 1 if patient is Boarding
BP = 6kig (3.8)

=1 6
k = 0 if patient is not Boarding

Definitions of "Boarding" may vary between hospitals. For this thesis, the definitions of home

patients can be found in Table 3.2.
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Service Home Wards

Med FICU, MICU
CSURG CVICU
VSURG CVICU
CMED CCU
NMED SICU, TSICU
OMED FICU, SICU, TSICU
GU FICU, SICU, TSICU
TSURG SICU, TSICU
NSURG SICU, TSICU
OBS FICU
ORTH FICU, MICU, SICU, TSICU
TRAUM TSICU
GYN FICU, MICU
ENT SICU, MICU
PSURG SICU, TSICU

Table 3.2: Regular ICU wards for medical services

3.2.4 Workload

It has also been suggested that nursing workload has a strong impact on safety in the ICU [Carayon

and Giirses, 2005]. The following metrics were suggested by the expert staff at BIDMC as events

which imply how much work is being done by the staff. In conjunction with the more rigorous

nursing workload metrics these are other measures of workload suggested by the staff at BIDMC.

The following measures were considered:

Nursing Workload: A great deal of effort has been extended to the measurement of nursing

workload in the ICU. An exhaustive study of the time consumed by executing 76 common ICU

nursing tasks was conducted in 1983 and validated in hospitals around the world [Keene and Cullen,

1983]. The scoring system was later refined to the TISS-28 [Miranda et al., 1996], which categorized

and simplified the original score without significant loss of accuracy. For many ICUs the TISS-28

remained too complex to implement, and the Nine Equivalents of Nursing Manpower (NEMS) was

developed in 1997 [Miranda et al., 1997] and validated in 1999 [Rothen et al., 1999]. NEMS and

subsequent methods use broader and mode categorical descriptions of the ICU to measure and

predict workload.
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The workload score used in this work is based on the Simplified Therapeutic Intervention Scoring

System, which was developed in 1996 Miranda et al. [1996]. The TISS-28 was developed to measure

the nursing workload in an ICU during a shift and has been found to be useful for predicting

workload, resource utilization and cost but not acuity [Hariharan et al., 2007]. A nurse can of do 46

TISS points per eight hour shift, or 10.5 minutes per TISS point. The BIDMC shifts are 12 hours,

and workloads have changed since the publication of the TISS-28. Expert opinions from physician

and nursing staff at BIDMC were solicited to modernize the TISS-28.

The work of Ma, 2015, was instrumental in defining the revised measures of nursing workload in

the ICU. Ma and his team shadowed nurse to observed differences in patient types, nursing workflow,

and staffing patterns. Through consultation from expert senior medical staff, they produced table

3.3 to measure nursing workload.

To score a shift, one must add the patient activities that occurred during the shift for all of

the patient on the ward and then normalize by the total number of patients. Appendix A shows

the distribution of the unit level TISS score: a shift with score of 0-18 is light workload, 18-24 is

moderate workload, and 24+ is high workload.

Addition Workload Measures: The following measures were developed with the clinical

insight of the professional ICU staff at BIDMC. They represent approximate measures of nursing

workload in a ICU on a shift.

1. Hours of Care:

the Hours of Care is the ratio of the total number of hours worked by nurses to the total

number of hours patients spend in a bed in the ICU. A low Hours of car ratio means that

nurses are taking care of multiple patients, and a high ratio means that nurses are taking care

of fewer patients. Typically, BIDMC staff one nurses per one or two patients based on their

clinical expectation for how much effort the patient will require.

2. Admissions:

The fraction of total patients in a ward on a given shift who were admitted on that shift.

Admissions require extra communication as the patient's condition and medical history is

handed from one team of providers to another.
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Basic Activities Points Renal Support Points
Standard Monitoring (All Patients) 5 CRRT 8
Routine Lab Draw (All Patients) 1 Measuring Urine Output 2

Routine Medication (Alll Patients) 2 Diuresing (Lasix) 3
IV insulin/ meds with extensive monitoring
Routine dressing changes (All Patients) 1 Neurologic Support
Care of drains (All Patients) 3 ICP Drain 4
Pressure ulcer 1

Metabolic support
Ventilatory Support Acidosis/Alkalosis 4

On a Ventillator 5 TPN/OPN 2
02 delivery assisstance 1 Tube Feeds 3
Has a trache 1

Chest CT (All Patients) 1 Specific Interventions
Single Procedure done in ICU 3

Cardiovascular Support Multiple procedures done in ICU 5

Single vasoactive medication 3 Travel (OR, Cath lab, ERCP) 5
Multiple vasoactive medications 4
1.5L IVF/blood products per shift 4
Arterial catheter (in access line/invasive) 2
PA Catheter, LVAD, Tandem heart 8
Impella,PiCO, ECMO, Alsius, Arctic Sun 8
Heart Mate,Blakemore, Massive Transfusion 8
Central venous line 2
Code blue in last 24hrs 3

Table 3.3: Scoring System for Nursing Workload

3. Discharges:

The fraction of total patients in a ward on a given shift who were discharged on that shift.

Discharges require extra communication as the patient's condition and medical history is

handed from one team of providers to another.

3.2.5 Other Events

Literature reviews and clinical staff at BIDMC suggested the exploration of other indicators which

don't fall into a convenient category. They are presented below:
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1. Readmission:

The fraction of patients on a shift in a ward who were discharged from an ICU within the

previous 72 hours. The measure of readmission as an indicator of ICU quality was first

developed by Chen et al. [1998].

2. "ED Critical":

The fraction of patients on a shift in a ward who have the name "ED Critical." These patients

have an unknown name and therefore no known medical history at the time of treatment.

Medical history can be very important when determining how to care for a patient, and

hospital staff may change their routine when a patient with no history requires treatment.

3. Night and Day:

Night shifts occur between the hours of 7pm and 7am. Day shifts run from 7am to 7pm.

A binary variable is included to indicate night and day shifts. Senior clinicians at BIDMC

suggest that procedures and staffing patterns may be different between day and night shifts.

4. Weekend:

Weekend shifts occur between 7pm Friday and 7am on Monday. A binary variable is included

to indicate weekend and weekday shifts. BIDMC staff indicated that operational patterns

may change between the regular week and the weekends.

5. Unit indicator:

When wards are aggregated together, a categorical variable is included to indicate which ward

each shift belongs to. This variable is important because it may lend insight to significant

differences between ICU wards within the hospital.
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Chapter 4

Statistical Methods

The challenges to developing a model to identify risky states are numerous:

1. The harm events are uncommon.

After aggregating the harm considered in this analysis, only 3.5% of shifts have a harmful

event. A statistical method which remains effective for unbalanced datasets must be consid-

ered.

2. The Risky States must be descriptive.

There are many statistical tools, such as random forests and neural nets, that can identify

clusters of high-risk shifts. While, these methods are helpful for predicting outcomes, they

are not effective for understanding the underlying conditions that lead to harm, and do not

facilitate the development of risk mitigation strategies. A tool must be used which facilitates

understanding the conditions that lead to the development of high levels of risk.

3. The problem is high dimensional.

With over 20 independent variables and nearly 8700 observations, not all analytic methods

are appropriate; as the number of independent variables grows, the dimensionality and thus

volume of space increases rapidly. Within this large space, even 8700 data points can quickly

become a sparse number of observations, and many tools, such as multiple regression, will lose

their statistical power. Fortunately, there are several machine learning algorithms designed
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to work within this challenge.

4. The results must be statistically robust.

To our knowledge, this is the first attempt to identify risk in ICU wards at an aggregated

level. A new model which predicts risk should be consistent with other methods and withstand

cross-validation from multiple techniques.

Classification Trees are a useful supervised learning algorithm that are efficient for working

with large numbers of independent variables. Classification trees are a good approach because they

consider only the most important driver interactions and help the user identify the groups of drivers

that best estimate risk. Unfortunately, for some datasets classification trees become unstable so

great care must be taken to validate the results of this highly adaptive learning algorithm. K-

Nearest Neighbour (K-NN) methods are also helpful for defining probability density functions in

high dimensional space and are used in this thesis to validate the Classification Tree method.

The method used in this work is a combined use of Classification Trees and the K-Nearest

Neighbour. A brief outline of this chapter and statement of the algorithm is below:

1. Run multiple classification trees to reduce problem dimensionality.

2. Calibrate and create "Risky States" with a Classification Tree to identify high and low risk

states.

3. Determine the stability of the tree by comparing the results with a second machine learning

algorithm, the K-Nearest Neighbour.

4. Determine the statistical significance of the Risky States with the Man-Whitney-Wilcoxn

hypothesis test.

4.1 Classification Trees

In this thesis, Classification trees are used as a clustering recognition algorithm to identify risky

states. Classification trees can be thought of as a method for searching a hypothesis space for
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clusters that best fit the training data. A good fit is a tree that best separates observations of

harmful events from observations without harmful events. The hypothesis space is the complete

space of finite values for the drivers, and comprises every observed state of the ICUs. The algorithm

iteratively searches the hypothesis space for driver values (thresholds) which best split observations

of regions in hypothesis space where harm occurred from those where it did not. The classification

tree will continue to split the hypothesis space into smaller regions ("Risky States") until the

maximum number of splits is reached, the minimum number of observations which define a region

remains, or the region is of a single type of observed outcome (harm or no harm). Breiman et al.

[1984] provides the full details of how the classification tree algorithm works.

4.1.1 Overview

Classification trees were originally developed as method to the predict the likelihood that a new

observation will belong to a class. A classification tree belongs to the subset of machine learning

algorithms called 'supervised learning' because the training observations are first marked by their

class before the algorithm is run. Classification Trees differ from Regression trees in that Regression

Trees are trained on continuous targets. Classification trees have several important features that

make them advantageous for this investigation:

1. Non parametric

This method makes no assumptions about the shape of the driver data. Thus the method

works well with many types of data distributions that could be underlying in the various

drivers such as long tailed distributions , multi-modal distributions, and outliers.

2. Robust treatment of categorical variables

Many drivers under investigation are categorical, such as nigh or day, or ICU type. Classifi-

cation tree methods work well with categorical variables.

3. Discovers "interactions" among variables

The classification tree estimates a probability of an event occurring based on the values of all

the drivers that define the tree.
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4.1.2 Criticisms

A significant drawback to classification trees is that they can be sensitive to perturbations in the

data that they are trained on. This means that a small differences in harm distributions has

the potential to create differently shaped trees. The large dimensionality of the current problem

poses the possibility that weak drivers could be falsely selected. While ensemble methods such as

AdaBoost and Random Forests have been developed to mitigate these issues, these "black box"

techniques do not provide clearly defined risky states around which a management strategy can be

built.

4.1.3 Classification Tree for Feature Selection

To mitigate the instability issues of Classification Trees, an experiment was conducted to better

understand the instability issues with the current dataset. Instantaneous harms and drivers for

five wards (MICU, SICU, FIN4, TSICU and CCU) were randomly split into 10,000 training sets,

with each training set containing 50% of the available data. Classification trees were built on the

each of the subsequent training sets, and the total frequency with which drivers appear shown in

Figure 4-1. The figure shows that some drivers are selected significantly more often than others.

We conservatively propose that drivers which appear in more than half of the classification trees

may have a significant impact on predicting risky states, and include these variables in the K-NN

validation method.

4.1.4 Classification Tree for Risky States

In this thesis, Classification trees are used to identify clusters of shifts that have similar drivers

and rates of preventable harm. Using retrospective data, if a preventable harm from Table 3.1

occurred on a shift, that shift is marked. The shifts are parametrized by their drivers, which are

projected into the hypothesis space. The Classification tree algorithm is then run to determine

multiple thresholds in the hypothesis space that best separates shifts on which harms occurred

from those on which it did not. The thresholds are hyperplanes which divide the hypothesis space
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Figure 4-1: Greater frequencies indicate stronger predictive power

into partitioned volumes, and the volumes are known as "Risky States". Figure 4-2 illustrates the

process in two dimensions for a generic set of drivers:

A discussion of the algorithm and details of its implimentation can be reviewed at Pedregosa

et al. [2011]
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Figure 4-2:
Step a) Classify shifts on which harm occurred.
Step b) find best plane that separates classes
Step c) A high risk region is separated from a low risk region by a threshold value for Driver #1
Step d) repeat until terminal conditions are met

4.2 K-Nearest Neighbour

4.2.1 Overview

The K-Nearest Neighbour Method (K-NN) is a non-parametric algorithm for estimating classifica-

tion and regression. When K-NN is used for classification, as in this thesis, the probability that an

observation belongs to a class is determined by taking the average of the classes for the k nearest

training observations. A small k number will make the method sensitive to noise and a large k

decreases the sensitivity of this method. It is generally suggested that k = 30 provides a good

balance between the two.

The K-NN distances are estimated based on euclidean norms for all variables that are input into

the model. Variables which are random, or unpredictable, can therefore drag unrelated observations
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into the nearest neighbour radius. For this reason, we train the K-NN model only on drivers which

have been selected as important features for the driver frequency experiment in the previous section.

4.2.2 Use of K-NN

The K-NN model is run first on the set of drivers (and associated harms) that were identified in

the results of Section 4.1.3. This is used to create a probability density function, p, for the entire

population of shifts.

Next, the K-NN method is run on each of the risky states that were proposed by the classification

tree. This provides an alternative method for estimating the probability of harm in each of these

states p,8 as well as a probability density function for each state, po. These metrics will be useful

for cross-validated the Risky States.

4.3 Model Metrics: Separation, Instability, Stability and

Significance

It is generally accepted that a "good" mathematical model will tell the investigator something that

they didn't understand before beginning an investigation. In this setting, it is trivial to estimate

the a priori probability of harm occurring on a shift, [, from the simple formula

N 6OH= 1 if a harm occured on shift n
= 1 6--n (4.1)

N j = 0 if a harm did not occur on shift n

where N is the total number of shifts.

In this work, y = 3.5%. This thesis defines information gain as the number of shifts which

are different from our a-priori knowledge about them. In developing this model, several important

measures for the usefulness and reliability of the output are defined.
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4.3.1 Separation

Separation (-) is a metric to describe information gain. Information gain is a measure of the number

of shifts which can be separated from the population average in a meaningful way. Mathematically,

= N p (4.2)
E'3 "_ " otherwise

where p is the probability of harm predicted for state / by K-NN method and [pb is the prob-

ability of harm predicted by the Classification Tree method, n, is the number of shifts in state #

and [t is defined in equation 4.1.

This metric has the desirable properties of becoming larger as more observations are separated

from p. By construction, this metric ranges between zero and one. It is adjusted for bias in /u so

that information gain for datasets with p f .5 will not be overweighted.

The measurement is non-singular, which means that several models with different shapes can

have the same score.

In the figure below, the separation metric is calculated for classification trees to demonstrate

the effect of varying the maximum depth of the tree (0 - 25) and the minimum number of shifts

that are required to characterize a risky state (30-300).

- 30
0.7 - 60
0.6- 9

0.5 120
.0.4 - 150

0.3 180

0.2 - 210

0.1 - 240

0.0 270
0 5 10 15 20 25 - 300

Tree Depth

Figure 4-3: Classification Tree Parameter Search

The maximum depth of the tree and the minimum number of shifts per state are the two major
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features in tuning a classification tree. By varying these tuning parameters, we are able to gain the

following insights:

1. Changing tree depth reveals that separation, in general, increases with the depth of the tree.

As the tree continues to grow in depth the separation levels off, at which point all of the shifts

have been assigned to a state.

2. The inverse relationship between minimum state size and separation can be seen by looking

at the vertical distance between trend-lines at any particular tree depth. As the minimum

shifts per state shrinks, separation increases.

3. The metric is non-linear

This metric alone tells us that separation increases with smaller minimum state sizes, and with

greater tree depths. Taken to the limit, a model with states of 1 and unlimited depth would be

useless in its ability to predict the future and extremely unstable for predicting the risk of nearby

states. Where must therefore temper the desire for separation with a robust treatment of instability.

4.3.2 Instability

In this thesis, instability is defined by comparing different predictions for harm rates that are

generated by the two different machine learning methods.

A = 1 noIpo, - pog| (4.3)

For each state that is proposed by the classification tree method, the difference in the harm

rates that are predicted by the K-NN method and the Classification method are accumulated. A

larger A indicates that the two methods have very different predictions about the level of harm in

many of the states. A smaller A indicates greater agreement.

As before, we seek to understand the influence of the classification tree tuning parameters, Tree

Depth and the minimum number of shifts that define a state and conduct a parameter search:

The figure above demonstrates four important behaviours:
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Figure 4-4: Classification Tree Stability Search

1. Oscillations in instability dampen as tree depth increases. This suggests that as the tree

grows, unstable states are generated and then split into stable states with fewer samples per

state.

2. Instability is inversely proportional to minimum number of shifts per state. When a smaller

number of samples are allowed to define a state, the instability of the model grows. This is

in direct opposition to the stability metric.

3. Instability increases with tree depth. Although the oscillations dampen with depth, the bias

increases.

4. The metric is non-linear

The apparent opposition between Instability and Separation yields rapid analytic insight into

the trade-off between tree depth and minimum samples per state. Trees of depth eight seem to

converge, suggesting good stability at that level between under-fitting and over-fitting. At tree of

depth eight, minimum state size of 120 appears large enough not to suffer from the instability and

small enough to provide good separation.

4.3.3 Second Stability Check

The second stability check is an additional filter to check the quality of a state determined by the

Classification Tree. A state is unstable if one model classifies the mean of a state as elevated risk,
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while the other model classifies as low risk.

{La < p and po,, > p = 0

f (P, Pu1,, I -,,r) = ,8, > p~ and f,8,,r <[pt 0

else = 1

States become contradictory when the thresholds that define a state are poorly constructed. The

probability density functions that are defined by the K-NN method are trained on the the nearest

neighbours. If the neighbours are across the threshold defined by the Classification Tree, they are

included in the K-NN model when the mean of the bucket is calculated. Thus, states with different

classifications near the threshold will affect the K-NN model, but not the classification tree. This

filter is effective because it eliminates two types of false states:

1. A state near the mean, but on different sides of it according to the two models, is not an

important state because it yields no new significant information beyond the a priori assump-

tions.

2. A state which is far from the mean and dragged across the mean by its neighbours is "boxed

in" by nearby members of a different class and is likely over-fit.

4.3.4 Significance

The final check to understand the stability of the risky states that are proposed by the Classification

Tree is a test for statistical significance. It is important that the distribution of harm in the risky

state is different than the distribution of harm in the aggregated observations of shifts. If the two

distributions are not different, then the algorithm has not provided new information about harm in

the state.

The Mann-Whitney-Wilcoxon (MWW) test is a non-parametric statistical test to determine

the significance of the null hypothesis that two samples come from the same population versus the

alternative hypothesis that the two samples are from different populations. The distributions of

harm for each state and for the general aggregation of all states are determined with the K-NN
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method.

In this thesis, the alternative hypothesis, H1, is that the mean of harm, , in a particular

state, 0, is different than the mean of harm in the general population, p. We are interested in cases

for which p3,, > p and pp,, < p. The null hypothesis is pp,, = p. For this test, p-values of less

than .05 indicate significant distributions.
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Chapter 5

Results

5.1 Summary of Results

A summary of sixteen states which are of interest can bee seen in Table 5.1. Each of these states

passes all three tests for stability in chapter 3. A full review of these states follows in this chapter,

which supports three major conclusions:

1. The root indicator for most elevated risk states is the Nursing Intensity Score. Levels of nursing

workload that are even slightly above the mean are a precursor to many risky states. However,

it should be noted that not all of the high risk states in Table 5.1 require combinations of

drivers. No single driver is sufficient to define a high risk state.

2. Groups of newly hired nurses, in combination with elevated workload, are strong indicators

of elevated risk.

3. When multiple risks factors are high, so are harm rates.

4. Shifts with low average workloads are relatively safe, and remain safc when perturbed by a

single environmental factors that stress the system.

In the next sections, the definition of each individual state is presented. The proportion of each

type of harm in each state is compared to the proportion of harms in the general population of
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State P, Shifts p, P Value Risk Level

12
19
23
26
32
39
42
43
46
47
54
58
59
60
65
73

0.019
0.026
0.091
0.077
0.007
0.005
0.016
0.000
0.014
0.004
0.075
0.040
0.118
0.111
0.062
0.072

Table 5.1:

253
1957

142
206
134
179
120
261
202
224
146
174
144
153
129
124

0.028
0.033
0.042
0.053
0.017
0.024
0.025
0.017
0.030
0.029
0.060
0.047
0.056
0.058
0.045
0.050

4.099e-04
2.064e-02
8.330e-03
4.553e-12
5.088e-11
2.876e-06
1.502e-03
7.161e-37
7.855e-03
9.808e-03
4.525e-13
9.968e-06
1.050e-09
8.487e-13
6.316e-04
1.535e-05

Summary of Significant Outputs

harms for all states to see if certain states have a higher prevalence of particular risks. It is shown

that medical errors occur disproportionately when multiple drivers of risk are elevated and hand-off

errors occur disproportionately when workloads are modestly elevated and combined with a second

elevated driver.

5.2 Risky States: High Risk

In the following section, eight high risk states, representing 13.2% of the shifts, are presented.

The first set of states are grouped together because they describe situations that could lead to

errors related to choosing the wrong rule to act on in a given situation due to moderate workload,

unfamiliarity with the situation and high cognitive demand. The second set of risky states are all

high risk states, and have a disproportionally higher rate of hand-off errors.
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5.2.1 Rules related Errors

We begin our understanding of the features of high risk states with state 23, which from table 5.1

includes 123 shifts with a 9.1% chance of harm, more than double the apriori (3.5%).

The bar graph in the figure shows the proportion of harm in the entire set of shifts compared to

the proportion of harm in state 23. The distributions are normalized by the total number of harms

so that an accurate comparison for the frequency of each harm type can be better understood.

State 23 shows higher frequency of arrests, falls and identification errors with proportionally fewer

medication and handoff type errors than exist in the general population of shifts.
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SOFA 5.8 13.4
Float Nurses 72%
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Figure 5-1: State 23 - 9.1% Chance of Harm, 142 Table 5.2: Midrange work with Float Staff and Jon Doe
Shifts

From the table we see that state 23 suggests that on shifts with midrange workloads with

midrange acuity, and over 72% of the staff working outside of their home unit. With up to 32%

of the patients in the room unidentified. As one might expect, the harm breakdown in the figure

shows that the number of errors related to patient identification is elevated far above the general

population. The combination of moderately stress working environment with many clinical staff

unfamiliar with their environment suggests that rule-relate cognitive errors are being made in greater
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frequency. Elevated rates of identification errors support this claim, which is that the staff is

performing procedures with which they are familiar but perhaps not appropriately adjusted to their

new environment an unidentified patients.
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Figure 5-2: State 26 - 7.7% Chance of Harm, 206 Table 5.3: Midrange work and Acuity with Float Staff
shifts

State 26 shows a similar situation, with midrange acuity and the Nursing Intensity score also in

a middle range, though slightly lower. The float nurse upper threshold is fairly high with a large

range, indicating that it may not be a useful predictor for this state. The harm breakdown suggests

an increase in bleeding and code purple events, but is difficult to tie these events directly to the

wide range of float nursing scenarios spanning the 206 shifts. Regardless of our interpretation of

the float nurses, we see that state 23 and state 26 both implicate elevated regions of risk in regions

of average workload and intensity.

In state 65, the nursing workload intensity is elevated and there are large proportion of new

nurses in the unity. The combination high workloads and staff that are unfamiliar with their tasks,

we see elevated harm rates perhaps due to the increased frequency with which experienced nurses

have to help less experienced staff, or a rise in situations where inexperienced staff are asked to

perform tasks for which they are not fully prepared.
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Figure 5-3: State 65 - 4.5% Chance of Harm Table 5.4: State 65: Busy, Multitasking and New

5.2.2 Handoff Errors

States 54, 58, 59 and 60 are similar and suggest the influence of midrange surge in the Nursing

Intensity Score. The 75th percentile for nursing workload is given appendix A at 24.5. Handoffs

are a rules-based task, but during these busy times, a larger number of handoff errors are made

potentially due to increased cognitive loading from elevated working demands.

State 58 and State 59 are separate states but nearly identical, differentiating only in the nursing

intensity score. These two states can be considered together because upper threshold of nursing

intensity for state 58 is the same as the lower threshold for nursing intensity in state 59, and all

other thresholds are the same. Combining these states reveales higher handoff errorsm which is

why they are grouped together in this section.

5.2.3 System Breakdowns

State 73 is a set of very uncomfortable shifts in the ICU, with many out of the ordinary factors. Large

numbers of new nurses, float nurses and boarders sets the stage for all three types of cognitive errors.

Combining this state with workloads that are elevated results not only in a significantly increased
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Figure 5-4: State 54 - 7.5% Chance of Harm, 146
Shifts

58.png
1.0

0

0.8-

Ez 0.4

0 0L 000
z0.0 ~ = .E

Normal
State

a

0,

Driver Bottom Threshold Top Threshold

Nurse Intensity 24.58 29.46
New Nurse 23.4%
Discharge 26.1%
First 24H 40.8%
SOFA 12.8
Ventilators 75%

Table 5.5: State 54: Mid Intensity Surge

Driver Bottom Threshold Top Threshold

Nurse Intensity
New Nurse
Discharge
First 24H

26.69 29.46
23.4%
26.1%
40.8%

Figure 5-5: State 58- 4.0% Chance of Harm, 174
Shifts

Table 5.6: State 58: Mid Intensity Surge

likelihood of errors, but also a significant increase in patients receiving the wrong medication in

particular. This state, above all other risky states, represents a large number of things gone wrong
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Table 5.7: State 59: Mid Intensity Surge

Driver Bottom Threshold Top Threshold

Nurse Intensity
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Figure 5-7: State 60- 11.1% Chance of Harm, 153
Shifts

in the ICU.

Table 5.8: State 60: Mid Intensity Surge
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Figure 5-8: State 73-
Shifts

7.2% Chance of Harm, 124 Table 5.9: State 73: Busy, Multitasking and Unfamiliar

5.3 Risky States: Low Risk

There are eight states comprising 3330 shifts, or 38.2% of the operating period, with significantly

less risk of harm. These shifts are characterized by medium to low average workloads, low numbers

of new patients, and low patient turnover in the wards. It is interesting to note that for many of

theses states, one or in some cases two risk drivers may be elevated, but the ICU delivery system

remains safe in spite of single point perturbations.

State 32 has a very light workload. The apparent prevalence of handoff errors is misleading.

The relative occurrence of hand-off errors is 100%, but the chance that they occur is very low at

0.7%.

State 42 and 43 are both low risk and differ only on the discharge threshold. We can see from

the isolated influence of discharges switching thresholds that the risk of harm nearly doubles under

this effect alone.

State 47 demonstrates a balance between low nursing intensity and high sofa scores. Acute

patients alone to not make for high risk states.
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Figure 5-10: State 19 - 2.6% Chance of Harm

Driver Bottom Threshold Top Threshold

Nurse Intensity 24.59
SOFA 5.84 13.44
Float Nurse 5%
EU Critical 31.7%
Pt:Nurse Ratio 5:4
New Nurse 21.1%

Table 5.10: State 12: Light Day in the ICU

Driver Bottom Threshold Top Threshold

Nurse Intensity
SOFA
Float Nurse
EU Critical
Pt:Nurse Ratio
Discharges

5.84
24.59
13.44

72.1%
31.7%

29.3%
5:4

21.1%

Table 5.11: State 19: 1957 shifts, Largest ICU State
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Table 5.12: State 32 - 0.7% Chance of Harm, 134 Shifts
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Figure 5-12: State 39 Harm Breakdown Table 5.13: State 39- 0.5% Chance of Harm, 179 Shifts
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43.png
0

Normal
- State

6-

4

2-

n - -

66 0

0
E
0E

Ma1

0
2

0
am
4'

0m

C 0

0
E

Driver Bottom Threshold Top Threshold

Nurse Intensity
SOFA
Nursing Peak
Pt:Nurse Ratio
Boarders
Discharges

13.44

89%

23.05

26%
4:3

10%

Table 5.14: State 42- 1.6% Chance of Harm, 120 Shifts

Driver I Bottom Threshold Top Threshold

Nurse Intensity
SOFA
Nursing Peak
Pt:Nurse Ratio
Boarders
Discharges

23.05
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4:3
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10%

Figure 5-14: State 43 - 0.00% Chance of Harm,
261 Shifts

Table 5.15: State 43: Quiet in the ICU
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Figure 5-15: State 46 - 1.4% Chance of Harm,
202 Shifts
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Chapter 6

Discussion

6.1 Conclusions

A new methodology for aggregating rare events to understand risk drivers at a systematic level

has been developed. The proposed "Risky States" satisfy both statistical rigour and intuitive

inspection. The "Risky States" reveals a critical care system which is well designed to operate

under single sources of systemic stress but suffers from increased error rates as multiple stressors

are applied.

This thesis satisfies major components of the three output of the project from Chapter 1. The

measurement strategy is presented in chapter 3. Chapter 5 presents the results described in output

2 of the Moore Grant Proposal. Throughout the project, deliveries of section of code to Aptima,

a software engineering company and strategic BIDMC partner, have resulted in a prototype user

interface based on this work which can be installed in the BIDMC network. Further spread of these

ideas had been arrange through outreach with the Veterans Affairs Hospital System, whose central

quality control group has pledged the necessary resources to validate and transfer this technology

to their network of hospitals.
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6.2 Next Steps

The drivers presented in this thesis suggests common drivers for several types of harm. Under-

standing the influence of these environmental states with elevated risks sets the stage for a wide

array of possible interventions. Typical risk management practices suggest "de-risking" states with

a variety of process improvement techniques.

1. Mitigate. Risk mitigation can be accomplished by investing in new work-flow patterns to

reduce load, more reliable treatments, or technologies that reduce workload to make healthcare

delivery easier and safer.

2. Avoid. It may be possible to reduce risk levels by diversifying the patient mix in each IOU

ward. Avoiding a high risk state can be accomplished with strategic staffing and patient

placement. The ability to predict, within reasonable bounds, the needs of the patients and

the availability of staff is a necessary capability to avoid elevated risk states.

3. Ignore. It may also benefit the risk management process to temporarily ignore the lower risk

states and focus limited resources on reducing the impact or occurrence of higher risk states.

Investigating the cost and impact of these next steps, along with a pilot implementation to validate

estimates, will create actionable impact on hospital operations.

6.3 Further research

To the author's knowledge, this is the first attempt to aggregate hospital errors and seek to explain

them with environmental level drivers. Over the course of this research, several additional drivers

may be considered important to be investigated in the future.

1. Extension to additional harms

2. Validation at other medical centres. Each medical center has potentially different environ-

ments with different capabilities to measure them. This thesis provides a set of adaptable
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techniques that scales well with additional drivers and can make accurate assessments of

hospitals with different characteristics.

3. Physician involvement. Due to unavailability and unreliability of electronic medical record

keeping, the physician, or team of physicians, responsible for the care of patients in the ICU

was in-determinant. While surprising to most readers, it is the opinion of the staff that such

records are not obtainable at all similar hospitals

4. Staff Training. Detailed records on the proficiency of staff members with procedures that they

are carrying out, either by training or experience, were unobtainable for this study.

5. Extension to prospective risk assessment. The current study classifies harm rates for retro-

spective events. The ability to predict the drivers for future states is an important capability

for resource planning purposes.
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Chapter 7

Hyperplane Cutting: an Efficient

Algorithm for Simultaneous Selection of

Machines and Optimization of Buffers

During Manufacturing System Design

We depart from healthcare analytics to consider the problem of machine selection in the design of

a manufacturing system. The goal is to choose machines and buffer sizes to maximize the profit

generated by the line. There are more than one candidate machines for some of the process stages.

The machines differ by reliability and capital cost. For long lines or cases with many stages that

have many possible machines to choose among, the number of candidate machine sets can be too

large to permit the problem to be solved by evaluating all possibilities. Furthermore, the evaluation

of a machine set can be expensive because each machine set has a different optimal set of buffer

sizes, and determining that set takes substantial computer time. We describe a heuristic algorithm

which does not require an intelligent initial guess. In a set of experiments, it converged in almost

all cases to the optimum, and it converged in seconds or minutes in many cases in which evaluating

all possibilities would have taken years.
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7.1 Introduction

7.1.1 Problem

Design Design Choo se Choo se

products processes mach ines buffers

Are cost and

No performance

satisfactory?

Yes

Figure 7-1: Product/process/system design

We consider the problem of machine selection in the design of a flow line. The goal is to

choose machines and buffer sizes to maximize the profit generated by the line. We assume that

the process has already been designed. That is, the sequence of operations has been chosen, and

we must now select the machines to perform the operation at each stage. For some or all of

the stages, there are more than one machines available that can perform the operations. These

machines may be produced by different vendors, or they may include multiple models produced by

the same vendor. The competing machines at each stage have different performance characteristics

and different capital costs. We provide a heuristic algorithm to solve this problem. Experimental

evidence indicates that it works well.
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We use the Buzacott model [Buzacott, 1967a,b, Gershwin, 1994] of a line, in which each machine

is characterized by its failure probability (p), its repair probability (r), and, in this problem, its

capital cost rate (,q). The cost rate q captures the total cost associated with operating the equipment,

such as depreciation, electricity, parts, interest and labor. Other characteristics (such as operation

time) can be included in extensions of the work reported here. The problem is formulated as an

extension of the buffer optimization problems of Gershwin and Schor [2000] and Shi and Gershwin

[2009] in which the machines are already specified and the profit rate is a function of production rate,

buffer sizes, and average work-in-process inventory. The profit rate function in the new problem is

the same as that of the earlier plus a new term for the capital expense rate.

The selection of machines adds an important combinatorial feature to a nonlinear optimization

problem. Each combination of machines has a different capital cost and, because of the different

reliability characteristics, each combination of machines requires its own optimal set of buffer sizes.

7.1.2 Solution Approach

In previous work on buffer optimization [Gershwin and Schor, 2000, Shi and Gershwin, 2009], buffer

sizes were discrete, but the problems were solved efficiently by treating buffer sizes as though they

were continuous variables. (When the continuous-variable optimum buffer size vector was found, it

was rounded to a nearby vector of integers.) This was possible because all the functions of buffer size

that entered into the objectives and the constraints were meaningful when extended to continuous

variables. In effect, Gershwin and Schor [2000] embedded the discrete set of possible buffer size

vectors in a continuous space, solved the optimization problem, and rounded the solution.

The present problem is also solved by embedding the set of possible machine combinations

in a continuous space. For a k-machine line, each combination of machines can be represented

by a discrete point in a 3k dimensional space. This is the space of all possible (ri, pi, 7i), i =

1, ... , k. A hyperplane cutting heuristic is developed to solve the discrete combinatorial problem of

simultaneously selecting machines and buffers for a flow line to maximizes the profit rate. Through

numerical experimentation, the heuristic has been found to be accurate and fast.
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7.1.3 Literature Review

This research draws on prior work in unreliable production rate assessments, buffer allocation and

machine selection methods for profit maximization.

There have been many techniques developed to evaluate the production rate of unreliable pro-

duction lines, including Koenigsberg [1959], Buxey et al. [1973], Buzacott and Hanifin [1978], Davis

and Stubitz [1987], Hillier and So [1991], Dallery and Gershwin [1992], Buzacott and Shanthikumar

[1993], Papadopoulos et al. [1993], Gershwin [1994], Papadopoulos and Heavey [1996], Altiok [1997]

Tempelmeier and Burger [2001], Tempelmeier [2003], Li and Meerkov [2009]. We develop the cur-

rent work based on the deterministic processing time, discrete material model with a single failure

mode [Schick and Gershwin, 1978, Buzacott and Shanthikumar, 1993, Gershwin, 1994].

Many authors have written about methods to optimize buffers between unreliable machines or

qualitative properties of optimal buffer space allocation including Hillier and Boling [1979], Soyster

et al. [1979], Hillier et al. [1993], Jacobs and Meerkov [1995], Han and Park [2002], Sadr and

Malhame [2004]. Schor [1995] and Gershwin and Schor [2000] develop four efficient algorithms for

optimal buffer allocation. Of particular interest is the maximization of the profit of a production

system with no upper limit on buffer capacity. The profit includes costs for buffer capacity and

work in progress. This paper extends this work to include machine selection. For machine selection

subject to a production rate constraint, we build upon the method developed in Shi and Gershwin

[2009].

There is also considerable research literature in machine selection for production system design

using various methods. It includes Myint and Tabucanon [1994] (multiple-criteria optimization), Lin

and Yang [1996] (the analytical hierarchy process), Beaulieu et al. [1997] (a two-phase heuristic based

on grouping machines into cells), Chtourou et al. [2005] (expert systems). More recently, Nahas et al.

[2014] developed a Genetic Algorithm for selecting machines and buffers in Assembly/Disassembly

networks subject to a cost constraint. Our technique focuses on transfer lines with production rate

constraints and differs in its approach and computational efficiency.

In this paper, we develop a hyperplane cutting heuristic method for the machine selection prob-

lem. Hyperplane cutting techniques for mixed integer linear programs (MILPs) were first developed
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in theory by Gomory [1960]. In Gomory's hyperplane cutting method, a cut creates a linear con-

straint that does not exclude any feasible integer solutions of the problem under consideration.

His cuts create additional linear constraints which allow the simplex method to be applied more

efficiently. The simplex method is applied to find the optimal solution, and a new cutting plane

is applied and the method repeated. Many subsequent methods for linear programming problems

are based on this approach. Westerlund and Pettersson [1995] describe an extended cutting plane

algorithm to solve convex mixed integer nonlinear problems (MINLPs) with "a moderate degree of

nonlinearity." The objective function of this paper is nonlinear, and the method we develop also

uses hyperplanes to separate the feasible solutions but approach the problem by reducing the size

of the solution space.

7.1.4 Outline

The problem is described precisely in Section 7.2. An algorithm, for a version of the problem in

which there is no production rate requirement, is developed intuitively and then stated precisely

in Section 7.3. Section 7.4 provides numerical evidence of the algorithm's accuracy and of its

computer time requirements for this problem. Then we extend this algorithm to the production-

rate-constrained problem in Section 7.5 and describe numerical experience in Section 7.7. Section

7.8 concludes and suggests further related research.

7.2 Problem Description

7.2.1 Technical Overview

We seek to maximize the profit of a production line by choosing the best set of available machines and

buffer sizes. The production process has been selected; now we must choose a machine to perform

the specified operation at each stage of the line and an appropriate set of in-process inventory

buffers. A possible set of machines is a set of machines in which there is one machine to perform

the stage i operation for each stage i. We select the optimal set of machines, M*, from the set of all
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possible sets of machines M. Simultaneously, we select the set of optimal buffer capacities between

machines, N*. Machine choices are illustrated in Figure 7-2.

MI

S 11  ,* M 21 M,

IM

M M, M3,

Stage 1 stage 2 Stage 3
* Choose 1 Choose 1. Choose 1.v

Figure 7-2: Choices for machines at each stage of a three-stage line

The production line has k stages and there are si choices for a machine at stage i. There are

therefore S = Il si possible ways to select a machine set. We denote choice j at stage i by Mij. A

selection of a set of machines is denoted M = (M1i 1 , M2 , ... Mki). We assume a Buzacott model

[Buzacott, 1967a,b, Gershwin, 1994] in which all operation times are equal to one time unit, and

machines are unreliable. The times to fail and to repair are geometrically distributed. The reliability

parameters of machine Mij are pij, the probability of a failure during a time unit while the machine

is operating, and rij, the probability of a repair during a time unit while the machine is down.

In addition, machines have a parameter qij, the fully burdened cost per time unit of owning and

operating the machine. Transportation time is negligible compared to the operation time. Figure

7-3 shows the parameters.

Since each Mij has the parameters pij, ri, and 1ij, every M has a corresponding parameter

set xM with 3k elements which is organized according to x[ = pij, _ = ii for

j = 1, ... , si and i = 1, ... , k, where j refers to the jth choice of machine at stage i.

Consider again the three stage production line in figure 7-2. In this system there are three stages,
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Figure 7-3: Parameters Pij, r and ij for each machine rir s

so k 3. The first stage has three choices so si 3, and likewise 2 2. If we were interested in a

particular machine set that included the second machine in the first stage, the second machine in

the second stage and the first machine in the third stage we would denote it M - (A, 2u M2 ,2 M3 ,1 )

and its parameter vector, x would be (P1,2, r

The problem and solution described here are built on the buffer optimization methods of Gersh-

win and Schor [2000] and Shi and Gershwin [2009]. We make all the assumptions and approximations

of those models, and use similar notation. We outline the key features of the model below.

In selecting unreliable machines, one must also consider the effect of storing work in progress in

buffers. The capacity of buffer Bi is Ni, and the steady state average number of items in Bi is 'hi.

ci is the cost per time unit per unit of buffer capacity, and bi is the cost per time unit per item for

storing work in progress in Bi. The production rate P and the average inventory ii of a particular

line M are nonlinear functions of x and N. For a given M and N we calculate P and Ah according

to the decomposition in Gershwin [1994].

The decision variables in this model are M and N. Given M, the set of buffers N that maximizes

profit is determined according to Shi and Gershwin [2009]. They determine the optimal allocation

of N (denoted N*) which optimizes the profit (H'), which is given by

81



k-1 k-1

1I11(N) = AP - bifti - ciN
i=1 i=1

This profit rate function is divided into three parts. The first term, AP, is the revenue rate term.

It captures the amount of money per unit time that the production system generates as a result

of producing the final product. The second term captures the cost of holding work in progress.

Shrinkage, damage, and exposure to obsolescence are some factors that a system designer might

consider when determining the cost parameter b to apply to the inventory term 'h. The final term

is the cost of factory floor space, which is required for holding buffer parts.

This thesis and the work of Shi and Gershwin [2009] also includes a provision for a production

rate constraint, P > P*. Many factory systems have a minimum production target that is set

exogenously by customer demands, managerial goals, or sales expectations. The P* constraint

captures this common business practice.

We extend this profit function with the inclusion of q as shown below in (7.1).

7.2.2 Technical Problem Statement

Production-rate-constrained problem

In the form of the problem considered here, we maximize the profit rate (7.1) subject to constraints

on the minimum sizes of buffers and the minimum acceptable production rate. We include a new

term, q, which represents to total operating cost per unit time of a machine. Machines vary in

operating and capital costs, and this term captures these additional expenses.

Problem: Choose M = (Mi,M2h, ... , Mkik) E M and N = (N1 , N2, ..., Nk_1) to
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II2(M,N) APR-
i=21

k-1 k

bini - ciNi - E i
i=1

P > P*

Ni > Nmin

This is a combinatorial optimization because M is a set of combinations of discrete choices.

Production-rate-unconstrained problem

This version of the problem is the same as the previous except that we drop (7.2).

Problem: Choose M = (Mijl,M2j 2 , ... , Mkjk) E M and N = (N1, N2 , ... , Nk_1) to

maximize

k-1

H2(M, N) = AP - beni -
k

ciNi - 7i
i=1

(7.3)

subject to

Ni > Nmin

We describe an algorithm to solve the production-rate-unconstrained problem in Section 7.3.
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Numerical experiments and examples are presented in Section 7.4. Then we extend this algorithm

to the production-rate-constrained problem in Section 7.5 and describe numerical experience in

Section 7.7.

7.3 Algorithm for the Unconstrained Problem

Here, we develop a cutting plane heuristic to find the optimal, or near optimal M* which maximizes

the profit function H2 .

7.3.1 Notation and Assumption

It is convenient to define f 2(x, N), N*(x), and H*(x). If we define pij= X3i-2,j, rij = x3i-1,j, and

71i = 3&,, then f 2(x, N) is the profit function that can be evaluated at all values of x that satisfy

0 < X3i-2,j < 1, 0 < X3i-lj < 1, X3, ;> 0 for i = 1, ... , k. By doing this, we are embedding the large

discrete finite set of possible choices into a much larger continuous space. N*(x) is the vector of

buffer sizes that maximizesfI 2(x, N) for a given x, and H* (x)= U72(x, N*(x)), the value of U 2(x, N)

when N = N*(x). In the following, we make the important assumption that Hl*(x) is a smooth,

convex function of x.

It is also convenient to define xM as the value of x that corresponds to machine set M.

7.3.2 Overview of Algorithm

We represent the 3k-dimensional space of all x in Figure 7-4a. Each point indicated by X represents

an xM, the vector of parameters of machine set M. The strategy of this heuristic iterative algorithm

is to eliminate close to half the points at each iteration. We construct a plane that separates the

least likely candidates for optimality from the most likely. This is repeated until only one candidate

remains.

Figure 7-4b shows the contours of constant 1* (x). The smaller the contour, the larger H (x).

The goal is to find the point xM that lies on the smallest contour. Because there are many points,

we must do calculations that involve as few points as possible, and any calculation that does involve
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(a) Parameter vectors xz' at Step 0.

/ x

1x

(b) Iso-profit rate contours of II2

Figure 7-4: Orientation to Parameter Space

a large number of points must be very simple. (Note that we do not need to calculate the contours.

They are shown for intuitive visualization only.)

It is reasonable to assume that a good cutting plane will pass close to the average xM. Therefore,

we calculate the average:

x M
SM
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The sum is over all M c M. There are S terms in the sum. This can also be written, for stage i,

si Si s

= Zrj; pijpz =j7i (7.4)
Si =1 Si =1 Si =1

where pij = X3i-2,j, rij = x3i- ,j, and rij = X3ij for all j = 1, ... , si; i = 1, ... , k.

The average is the new point indicated in Figure 7-5a. To construct a good plane, we calculate

the gradient of F1 (x) at t, which is shown in Figure 7-5b. We draw the plane orthogonal to the

gradient, and we mark for elimination all the points on the side of the plane opposite the gradient

direction.

The surviving points are shown in Figure 7-6. We now repeat the process until all points but one

are eliminated. The remaining point is the estimate of the optimum that the algorithm provides.

The corresponding M is the set of machines and the last N is the corresponding vector of buffer

sizes. A formal statement of the algorithm follows.

7.3.3 Algorithm Statement

* Step 0: Define M = M. Set I = 0.

" Step 1: Calculate 2t1 according to (7.4) where the sum is over all x corresponding to M,

M G MI.

" Step 2: Calculate the approximate gradient G! at x = .t according to

G, + 2,X3k) - H(X, Xi, X3k) Cistrt.M 13k (7.5)

" Step 3: Construct MI'+l as follows:
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N 
I

I - -

(a) Step 1: the average x

' I 

'

I'

(b) Step 2: Construction of the cutting hyperplane

Figure 7-5: Location and Construction of the Cutting Surface

M4+' - {M E M IG'(x - ') > 0 for x corresponding to M} (7.6)

Step 4: If MI+1 consists of a single machine set M, stop. M is the result. Otherwise,

increment I and go to Step 1.
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Figure 7-6: Step 3: Elimination of points below the cutting hyperplane

7.4 Numerical Experiments

In this section, numerical experiments are performed to determine the accuracy and performance

characteristics of the algorithm. In many of the experiments that follow, machine parameters were

generated with pseudo-random numbers. Parameters ri, pi, and rj were uniformly distributed. The

revenue coefficient A and the cost coefficients bi and ci were fixed. Table 7.1 provides a summary

of the parameters:

Parameter Value or Range

pA [.0085,.0185]
ri [.095,.145]

77i [1.25,10.25]
A 2000
b (1,1,1)
c (1,1,1)

Table 7.1: Data for the random machine cases
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7.4.1 Short Lines

To test the heuristic, we ran it on 10,000 four-stage lines (k = 4) in which there were four choices

for each stage (si = 4, i = 1, 2, 3, 4).

Line Length (k) ] Accuracy, % j Precision, %

7 95 .2
8 95 .4
9 100 100

Table 7.2: Results of the long line cases

We compared the optimum found by the algorithm with that found by enumeration. We found

that the results of the heuristic agreed with the enumeration results in 98.2% of the cases. We also

found that for the cases in which the heuristic did not get the correct solution, the average error in

the profit rate was 1.2%. (The average over all cases was much smaller.) The average computation

time for the heuristic was 35.2 seconds; the average time for enumeration was 3.54 minutes.

Special case Consider a line such that for some stage i, there is a machine which is better in all

respects than all the other machines available for that stage. That is, there exists some j' {1, ... , si}

such that pj' < pj; ry > rj; 71j, < 77 for all j = 1,., j' - 1, j' 1, ...,si. Mi fails less often, takes

less time to repair, and costs less than any other machine that is available for stage i. We would

expect that such a machine would always be included in the optimal design.

We experimented with four-stage systems. The solution always agreed with our expectation

that if there is a machine available that out-performs all the other choices in the same stage, it will

always be chosen. In addition, the solution found by the plane-cutting heuristic always agreed with

the solution obtained by enumeration.

7.4.2 Long Lines

Initial trials on longer lines were conducted on systems with up to ten stages with three choices

at each stage. Verification by complete enumeration would take a prohibitive amount of time, so

accuracy was tested by comparing the profit rate of the heuristic solution M* with the profit rates

89



of a small set of neighboring M. Parameters were chosen using a pseudo-random number generator,

and results are summarized in Table 7.2. Accuracy means the percentage of cases that got the exact

result (when compared with neighbors), and precision is the average percentage error in profit rate,

considering only the cases in which the heuristic did not get the exact results.

The advantage of the plane cutting technique becomes apparent in its computational time. For

cases in which the line has k stages and there are s machine choices for each stage, calculating the

profit rate of every possible machine set requires sk evaluations of the profit rate function, and these

evaluations include buffer optimization. The time required for this operation grows exponentially

with the number of stages [Shi and Gershwin, 2009], a method which quickly becomes impractical.

Hyperplane cutting reduces the number of these evaluations to approximately (3k +1) log2(s). The

log 2 s term captures the number of iterations required if each iteration eliminates approximately half

of the decision space. The 3k + 1 term describes the number of times the gradient is calculated for

each iteration. Each time the gradient is estimated, the profit rate is calculated so the running time

must scale directly with this quantity. Figure 7-7 shows estimates of the computer time required

for both methods.

Line Length (k) Enumeration Heuristic

4 81 24
5 243 27.86
6 729 31.02
7 2187 33.69
8 6561 38.04
9 19683 39.86
10 59049 41.51

Table 7.3: Estimates of algorithm loops

7.4.3 Example Problem

This section presents an example solution to the design of a particular manufacturing system. In

the following example problem, there are 4 stages, with 4 choices per stage. All parameters for

each machine were generated randomly, yielding a set of parameters presented in Table 7.4. The
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1.aOE+012

-4- Plane Cut S=2
Plane Cut S=3

I.OOE010 1 "'.Plane Cut S=4
1.OOE+01O -- Enumeration S=2

Enumeration S=3
-H- Enumeration S=4

1.OOE+008

1.00E+006
E

1.OOE+004

1.OOE+002

1.OOE+000
4 5 6 7 8 9 10 11 12 13 14 15

Stages

Figure 7-7: Estimates of Computer Time: Enumeration Vs Hyperplane Cutting

production rate is unconstrained. There are 44 = 256 possible machine sets and the dimension of

the parameter vector space is 4 x 3 = 12.

For this small problem, we enumerate all 256 possible machine sets and solve the buffer design

problem for each. Solving the buffer design problem is the most time-consuming step and complete

enumeration is impractical for large systems, but it is useful to visualize the progress and accuracy

of the algorithm when direct comparison by enumeration is available. First, the profit for each

machine set is solved by enumeration. Next, the profits are order from most profitable to least,

and plotted in Figure 7-8a. Figure 7-8 and Figure 7-9 show how the enumerated outcomes are

eliminated at each iteration of the algorithm. Nearly half of the possibilities are eliminated at each

step, and this case converges to the optimal solution.
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Stage 1

p r y e

.013795 .10946 1.7636 .8881
.01128 .099593 2.2373 .8983
.011056 .10562 1.5822 .9052
.0095437 .10208 1.5366 .9145

Stage 3

p ] r I e 

.017135 .10987 2.5511 .8651

.017524 .096579 1.5677 .8464

.015596 .097038 1.7309 .8615

.014682 .11093 1.7075 .8831

Stage 2

p r ] 7  e
.012036 .11412 1.4343 .9046
.016487 .11228 2.0593 .8720
.010163 .11265 2.4684 .9172
.013803 .11046 2.006 .8889

Stage 4

P r [ ' [ e
.0085538 .10903 1.6119 .9273
.016997 .10687 1.8329 .8628
.0094287 .11401 2.0331 .9236
.014126 .099772 2.3997 .8760

Table 7.4: Parameters for the unconstrained example problem

7.5 Problems with the Production Rate Constraint

We next consider the original problem statement in section 7.2.2, where the system must be designed

to achieve a nonzero minimum production rate, P > P* > 0.

We proceed by modifying the algorithm in 7.3.3 with the inclusion of filtering step after the

feasible region is defined.

9 Step 0.5: filter out all machine sets M such that if any machine Mij C M has ej < P* + 6.

This filter ensures that the remaining M are feasible solutions, as a machine with e < P* would

never be able to produce quickly enough to meet the requirements. The inclusion of the small

offset E is necessary to ensure convergence, as production systems with eij = P* would require

infinite buffers. However, this is not an important restriction as no line designer for a stochastic

environment with a target production rate of P* would consider a machine with e = P*.
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Figure 7-8: Illustration of reduction of feasible solutions for solution to 7.4, Part 1

7.6 Numerical Experiments with the Production Rate Con-

straint

We repeat the random machine experiments from Section 7.4 of with the same parameters as before,

as in Table 7.1 but now we add constraint 7.2. So that the problem is meaningful, we choose P* to

satisfy:

P* = min Ee-
3,N

(7.7)

This specification of P* guarantees that the minimum production rate is in the middle of the

isolated efficiencies for the available machines. This is important because a P* which is too small

93

0

9A - , .. - , . .1 . . - I I I I . I - k I - - . - AAIIWI.

e

cu



would be the same as the cases in Section 7.4, and a P* which is too large would eliminate all of

the available machines and result in zero possible solutions.

10,000 trials were run for k = 4 stage lines and 1000 trials were run for k = 10 stage lines. The

results of these experiments are shown in Table 7.5. They show remarkable accuracy and precision.

Line Length (k) Accuracy, % Precision, %

4 94 .25
10 94 .5

Table 7.5: Results of experiments with production rate constrains

7.7 Numerical Experience

In this section we explore two case studies which further develop the important insights and lim-

itations that can be garnered from this method of investigation. First, we explicitly explore the

trade-off between reliability and cost. We conclude this section is an investigation of situation which

will cause the heuristic to become inaccurate.

7.7.1 The Balance Between Cost and Reliability

In this section we conduct an experiment that investigates when it is worthwhile to invest in

machines that are more expensive, and more reliable, and when it is better to buy inexpensive

machine and compensate for the inefficiency with extra buffer space.

Table 7.6 shows identical machines except for a scaling factor applied to the cost rate 'q in all

choices of machines in the second stage. y ranges from 0 to 50. For small -y, all machines are

relatively cheap. For large 7, reliable machines become much more expensive than less reliable

machines.

The machines that were selected in stage 2 are shown in Table 7.7 for each value of -y. The figure

shows that for -y < 10, the most expensive, most reliable machine in stage 2 is chosen. This reflects

a classical lean manufacturing environment where buffers are small and machines are reliable. At

the other extreme, for y > 35, reliable processes are very expensive. The profit of the manufacturing
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system is optimized by selecting a low cost, low efficiency machine and compensating for machine

breakdowns with buffer capacity.

Stage 1
p r I q e]

.013 .095 100 .87

.011 .099 150 .90

.0095 .105 200 .917

.009 .11 250 .92

Stage 3
p r q e

.013 .095 100 .87

.011 .099 150 .90

.0095 .105 200 .082

.009 .11 250 .076

Stage 2

p rI 11 e
.013 .095 100-y .87
.011 .099 1507 .90
.0095 .105 200-y .082
.009 .11 250y .076

_ _ Stage 4
p r I q e

.013 .095 100 .87

.011 .099 150 .90
.0095 .105 200 .082
.009 .11 250 .076

Table 7.6: Parameters for the example

-y Range Stage 2 Machine %
1-10 M2,4

11-25 M2 ,3
26-35 M2,2

36-50 M2,1

Table 7.7: Effect of varying y

Figure 7-10 shows the piecewise smooth transition between stage 2 machines as the scaling

constant is increased. While the profit function is continuous, the total buffer size in Figure 7-10 is

discontinuous. At each discontinuity, a different machine in stage 2 becomes optimal, and the buffers

are adjusted to maximize the profit of the new system. The figure tells a story of very different

factory operation strategies. Factories with unreliable machines pay to reach their production goals

with inventory and floorspace implying very different management and workplace environments and

exposure to risks associated with high levels of work in progress.
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7.7.2 Limitations

This thesis presents a heuristic for nonlinear mixed integer program, and all heuristics (as well as all

other known solutions for similar problems) have limits. The assumptions that the profit function

is smooth and convex is imposed and the computation of the profit gradient may be inaccurate

under special conditions.

The underlying productivity model is based on the work of [Gershwin, 1994]. As P* approaches

e this model becomes inaccurate due to the very large size of buffers.

To illustrate this effect of this breakdown we create a set of machines with properties in table

7.8 and hold them as the only available choice. Next, we vary P* between .79 and .86 with a .002

step size and plot the buffer sizes that result in Figure 7-11.

Stage 1 Stage 2
p r I e p r I 7 e

0.014515 0.11128 1.5697 0.8846 0.017153 0.1047 2.855 0.85923

Stage 3 Stage 4
p r q e p r T7 e

0.01373 0.102 2.3336 0.8814 0.015696 0.09773 2.807 0.8616

Table 7.8: Parameters for the example

Machine designers must be careful to avoid using this algorithm for systems which are are barely

efficient enough to meet their production rate constraints.

This challenge to algorithm accuracy is easily mitigated with two approaches;

1. Filter out machines for which e is only marginally above P*. This approach is outlined in

Section 6.5.

2. As the algorithm approaches the final iterations, switch to a enumerating all remaining possible

solutions.
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7.8 Conclusion

7.8.1 Summary

A fast, accurate, flexible heuristic has been developed to make optimal, or near-optimal decisions

about selecting unreliable machines in a factory setting. We have reduced a problem which would

take years to solve by enumeration to one which converges in minutes with a high degree of accuracy.

7.8.2 Future Work

Gains in accuracy and time may be attainable by switching to enumeration when there are few

choices left in M'. Useful extensions include allowing more general configurations of machines such

as machines in parallel at a stage. Other models of machines may provide additional design options.

For example, machines may be available that operate at different speeds. This would require a

fourth parameter in addition to those described here and a different model for productivity. More

general configurations and models, such as multiple failure modes, assembly/disassembly systems,

and systems with loops may also be treatable by this solution technique. The cost of buffers can

include a cost of having a buffer, independent of its size or amount of inventory. This could represent

the cost of the material handling mechanism for buffers. In that case, the optimal solution may

have many fewer buffers than machines. Other extensions may include production rate, a total

inventory space constraints or a capital expense constraint.
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Appendix A

Normal Staffing All Peak TISS SOFA TISS Upper Vents First 24H

count 8724.000000 8724.000000 8724.000000 8724.00000 8724 8724.000000

mean 0.848630 0.231712 11.659270 21.71904 0.2077029 0.445104

std 0.292579 0.200291 3.216726 5.47100 0.4056862 0.255453

min 0.020833 0.000000 0.000000 0.00000 0 0.000000

25% 0.640625 0.000000 10.111111 18.00000 0 0.285714

50% 0.833333 0.200000 11.888889 21.00000 0 0.428571

75% 1.031702 0.333333 13.700000 24.50000 0 0.600000

max 2.000000 1.500000 23.000000 81.00000 1 3.000000

Admits New Nurse All EU Critical All Float Nurse All Discharges Boarders

count 8724.000000 8724.000000 8724.000000 8724.000000 8724.000000 8724.000000

mean 0.154171 0.165912 0.105634 0.227195 0.151572 0.864363

std 0.165534 0.234221 0.172050 0.296836 0.173496 0.159874

min 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

25% 0.000000 0.000000 0.000000 0.000000 0.000000 0.750000

50% 0.142857 0.000000 0.000000 0.000000 0.125000 0.888889

75% 0.250000 0.333333 0.166667 0.400000 0.250000 1.000000

max 1.000000 3.000000 1.000000 2.666667 1.000000 1.166667
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